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We investigate the cooling produced by a loss process nonselective in energy on a one-dimensional (1D) Bose

gas with repulsive contact interactions in the quasicondensate regime. By performing nonlinear classical-field

calculations for a homogeneous system, we show that the gas reaches a nonthermal state where different modes

have acquired different temperatures. After losses have been turned off, this state is robust with respect to

the nonlinear dynamics, described by the Gross-Pitaevskii equation. We argue that the integrability of the

Gross-Pitaevskii equation is linked to the existence of such long-lived nonthermal states and illustrate this by

showing that such states are not supported within a nonintegrable model of two coupled 1D gases of different

masses. We go beyond a classical-field analysis, taking into account the quantum noise introduced by the

discreteness of losses, and show that the nonthermal state is still produced and its nonthermal character is even

enhanced. Finally, we extend the discussion to gases trapped in a harmonic potential and present experimental

observations of a long-lived nonthermal state within a trapped 1D quasicondensate following an atom-loss

process.

DOI: 10.1103/PhysRevA.96.013623

I. INTRODUCTION

Ultracold temperatures are routinely obtained in dilute

atomic gas experiments using evaporative cooling. Here, an

energy-selective loss process removes the most energetic

atoms; provided these atoms have a high enough energy,

rethermalization of the remaining atoms leads to a lower

temperature [1]. Naively, one expects evaporative cooling to be

highly inefficient in (quasi-)one-dimensional (1D) geometries

where the transverse degrees of freedom are suppressed and the

atoms mainly populate the transverse ground state. Evapora-

tive cooling then only relies on longitudinal dynamics, and we

expect its efficiency to be poor, particularly for the very shallow

longitudinal confinements realized experimentally. Despite

this issue, cooling deep in the 1D regime to temperatures

as low as one-tenth of the transverse energy gap has been

reached experimentally in Bose gas experiments [2,3]. This

has allowed the realization of 1D quasicondensates, where

the repulsive interactions between atoms strongly suppress

the density fluctuations and low excitations of the gas are

collective density waves, also called phonons [4]. The nature

of the cooling mechanism in such 1D geometries is still not

well understood. However, its investigation is essential in

order to properly characterize both the equilibrium and out-

of-equilibirum properties of these atomic clouds, especially

with a view towards their application in quantum simulation

experiments [5].

Recently, Ref. [6] theoretically considered a 1D quasicon-

densate subject to a simple energy-independent loss process

and showed, within a linearized approach where excitations

are treated independently, that cooling was possible. More

precisely, for a given mode, losses amount to a decrease of the

mode’s energy due to the decrease of both the mean density

and the amplitude of density fluctuations. Free evolution,

if fast enough, ensures equipartition of energy between the

mode’s two quadratures, such that one can assign an effective

temperature to the mode, so losses consequently amount

to a reduction of the mode’s temperature. The temperature

decrease predicted by this linearized theory was observed in an

experiment probing the low-energy modes of a quasiconden-

sate undergoing a continuous and homogeneous outcoupling

process [7]. However, studies for homogeneous systems show

that the cooling rate is expected to depend on the mode energy,

with higher-energy modes cooled at a slower rate than low-

energy excitations. Thus, as long as the linearized approach

is trusted, losses should produce a nonthermal state (i.e., a

state that is not described by the Gibbs ensemble). Typically,

this state is not guaranteed to be long lived, since coupling

between modes a priori redistributes energy, leading to global

thermal equilibrium. However, 1D Bose gases with repulsive

contact interactions are peculiar since they are described by

the Lieb-Liniger Hamiltonian, which belongs to the class of

integrable models. Relaxation of observables towards their

values predicted by the Gibbs ensemble is not granted in such

systems [8,9]. Consequently, the nonthermal nature of the state

produced by the loss process could be robust against coupling

between modes. This might be the origin of the nonthermal

nature of the long-lived 1D quasicondensates produced by

evaporative cooling and reported in [10,11].

In this article, we go beyond the linearized approach and

show that a simple uniform loss process realizes long-lived

nonthermal states of 1D quasicondensates. We numerically

investigate the simple case of homogeneous gases and describe

the quasicondensate within a classical-field approach, its

dynamics being governed by a nonlinear partial differential

equation: the Gross-Pitaevskii equation with an additional

term taking losses into account. We believe the realization

of long-lived nonthermal states is related to the integrability

of the system, supported by numerical simulations showing

that the system thermalizes towards the Gibbs ensemble when

integrability is violently broken. We then present numerical

studies showing that long-lived nonthermal states are also

produced if one incorporates the shot noise associated with

the loss process, due to the discreteness of losses, namely the

quantum nature of the atomic field operator.
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Finally, we discuss the case of a gas trapped in a harmonic

potential. Both the excitation spectrum and the form of

the excitations differ from that of a homogeneous system,

and hence one cannot directly extend the results for the

homogeneous system to the trapped case. We nevertheless

argue that we still expect a nonthermal state to be produced by

the loss process. We present recent observations of long-lived

out-of-equilibrium states on our experimental atom-chip setup

that could be related to the conclusions of our theoretical study.

II. LINEARIZED APPROACH FOR HOMOGENEOUS

SYSTEMS WITHIN THE CLASSICAL-FIELD APPROACH

We first recall results obtained within the linearized

approach in the classical-field framework. For this purpose,

consider the simple case of a 1D Bose gas confined in

a box of length L that is initially at thermal equilibrium

at temperature Ti and mean density ρi . We use the

density-phase representation of the atomic field ψ = √
ρ eiθ

and denote ρ0 the (time-dependent) mean density. Density

fluctuations δρ = ρ − ρ0 are small in the quasicondensate

regime and phase fluctuations occur on long wavelengths;

therefore, as a first approximation one can linearize the

equations of motion. Expanding θ and δρ on sinusoidal

modes, θ =
∑

k>0

√
2/L[θck cos(kz) + θsk sin(kz)] and δρ =

∑

k>0

√
2/L[δρck cos(kz) + δρsk sin(kz)], we find that θjk and

δρjk are conjugate variables (i.e., [δρjk,θj ′k′] = iδjj ′δkk′) and

that each mode is governed by its own Hamiltonian

Hjk = Akδρ
2
jk + Bkθ

2
jk, (1)

where the coefficients Ak = g/2 + h̄2k2/(8mρ0) and Bk =
h̄2k2ρ0/(2m) depend on ρ0. Here j = c or s and k takes

discrete values 2nπ/L, where n is a positive integer. Within

the classical-field approach, the thermal state of the mode jk

corresponds to a Gaussian distribution of θjk and ρjk satisfying

the equipartition relation Ak〈δρ2
jk〉 = Bk〈θ2

jk〉 = kBT/2.

Now consider the uniform loss of atoms at rate Ŵ and its

effect on a given mode jk. Losses decrease ρ0 at the rate Ŵ

and, ignoring at first evolution under the Hamiltonian (1), δρjk

is decreased at the same rate—i.e., dδρjk/dt |L = −Ŵδρjk ,

where the symbol L indicates that we are only considering

the effect of losses. Thus the losses decrease the energy

in each quadrature, due both to the decrease of δρjk and

the modification of Ak and Bk . If the loss rate is small

compared to the mode frequency ωk = 2
√

AkBk , one expects

adiabatic following under the modification of Ak and Bk . In

particular, equipartition of energy between the two conjugate

variables holds at all times. Then, the quantity Ẽ = E/(h̄ωk)

is unaffected by the modification of Ak and Bk due to the

decrease of ρ0, and its modification comes solely from the

decrease of δρjk due to losses. We finally find

dẼ

dt
= −ŴẼ. (2)

Our assumption of energy equipartition allows us to associate

a temperature kBTk = Ek to the mode, and so Eq. (2) can be

rewritten as

Tk(t)

Ti

= e−Ŵt ωk(t)

ωk(0)
. (3)

Note that the form of Hamiltonian (1) is not particular to

the case of a homogeneous gas, provided δρk,j and θk,j are

replaced by the proper quadratures of the Bogoliubov mode,

corresponding to density and phase fluctuations, respectively,

and Ak and Bk take values which depend on the Bogoliubov

wave functions [12]. Thus Eqs. (2) and (3) are general,

provided the adiabatic following condition is fulfilled. Note

that, in Eq. (3), changes of the parameters Ak and Bk only

contribute to the temperature evolution via the ratio ωk(t)

ωk(0)
,

while the exponential prefactor amounts to the extra cooling

due to the loss-induced squeezing of the density-fluctuation

quadrature. For the particular case of a homogeneous gas,

Eq. (3) gives

dTk

dt
= −ŴTk

3 + h̄2k2/(2ρ0mg)

2 + h̄2k2/(2ρ0mg)
. (4)

Losses thus lead to the cooling of each mode, but at different

rates explicitly dependent on k. In the phononic regime

k ≪ √
mgρ0/h̄, the cooling rate is 3Ŵ/2, compared to Ŵ

in the particle regime k ≫ √
mgρ0/h̄. Therefore, within the

linearized approximation, a uniform loss process produces a

nonthermal state, where different modes correspond to differ-

ent temperatures. Such a state can be viewed as a generalized

Gibbs ensemble [13], where the different conserved quantities

are the energies in each linearized mode.

III. NONLINEAR CLASSICAL-FIELD APPROACH

Beyond the linearized approximation, but still within the

classical-field approach, the system’s evolution in the absence

of loss is given by the Gross-Pitaevskii equation for the atomic

field ψ

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂z2
+ g|ψ |2ψ. (5)

This equation contains coupling between the linearized modes

studied above, which acquire a finite lifetime [14,15]. In a

generic system, such coupling redistributes the energy between

the modes such that the system reaches the Gibbs ensemble

where all modes share the same temperature. However, the

Gross-Pitaevskii equation for a 1D homogeneous gas leads to

integrable dynamics and relaxation towards thermal equilib-

rium is not granted. Consequently, the out-of-equilibrium state

produced by the atom-loss process might be robust against this

nonlinear mode coupling.

To check whether the nonthermal state survives coupling

between modes, we numerically evolved stochastic samples of

{ψ(z)} from an initial thermal state at temperature Ti and den-

sity ρi according to the dissipative Gross-Pitaevskii equation

[Eq. (5) with the additional loss term ∂ψ/∂t = −iŴψ/2]. Each

sample [i.e., each single stochastic realization of the initial field

{ψ(z)}] was constructed using the linearized approach above

and the associated thermal Gaussian distribution of the conju-

gate variables θjk and δρjk . Normalizing ψ by
√

ρi and lengths

by ξi = h̄/
√

mgρi , the initial statistical properties of ψ depend

on the single parameter χ = Ti/Tco, where Tco = h̄ρi

√
ρig/m

[16,17], while the subsequent time evolution only depends

on Ŵ/(ρig), provided time is normalized to h̄/(ρig). After a

certain time t , the quantities δρjk and θjk are extracted, from

013623-2
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FIG. 1. Time evolution of the mode energy during the loss process

(Ŵt < 1), and subsequent dynamics after the loss rate is set to zero,

for modes of wave vectors kξi = 0.5 (red, lowest curve), 2.5 (black),

and 6 (green, highest curve). The dashed and dotted lines are the

expected behavior for phonons (e−3Ŵt/2) and high-energy excitations

(e−Ŵt ), respectively. Here χ = Ti/(ρi

√
h̄ρig/m) = 0.05 and the loss

rate is Ŵ = 2 × 10−3ρig/h̄.

which we compute the energy in each mode. Figure 1 shows

the time evolution of the mean energy, using an ensemble of

10 stochastic samples, in three different Bogoliubov modes of

wave vectors k = 0.5/ξi , 6/ξi , and 2.5/ξi , lying respectively in

the phononic regime, the particle regime, and an intermediate

regime. Here χ = 0.05 and the loss rate Ŵ = 2 × 10−3ρig is

small compared to the frequencies of the modes analyzed.

We verified that equipartition between the two quadratures is

fulfilled within a few percent during the whole time evolution,

confirming that the energy in each mode can be associated

with a temperature. We find that, for modes lying in the

phononic regime and in the particle regime, the results are

in good agreement with the linearized prediction given by

Eq. (4) and the different modes reach different temperatures.

This nonthermal situation produced by atom loss is stable over

long times; after the loss process has stopped, the temperature

of each mode is stationary over times as large as 103h̄/ρig.

Such long-lived nonthermal states are probably only possi-

ble due to the integrability of the 1D Gross-Pitaevskii equation.

Nevertheless, the long-lived nature of the state is not obvious,

since the energies in the linearized modes are not conserved

quantities. Lifetimes of the linearized modes are finite [14]

and nonthermal distributions inside the phononic regime show

good thermalization [18]. The long lifetime of the nonthermal

state generated here is probably due to the poor coupling

between modes lying in the phononic and particle regimes,

respectively. The quantum counterpart might be viewed as a

form of many-body localization in momentum space.

IV. EFFECT OF INTEGRABILITY ON NONTHERMAL

STATE LIFETIME

We investigated the role integrability plays in supporting

these long-lived nonthermal states by considering a closely

related nonintegrable system. Specifically, we coupled a

second atomic field ϕ, consisting of particles with mass

m′ �= m, to the first field via coupling constant g̃, which is

described by the evolution equations

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂z2
+ (g̃|ϕ|2 + g|ψ |2)ψ, (6a)

ih̄
∂ϕ

∂t
= −

h̄2

2m′
∂2ϕ

∂z2
+ (g|ϕ|2 + g̃|ψ |2)ϕ. (6b)

As before, we constructed samples of an initial thermal state

by identifying the two Bogoliubov modes for each wave vector

k, and stochastically sampling Gaussian distributions of these

modes (for details, see Appendix A). We then evolved the

system in the presence of losses at the same rate Ŵ for both

species until a substantial fraction of atoms was lost, and

subsequently evolved the system further without the loss term.

The energy in each mode was then extracted via the linearized

approach. As illustrated in Fig. 1, when the two fields are

coupled (g̃ �= 0) the modes evolve towards an equipartition of

energy over a long propagation time scale. In contrast, within

the uncoupled system (g̃ = 0) the energies of the modes remain

distinct.

There are many ways to break the integrability of the

system. In the model of two gases with different masses,

the integrability is violently broken since a two particle

collisional event does not preserve the set of momenta. A

gentler way to break the integrability would be to consider two

gases with atoms of the same mass, but with an interspecies

0

0.06

0.12

0.18

0 100 200 300 400 500 600

E
k
/
(k

B
T

i
)

Γt

FIG. 2. Time evolution of the mean energy of modes of wave

vectors k = 0.3
√

mgρi/h̄ (solid lines) and k = 6.0
√

mgρi/h̄ (dashed

lines), where ρi is the initial density of each species, in the coupled

(fat blue lines, g̃ = 0.4g) and uncoupled (thin red lines, g̃ = 0) cases.

The loss process is turned off at time t = 2/Ŵ and shown is the

subsequent evolution of the isolated system. The modes in the two

uncoupled gases retain their respective energies after dissipation has

been turned off to form a long-lived nonthermal state as above, while

the modes in the coupled system relax towards an equipartition of

energy. This highlights the role of integrability in the establishment

of the long-lived nonthermal configuration. Here results are obtained

by averaging over 10 samples, and for each sample we average the

mode energy over a k interval of 0.2
√

mgρi/h̄. The parameters of the

simulation are Ti/(ρi

√
h̄gρi/m) = 0.04, m′/m = 3, and h̄Ŵ/(ρig) =

4 × 10−3.
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coupling g̃ different from the intraspecies coupling g. Here,

any two-particle collision does preserve the set of momenta.

This system is nevertheless nonintegrable. However, our

simulations of the classical-field version of this system did

not show any relaxation on the time scales shown in Fig. 2.

V. EFFECT OF QUANTUM FLUCTUATIONS

ASSOCIATED WITH THE ATOM-LOSS PROCESS

The above treatment does not take into account the

quantized nature of the atomic field, i.e., the discreteness of the

atoms. In particular, it ignores the shot noise in the loss process,

which introduces additional heating and therefore limits the

lowest attainable temperature. A description that accounts for

the discreteness of the losses is provided by the stochastic

Gross-Pitaevskii equation

ih̄ dψ =
(

−
h̄2

2m

∂2

∂z2
ψ + g|ψ |2ψ − i

Ŵ

2
ψ

)

dt + dξ, (7)

where 〈dξ ∗(z)dξ (z′)〉 = Ŵdt δ(z − z′)/2. This equation can

be derived by converting the master equation for the system

density operator to a partial differential equation for the Wigner

quasiprobability distribution. After the third- and higher-order

derivatives associated with the nonlinear atomic interaction

term are truncated (an uncontrolled approximation, but one that

is typically valid for weakly interacting Bose gases, provided

the occupation per mode is not too small over the simulation

time scale), evolution of the Wigner distribution takes the

form of a Fokker-Planck equation, which can be efficiently

simulated via Eq. (7). There exists a formal correspondence

between the quantum field ψ̂(z) and ψ(z): averaging over

solutions to Eq. (7) correspond to symmetrically ordered

expectations (for more details, see Appendix B; an alternative

derivation is provided in [6]).

As shown in Appendix B, linearizing Eq. (7) in density

fluctuations and phase gradient gives an independent evolution

of each mode. Modes with frequencies much larger than

the loss rate remain thermal; however, their temperatures

depend on the mode energy and have the following long-time

behavior: Tphonon ≃
t→∞

ρ0(t)g/kB for phononic modes and

Tpart ≃
t→∞

h̄2k2

2m
1

kBŴt
for particle modes. Note that, in contrast

to pure classical-field predictions, the temperature within the

particle regime depends on k. Moreover, the ratio between Tpart

and Tphonon,

Tpart

Tphonon

≃
t→∞

k2

2gρi

eŴt

Ŵt
, (8)

is much larger than the one predicted by a pure classical-field

theory. Thus the effect of the shot noise associated with the

discreteness of lost atoms amplifies the nonthermal nature of

the state.

In order to test whether the above predictions including

quantum noise are robust beyond the linearized approach,

we numerically simulated the evolution given by Eq. (7).

The initial thermal state, deep in the quasicondensate regime,

was sampled stochastically by using the linearized approach

and taking into account quantum fluctuations (which is

equivalent to sampling the Wigner function for a thermal

state [19,20]). These samples were then evolved according to

1

10

102

0 0.5 1 1.5 2 2.5 3

k
B

T
k
/(

ρ
0
(t

)g
)

kh̄/
√

mρig

FIG. 3. Temperature of each mode, obtained from the stochastic

Gross-Pitaevskii equation, as a function of the wave vector k of

the mode, for different evolution times: Ŵt = 0 (dotted green line),

Ŵt = 2.5 (dashed blue line), and Ŵt = 5.3 (solid fat red line).

The initial temperature is kBTi/(ρig) = 3. As atoms are lost, the

gas is driven out of equilibrium and Tk acquire a k dependence.

For phononic particles, we observe that Tk tends towards gρ0(t),

as expected from the linearized approach. The smooth red solid

line is the asymptotic result of Eq. (8), valid at long times for

excitations in the particle regime, computed for Ŵt = 5.3. Parameters

of the simulation are kBTi/(h̄ρi

√
gρi/m) = 3 × 10−3, h̄Ŵ/(gρi) =

2 × 10−3, and mg/(h̄2ρi) = 10−6.

Eq. (7) and the energy Ek of each Bogoliubov mode computed

at each time (with averages over trajectories yielding 〈Ek〉
and the corresponding temperature Tk = h̄ωk/{kB ln[(Ek +
h̄ωk/2)/(Ek − h̄ωk/2)]}). Figure 3 shows Tk as a function of

k at three distinct times and reveals that a nonthermal state is

realized with a k-dependent temperature. At small k we find, in

agreement with the linearized approach, that the temperature

converges towards ρ0(t)g at long times. At long times and

large k, predictions from Eq. (8) are recovered.

VI. LONG-LIVED NONTHERMAL STATES

IN HARMONICALLY CONFINED 1D GASES

The generation of a state which is out of equilibrium raises

concerns about experiments probing one-dimensional Bose

gases, where this nonselective cooling scheme is expected

to occur. In standard experiments, atoms are confined in a

harmonic potential, which complicates the picture. To zeroth

order in fluctuations, the density profile of the gas is given

by the Thomas-Fermi inverted parabolic shape [21,22]. At

finite temperature, excitation modes above this Thomas-Fermi

profile get populated. If the loss rate is sufficiently small,

one expects that each mode adiabatically follows the changes

of the Thomas-Fermi shape, such that each mode can be

treated independently and, within the pure classical-field

approximation, Eq. (3) is still valid, where k is now a positive

integer that indexes the mode. The frequency of phononic

modes, i.e., modes of energy much smaller than the chemical

potential μ, are well approximated by ωk = ν
√

k(k + 1)/2,

where ν is the harmonic trapping frequency [23]. Thus, for

modes which stay within the phonon regime during the entire

loss process, Eq. (3) predicts that their temperature decreases

as e−Ŵt .
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FIG. 4. Results of the two thermometries we performed on the experiment. (a) Atom number fluctuations. Fitting the central region of the

cloud, i.e., the high atom-number part, (red line) gives a first temperature Tf l = 80 nK. However, the expected profile from this temperature

[also the red curve on (b)] lies well below the experimental data. A second temperature Tpr = 140 nK is found by fitting the profile with the

equation of state (solid green line). By plotting the expected atom number fluctuations from Tpr on (a), the prediction is in good agreement

with the small atom number region. That is, the center of the cloud appears to be at a different temperature than the edges. The close to

50% discrepancy is well beyond the uncertainty we have on the temperature measurements, which is around 10%. (c) Data showing that this

temperature difference is stationary over time: we observed a long-lived nonthermal state.

The description of higher-energy modes, called particle

modes, is not simple since they explore regions where the

Thomas-Fermi density vanishes and the quasicondensate

approximation fails. It is reasonable, however, to believe that

the energy spectrum at energies much larger than μ is close

to the energy spectrum of free particles, so that frequencies

of these modes are equally spaced, separated by ν. Since the

chemical potential decreases during the loss process, many

excitations initially in the phononic regime are transferred to

the particle regime. Let us consider such an excitation. Its

frequency goes from ωk ≃ kν/
√

2 before the loss process [24]

to about kν at the end of the loss process when it lies in

the particle regime. The ratio ωk(tf )/ωk(0) is thus larger than

one. According to the classical-field prediction of Eq. (3),

one therefore expects these excitations to attain a higher

temperature than those lower excitations staying within the

phonon regime.

The effect of shot noise on the loss process is not easy to

treat for a trapped gas. However, we expect that, as in the

case of a homogeneous gas, the quantum noise will amplify

the nonthermal behavior of the system, so the temperature

differences between modes could be even larger.

VII. EXPERIMENTAL OBSERVATION

OF A LONG-LIVED NONTHERMAL STATE

Observing the nonthermal nature of the gas experimentally

requires the ability to address modes of different energies

independently. This is a priori not an easy task for gases

confined in a box since all modes overlap spatially. However,

since the atomic clouds in typical experiments are confined

longitudinally in a slowly varying harmonic potential, there

is some spatial separation of modes of different energy. At

very low temperatures, thermal excitations of energy larger

than ρpg give the density profile “wings” that extend beyond

the Thomas-Fermi inverted parabola of peak density ρp. In

contrast, low-energy excitations lying in the phononic regime

do not extend beyond the Thomas-Fermi profile, but are

responsible for long-wavelength density fluctuations in the

central region of the cloud. The density profile of the gas is

thus most sensitive to high-energy excitations. Low-energy

excitations, on the other hand, can be probed by investigating,

within the Thomas-Fermi profile, atom-number fluctuations

〈δN2〉, in pixels of length � much larger than the healing

length ξ0 [25].

Experimentally, we prepare clouds of 87Rb atoms by

radio-frequency evaporation in our atom-chip experiment, as

described in [26], and we record a set of density profiles taken

under the same experimental conditions. The longitudinal

trapping frequency is 6.2 Hz, while the transverse confinement

is 1.9 kHz. Atoms are polarized in the |F = 2,m = 2〉 hy-

perfine ground state, where the interactions are characterized

by the s-wave scattering length a = 5.2 nm. Since the local

density approximation is well fulfilled longitudinally, the

equilibrium profile can be computed using the equation of

state for longitudinally homogeneous gases, ρ(μ,T ), where μ

is the chemical potential. Using the well-established modified

Yang-Yang equation of state [26,27], where the effective 1D

coupling constant is g = 2h̄ω⊥a, the experimental density

profile is fitted for a temperature Tpr = 140 nK (see Fig. 4).

We also extract atom-number fluctuations 〈δN2〉 in each pixel

from the same data set, giving an independent temperature

measurement. Since � is both much smaller than the cloud

size and much larger than the healing length, the physics of

homogeneous gases is locally probed and thermodynamics

predicts 〈δN2〉 = kBT �∂ρ/∂μ [26]. In Fig. 4, we plot 〈δN2〉
versus the mean atom number in the pixel. Fitting the large

atom-number region, corresponding to pixels lying inside

the Thomas-Fermi profile, with the fluctuation-dissipation

relation and the quasicondensate equation of state, we extract

a temperature Tfl = 80 nK (as summarized in Fig. 4). The

difference between Tpr and Tfl is a signature that the cloud is

out of equilibrium. We also confirmed that, after the radio-

frequency loss mechanism has been removed, this situation
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is stable over the cloud lifetime of about 1 s (Fig. 4). Since

the profile is more sensitive to high-energy excitations while

the density fluctuations are more sensitive to low-energy

excitations, the fact that Tpr > Tfl could be related to the above

quantitative study of homogeneous gases and the qualitative

arguments given for the trapped system. In the experiments

presented in [7], only low-energy excitations were probed and

consequently this nonthermal character was not revealed.

To conclude, we theoretically investigated the long-lived

nonthermal state produced by the nonselective removal of

atoms in order to cool a uniform one-dimensional Bose gas.

This dissipation drives the system out of equilibrium, with

different excitation modes losing energies at different rates.

This out-of-equilibrium character is robust against coupling

between modes introduced in the Gross-Pitaevskii equation

and is related to the integrable nature of the considered system.

We performed simulations of a two-species Bose mixture with

different masses, a nonintegrable system, and confirmed a

slow relaxation towards an equipartition of energy between

excitations. Truncated Wigner simulations that go beyond

the pure classical-field description and include the shot-noise

associated to the loss process due to the quantized nature of

the atomic field further confirmed the nonthermal nature of

the state produced by dissipation. Finally, we discussed the

relevance of our findings for experimental realizations of 1D

Bose gases trapped in a harmonic potential. From a theoretical

point of view, in the linearized classical-field approach, a small

temperature difference between modes of different energies is

indeed expected, and this effect could be amplified by the

presence of quantum noise. In our quasicondensate experi-

ments, we indeed have signatures of a nonthermal character

since different thermometries that probe different parts of the

excitation spectrum give substantially different temperatures.

However, a more careful and quantitative description in the

trap, perhaps via finite-temperature classical-field simulations

[28], is still required in order to draw firm conclusions on

the relation between these experimental long-lived nonthermal

states and our theoretical findings.

The study performed in this paper is particularly important

for experiments that use 1D gases for quantum simulations

and the investigation of out-of-equilibrium gases, which both

require a high degree of control over the initial system state.

The nonthermal character of the gas may not be visible if

observables do not access the high-energy part of the energy

spectrum, and so an experimenter may incorrectly believe the

gas to be in thermal equilibrium. Nevertheless, the nonthermal

nature of the gas may impact the subsequently observed

physics, and therefore must be accounted for in order to derive

correct conclusions from such experiments.
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APPENDIX A: BREAKING INTEGRABILITY:

TWO COUPLED 1D BOSE GASES

An example of a nonintegrable system is two quasiconden-

sates of different masses m and m′ coupled via an interaction

term of coupling constant g̃. Here integrability is broken by

two-body collisions involving an atom of each species, which

does not preserve the set of two initial momenta. Within the

classical-field approximation, this system is described by the

Hamiltonian

H =
∫

dz
h̄2

2m

∣

∣

∣

∣

∂ψ

∂z

∣

∣

∣

∣

2

+
∫

dz
h̄2

2m′

∣

∣

∣

∣

∂ϕ

∂z

∣

∣

∣

∣

2

+
g

2

∫

dz|ψ(z)|4 +
g

2

∫

dz|ϕ(z)|4

+g̃

∫

dz|ψ(z)|2|ϕ(z)|2, (A1)

which yields the equations of motion (6). Within the density-

phase representation, we can write ψ = √
ρ eiθ and ϕ =√

ρ̃ eiθ̃ . For sufficiently low temperatures, the repulsive in-

teractions result in very small density fluctuations and long-

wavelength phase fluctuations, such that one can linearize the

equations of motion in δρ, δρ̃, ∂θ/∂z, and ∂θ̃/∂z, or equiv-

alently retain only second-order terms in the Hamiltonian,

which can then be diagonalized using a standard Bogoliubov

procedure. We give more details on this approach below.

Since Eqs. (6) do not explicitly depend on z, different

Fourier components evolve independently of each other. Let us

consider the Fourier components of wave vector k = 2nπ/L,

where n is a positive integer and L is the length of the box that

confines the gases. As for the single component case, we in-

troduce Fourier coefficients δρck =
√

2/L
∫

dz δρ(z) cos(kz)

and δρsk =
√

2/L
∫

dz δρ(z) sin(kz), and similarly for δρ̃, θ ,

and θ̃2. Each mode jk evolves independently according to the

quadratic Hamiltonian

Hjk =
(

g

2
+

h̄2k2

8mρ0

)

δρ2
jk +

h̄2k2ρ0

2m
θ2
jk

+
(

g

2
+

h̄2k2

8m′ρ0

)

δρ̃2
jk +

h̄2k2ρ0

2m′ θ̃2
jk

+g̃δρjkδρ̃jk, (A2)

where j = c or s. This gives the following linearized equation

of motion:

ih̄
∂

∂t

⎛

⎜

⎜

⎜

⎝

2
√

ρ0θjk

δρjk/
√

ρ0

2
√

ρ0θ̃jk

δρ̃jk/
√

ρ0

⎞

⎟

⎟

⎟

⎠

= L

⎛

⎜

⎜

⎜

⎝

2
√

ρ0θjk

δρjk/
√

ρ0

2
√

ρ0θ̃jk

δρ̃jk/
√

ρ0

⎞

⎟

⎟

⎟

⎠

, (A3)

where

L = i

⎛

⎜

⎜

⎜

⎜

⎝

0 2ρ0g + h̄2k2

2m
0 2g̃ρ0

− h̄2k2

2m
0 0 0

0 2g̃ρ0 0 2ρ0g + h̄2k2

2m′

0 0 − h̄2k2

2m′ 0

⎞

⎟

⎟

⎟

⎟

⎠

.

(A4)
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Symmetry properties of L show that this operator has two

eigenvectors,

L

⎛

⎜

⎜

⎜

⎝

F+
1

iF−
1

F+
2

iF−
2

⎞

⎟

⎟

⎟

⎠

= ωa

⎛

⎜

⎜

⎜

⎝

F+
1

iF−
1

F+
2

iF−
2

⎞

⎟

⎟

⎟

⎠

(A5)

and

L

⎛

⎜

⎜

⎜

⎝

G+
1

iG−
1

G+
2

iG−
2

⎞

⎟

⎟

⎟

⎠

= ωb

⎛

⎜

⎜

⎜

⎝

G+
1

iG−
1

G+
2

iG−
2

⎞

⎟

⎟

⎟

⎠

, (A6)

where F+
1 ,F−

1 ,F+
2 ,F−

2 ,G+
1 ,G−

1 ,G+
2 ,G−

2 are real and satisfy

the normalization condition:

G−
1 G+

1 + G−
2 G+

2 = 1, (A7a)

F−
1 F+

1 + F−
2 F+

2 = 1. (A7b)

The vectors (F+
1 ,−iF−

1 ,F+
2 ,−iF−

2 )T and (G+
1 ,−iG−

1 ,

G+
2 ,−iG−

2 )T are eigenvectors of L of eigenergies −ωa and

−ωb, respectively, which complete the basis. Expanding the

state (2
√

ρ0θjk,δρjk/
√

ρ0,2
√

ρ0θ̃jk,δρ̃jk/
√

ρ0)T on these the

eigenbasis of L gives

2
√

ρ0θjk = −F+
1 i(a − a∗) − G+

1 i(b − b∗), (A8a)

δρjk/
√

ρ0 = F−
1 (a + a∗) + G−

1 (b + b∗), (A8b)

2
√

ρ0θ̃jk = −F+
2 i(a − a∗) − G+

2 i(b − b∗), (A8c)

δρ̃jk/
√

ρ0 = F−
2 (a + a∗) + G−

2 (b + b∗), (A8d)

where a and b are complex numbers satisfying

ih̄∂a/∂t = h̄ωaa, (A9a)

ih̄∂b/∂t = h̄ωbb. (A9b)

Inserting into Eq. (A2), we find that the Hamiltonian Hjk can

be written as

Hjk = h̄ωa|a|2 + h̄ωb|b|2. (A10)

Although the above procedure utilizes the classical-field

approach, a quantum version yields similar results, with a and

b replaced by bosonic operators and Ĥjk = E0
k + h̄ωa â

†â +
h̄ωbb̂

†b̂, where E0
k is the contribution of the modes a and b to

the vacuum energy.

We use the linearization above to sample the initial state

according to a thermal distribution. For this purpose, for

each jk Fourier component, we diagonalize L and we then

sample the complex numbers a and b according to the thermal

Gaussian law kBT = h̄ωa〈|a|2〉 and kBT = h̄ωb〈|b|2〉. From

this, we can compute the fields ψ and ϕ, subsequently evolve

according to Eqs. (6), and extract the energy Hjk of each

Fourier component at each time point.

APPENDIX B: STOCHASTIC GROSS-PITAEVSKII

EQUATION

1. Derivation via truncated Wigner

Here we present a derivation of Eq. (7) from a Wigner

distribution formalism and the truncated Wigner approxima-

tion. This methodology has had great success in the numerical

modeling of weakly interacting Bose gases in regimes where

quantum fluctuations are important [29–32], and furthermore

underpins the classical-field methodology used for both zero

and finite temperature simulations [28]. Since the Bose gas

is described by a quantum field, the derivation should strictly

rely upon functional calculus (for details see, for example,

Ref. [33]). However, since we are primarily concerned with

numerical simulation on discrete grids with a finite number

of points, for simplicity of presentation we will discretize the

problem. That is, we divide space into cells of length δx, and

discretize the field operator such that ψ̂r annihilates an atom

in the cell r , and satisfies [ψ̂
†
r ,ψ̂r ′ ] = δr,r ′ . Furthermore, we

introduce the per-cell interaction energy g̃ = g/δx and the

operator ∂2
r ≡ ∂2/∂2

r , which must be interpreted as ∂2
r {f }|r =

(fr+1 + fr−1 − 2fr )/δx2 when applied to a discrete function

fr , where integer r indexes the cell.

A homogeneous 1D Bose gas undergoing a nonselective

loss process can be described by the master equation

∂ρ

∂t
= −

i

h̄
[Ĥ ,ρ] + Ŵ

∑

r

D[ψ̂r ]ρ, (B1)

where ρ is the system density operator, D[L̂]ρ ≡ L̂ρL̂† −
1
2
L̂†L̂ρ − 1

2
ρL̂†L̂, and Ĥ is the Lieb-Liniger Hamiltonian

Ĥ =
∑

r

(

−ψ̂†
r

h̄2

2m
∂2
r ψ̂r +

g̃

2
ψ̂†

r ψ̂
†
r ψrψr

)

. (B2)

The system density operator can be equivalently described by

the Wigner quasiprobability distribution, W , which is a real

function of a complex field ψ(z):

W ({ψr ,ψ
∗
r }) =

∫

∏

r

d2λr

e−(λrψ
∗
r +λ∗

r ψr )

π2
χ ({λr ,λ

∗
r }), (B3)

where χ ({λr ,λ
∗
r }) is the characteristic function

χ ({λr ,λ
∗
r }) = Tr

{

ρ exp

[

∑

r

(λrψ̂
†
r − λ∗

r ψ̂r )

]}

. (B4)

Averages of functions of ψr ,ψ
∗
r over W correspond to expec-

tations of the corresponding symmetrically ordered operators.

Using the operator correspondences [28,33]

ψ̂rρ →
(

ψr +
1

2

∂

∂ψ∗
r

)

W ({ψr ,ψ
∗
r }), (B5a)

ψ̂†
r ρ →

(

ψ∗
r −

1

2

∂

∂ψr

)

W ({ψr ,ψ
∗
r }), (B5b)

ρψ̂r →
(

ψr −
1

2

∂

∂ψ∗
r

)

W ({ψr ,ψ
∗
r }), (B5c)

ρψ̂†
r →

(

ψ∗
r +

1

2

∂

∂ψr

)

W ({ψr ,ψ
∗
r }), (B5d)
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we can map the master equation (B1) to the following partial

differential equation for the Wigner function:

∂W

∂t
=

∂W

∂t

∣

∣

∣

Kin
+

∂W

∂t

∣

∣

∣

nonlin
+

∂W

∂t

∣

∣

∣

loss
, (B6)

where

∂W

∂t

∣

∣

∣

kin
=

ih̄

2m

∑

r

{

∂

∂ψr

∂2
r ψr −

∂

∂ψ∗
r

∂2
r ψ∗

r

}

W (B7)

corresponds to the kinetic-energy term,

∂W

∂t

∣

∣

∣

nonlin
=

ig̃

h̄

∑

r

{

1

4

(

∂3

∂2ψr∂ψ∗
r

ψr −
∂3

∂2ψ∗
r ∂ψr

ψ∗
r

)

+
(

∂

∂ψr

ψr −
∂

∂ψ∗
r

ψ∗
r

)

(|ψr |2 − 1)

}

W, (B8)

corresponds to the nonlinear atom-atom collisional term, and

∂W

∂t

∣

∣

∣

loss
=

Ŵ

2

∑

r

{

−
∂

∂ψr

ψr +
∂

∂ψ∗
r

ψ∗
r +

∂2

∂ψr∂ψ∗
r

}

W

(B9)

corresponds to the loss term. This is currently no easier

to simulate than the master equation (B1). However, if we

truncate the third-order derivatives in term Eq. (B8) that arise

due to the nonlinearity, then Eq. (B6) takes the form of a

Fokker-Planck equation with positive definite diffusion. It

can therefore be efficiently simulated via a set of stochastic

differential equations. We also replace (|ψ |2 − 1) in Eq. (B8)

with |ψ |2 since this corresponds to a simple shift in energy and

is thus irrelevant. We then find that the differential equations

are just the stochastic Gross-Pitaevskii equation, Eq. (7). The

truncation of these third-order derivatives is an uncontrolled

approximation, but is typically valid for weakly interacting

Bose gases, provided the occupation per mode is not too

small over the simulation time scale. Note that the truncated

Wigner approximation applied here concerns the treatment of

interactions between atoms in the quasicondensate. The sole

effect of losses is captured in a exact way by this procedure at

the quantum level.

2. Linearized approach

In the quasicondensate regime density fluctuations and

phase gradients are small. A linearized approach can there-

fore be used to identify independent modes, following the

procedure below. Separating the real and imaginary parts of

Eq. (7) and linearizing in density fluctuations and the phase

gradient gives the stochastic equations

dδρr = −
h̄2ρ0

m
∂2
r θ dt − Ŵδρrdt +

√
ρ0dηr , (B10a)

dθr = −
(

g̃ −
h̄2

4mρ0

∂2
r

)

δρrdt +
1

2
√

ρ0

dνr , (B10b)

where dνr and dηr are random Gaussian variables

with zero mean and variances 〈dηrdηr ′〉 = 〈dνrdνr ′〉 =
δr,r ′Ŵ dt . Expanding θr and δρr on sinusoidal

modes, θ =
∑

k>0

√
2/L[θck cos(kz) + θsk sin(kz)] and

δρ =
∑

k>0

√
2/L[δρck cos(kz) + δρsk sin(kz)] gives

dδρjk =
h̄2k2ρ0

m
θjkdt − Ŵδρjkdt +

√
ρ0dηjk, (B11a)

dθjk = −
(

g̃ −
h̄2k2

4mρ0

)

δρjkdt +
1

2
√

ρ0

dνjk, (B11b)

where dνjk and dηjk are random Gaussian variables of van-

ishing mean and variances 〈dη2
jk〉 = 〈dν2

jk〉 = Ŵdt . An initial

centered Gaussian Wigner distribution (such as a thermal state)

remains Gaussian under the above linearized stochastic evo-

lution. Moreover, after averaging over stochastic trajectories,

it remains centered on 〈δρjk〉 = 〈θjk〉 = 0. Consequently the

Wigner distribution for each mode is entirely determined by

variances and covariances of the variables—explicitly, entirely

determined by the following coupled differential equations:

d

dt

〈

δρ2
jk

〉

= 2
h̄2k2ρ0

m
〈θjkδρjk〉 − 2Ŵ

〈

δρ2
jk

〉

+ ρ0Ŵ, (B12a)

d

dt

〈

θ2
jk

〉

= −2

(

g̃ −
h̄2k2

4mρ0

)

〈θk,jδρjk〉 +
Ŵ

4ρ0

, (B12b)

d

dt
〈δρjkθjk〉 =

h̄2k2ρ0

m

〈

θ2
jk

〉

−
(

g̃ −
h̄2k2

4mρ0

)

〈

θ2
jk

〉

. (B12c)

The link between these classical averages over δρjk and

δθjk and the expectations over the corresponding quantum

operators is not immediate. Strictly, averages over various

combinations of the c-number fields ψr and ψ∗
r correspond

to expectations of symmetric orderings of the corresponding

quantum operators—for example,

〈(ψ̂†
r ′ψ̂r + ψ̂rψ

†
r ′ )/2〉 = ψ∗

r ′ψr .

However, since in the quasicondensate regime correlation

lengths are much larger than the mean interparticle distance

and density fluctuations are small, one can use a coarse-grained

approximation where the atom number in each cell is large,

yielding small relative fluctuations. Then the atomic density

〈ψ̂†
r ψ̂r〉 and its higher-order moments are well approximated

simply by classical averages over ψ∗ψ and its powers.

Put another way, those corrections that arise due to the

noncommutativity of the operators are small and can be

neglected. A similar argument holds for the phase operator.

Consequently, we are justified in interpreting those classical

averages within Eqs. (B12) as quantum expectations.

Let us focus on the evolution of a given mode of wave vector

k and assume the loss rate is very small compared to the mode

frequency ωk =
√

h̄2k2/(2m)[h̄2k2/(2m) + 2g̃ρ0]. Then, the

free evolution ensures equipartition of the energy between

the two conjugate variables δρjk and θjk at any time, which

corresponds to thermal equilibrium. The Wigner function is

then solely determined by the mean energy in the mode Ek

and one finds, from Eq. (B12),

d

dt
Ẽ = Ŵ

(

−Ẽ +
(

Ā2
k + 1/Ā2

k

)

/4
)

, (B13)

where Āk = {[h̄2k2/(2m) + 2gρ0]/[h̄2k2/(2m)]}1/4 and Ẽ =
Ek/ωk . For phonons, Āk ≈ [4mgρ0/(h̄2k2)]1/4 and is much

larger than 1. Using this time-dependant approximation of Ak

013623-8



LONG-LIVED NONTHERMAL STATES REALIZED BY ATOM . . . PHYSICAL REVIEW A 96, 013623 (2017)

to solve Eq. (B13), we find that Ek asymptotically goes towards

gρ0(t). Since gρ0(t) is much larger than the ground-state energy

for phonons, the Rayleigh-Jeans limit is attained, and this

corresponds to a thermal equilibrium at temperature

kBTphonon ≃
t→∞

ρ0(t)g. (B14)

In contrast, for modes with k ≫ √
mρ0g/h̄, an expansion of

Āk in powers of gρ0/(h̄2k2/m) gives

ǫ̃ ≃
(

mgρ0

h̄2k2

)2

e−Ŵt (1 − e−Ŵt ) + ǫ̃0e
−Ŵt , (B15)

where ǫ̃ = (Ẽ − 1/2)/ωk is the mean quantum occupation

number of the mode. At large times, ǫ̃ becomes much

smaller than one. This corresponds to a temperature kBT ≃

−[h̄2k2/(2m)] ln(ǫ̃), much smaller than ωk . At large times, we

find

kBTpart ≃
t→∞

h̄2k2

2m

1

Ŵt
. (B16)

The temperature of those modes depends on k and takes much

larger values than Tphonon.

Finally, note that, while in this appendix we start from

the truncated Wigner stochastic equation to derive the above

linearized approach, an alternative approach is to linearize the

Lieb-Liniger Hamiltonian and then consider, for a given mode,

the effect of losses. Thus the validity of the linearized approach

does not require that the mode occupation number be large. It

is valid even in the quantum regime, the approximation here

being that the gas lies deeply enough in the quasicondensate

regime.
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