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ABSTRACT

We investigate the survival of planetesimal discs over Gyr time-scales, using a unified approach

that is applicable to all Keplerian discs of solid bodies – dust grains, asteroids, planets, etc.

Planetesimal discs can be characterized locally by four parameters: surface density, semimajor

axis, planetesimal size and planetesimal radial velocity dispersion. Any planetesimal disc must

have survived all dynamical processes, including gravitational instability, dynamical chaos,

gravitational scattering, physical collisions, and radiation forces, that would lead to significant

evolution over its lifetime. These processes lead to a rich set of constraints that strongly

restrict the possible properties of long-lived discs. Within this framework, we also discuss the

detection of planetesimal discs using radial velocity measurements, transits, microlensing and

the infrared emission from the planetesimals themselves or from dust generated by planetesimal

collisions.

Key words: gravitational lensing – Kuiper Belt – minor planets, asteroids – planets and

satellites: formation – Solar system: formation – stars: formation.

1 IN T RO D U C T I O N

Terrestrial planets and the cores of giant planets are generally be-

lieved to have formed hierarchically: small solid bodies (‘planetesi-

mals’) condense from the gaseous circumstellar disc (Johansen et al.

2007), collide repeatedly, and accumulate into larger and larger

assemblies (Safronov 1972; Goldreich, Lithwick & Sari 2004a;

Reipurth, Jewitt & Keil 2007). Several aspects of this complex

process remain obscure, in particular (but not limited to) the for-

mation of planetesimals from dust grains (Blum & Wurm 2008),

how to grow Uranus and Neptune in the short time available before

the gaseous disc is dissipated (Goldreich et al. 2004a; Goldreich,

Lithwick & Sari 2004b), the origins of the large eccentricities of

the extrasolar planets (Tremaine & Zakamska 2004), the role of

planetary migration (Goldreich & Tremaine 1980; Papaloizou &

Terquem 2006), how the residual planetesimals were cleaned out of

the Solar system (Goldreich et al. 2004b), and why the Solar system

is so different from known extrasolar planetary systems (Beer et al.

2004).

Given these large gaps in our understanding, it is worthwhile to

investigate not just the difficult question of how planets form but

also the simpler question of whether they can survive once formed.

Planetary systems in the Galaxy have presumably been formed

at a more-or-less constant rate, so it is reasonable to assume that

most of today’s planetary systems are at least several Gyr old. They

must therefore have survived all dynamical processes – gravitational

⋆E-mail: heng@ias.edu (KH); tremaine@ias.edu (ST)

instabilities, collisions, viscous stirring or two-body relaxation, etc.

– that would lead to a substantial change in their properties on

time-scales less than about 3 Gyr. Understanding what long-lived

planetary systems are possible should help us to understand to what

extent the properties of actual planets are shaped by the formation

process as opposed to evolution (‘nature versus nurture’) and may

guide observers in searching for novel types of planetary systems.

Orbiting solid bodies are often called ‘planetesimals’, ‘planetary

embryos’ or ‘planets’ depending on their mass, but for simplicity

we will use the term ‘planetesimal’ to describe any body, whether

solid like a terrestrial planet or gas-dominated like a giant planet,

that is large enough so that gas drag and radiation effects (Poynting–

Robertson drag, radiation pressure, Yarkovsky effect, etc.) are neg-

ligible.

We will find it useful to classify discs as ‘hot’ or ‘cold’ depending

on whether or not the planetesimal orbits cross. Within the Solar

system, the planets form a cold system (except for Pluto) while the

asteroid and Kuiper belts are hot. Among hot planetesimal discs,

an important special case is the ‘collision-limited’ disc, in which

the collision time between planetesimals is equal to the age of the

disc. Collision-limited discs are likely to arise from discs in which

there is a distribution of planetesimal sizes: smaller planetesimals

have shorter collision times and therefore are destroyed first, so

the dominant planetesimal population (by mass) always has a col-

lision time that is roughly equal to the disc age. We will also use

the term ‘warm’ to describe discs in which the planetesimal orbits

cross, but the impact velocities are so low that the cumulative ef-

fect of collisions does not substantially damage the planetesimals

(Section 3.2.2).
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868 K. Heng and S. Tremaine

Table 1. Sample planetesimal discs.

A B C D E F

a 1 au 1 au 10 au 10 au 100 au 100 au

μ ≡ �a2/M⊙ 10−4 10−6 10−4 10−6 10−4 10−6

Mdisc = πfm�a2 ≃100M⊕ ≃1M⊕ ≃100M⊕ ≃1M⊕ ≃100M⊕ ≃1M⊕

mcold
min 60M⊕ 0.1M⊕ 60M⊕ 0.1M⊕ 60M⊕ 0.1M⊕

N cold
max 1–2 12 1–2 12 1–2 12

mhot
min – – – 1024 g 4 × 1019 g 4 × 1013 g

Nhot
max – – – 5 × 103 2 × 1010 2 × 1014

mwarm
max – – – 3 × 1025 g 1021 g 1015 g

Nwarm
min – – – 200 5 × 108 5 × 1012

Note: – mcold
min (equation 65), mhot

min (equation 74) are the minimum planetesimal mass for cold and hot

discs, respectively; mwarm
max is the maximum mass for warm discs (equation 75). N cold

max (equation 67)

and Nhot
max (equation 74) are the maximum number of planetesimals per octave for cold and hot discs,

respectively; Nwarm
min (equation 75) is the minimum number for warm discs.

The most important observational signature of many planetesimal

discs arises from dust formed in recent planetesimal collisions.

These ‘debris discs’ were first detected from the thermal emission

of the dust, which creates an infrared (IR) excess in the spectral

energy distribution of the otherwise normal stars that they surround

(Aumann et al. 1984). Spatially resolved debris discs are sometimes

also visible from their scattered light. The IR excess (bolometric)

luminosity relative to the luminosity from the parent star depends

on the distance and spectral type of the host star as well as the

disc radius, but is typically �10−5 (see Zuckerman 2001 and Wyatt

2008 for reviews). The asteroid and Kuiper belts in our own Solar

system can be thought of as debris discs, although they would not

be detectable around other stars with current technology since the

bolometric IR excess is ∼10−7 for both belts.

Debris discs have been detected around stars with a wide range

of spectral types (A to M) and ages (∼107– 1010 yr).1 The dust

masses inferred from these observations are 10−3 � Mdust/M⊕ � 1

(fig. 3 of Wyatt 2008), although this result depends on the assumed

size distribution of the dust. The term ‘debris’ emphasizes that the

lifetime of the dust grains from grain–grain collisions, Poynting–

Robertson drag or radiation pressure is robustly and considerably

less than the stellar age, so the dust cannot be primordial and must

be continuously regenerated, presumably by ongoing planetesimal

collisions.

We stress that the discs we consider in this paper are far more

general than debris discs: they include hot discs in which the rate

of dust generation may be undetectably small, cold discs in which

there are no collisions, planetary systems, asteroid belts, planetary

rings, etc.

We begin by constructing a simple model for a planetesimal disc

in Section 2. In Section 3, we describe the dynamical processes

that act on planetesimal discs. Collision-limited discs, which are

a special subset of hot discs, are described in Section 4. Non-

gravitational forces on dust are briefly reviewed in Section 5. The

properties of long-lived discs are discussed in Section 6, where we

also study six sample discs (Table 1). We discuss possible techniques

for detecting and studying planetesimal discs in Section 7, and we

summarize and discuss our results in Section 8.

1 IR excesses characteristic of debris discs have also been detected around

white dwarfs, and they appear to be strongly correlated with metal contam-

ination in the white-dwarf photosphere, presumably arising from accreted

planetesimals (Farihi, Jura & Zuckerman 2009).

2 A SI MPLE MODEL FOR

A PLANETESIMAL DISC

We consider a system of planetesimals orbiting a solar-type star of

mass M⊙. The extension to other types of stars is straightforward,

but at this stage adds excessive complication. We will focus on discs

with an age t0 = 3 Gyr since these are likely to be more common

than younger discs. We assume that the discs are gas-free, which is

consistent with observations for most discs older than a few Myr

(see fig. 2 of Wyatt 2008).

The surface density of the disc at semimajor axis a is written

�(a); more precisely, the mass with semimajor axes in the range

[a, a + da] is dMdisc = 2π�a da. The orbital period is 2π/�, where

� =
√

GM⊙
a3

. (1)

In most of the cases, we will assume that this material is col-

lected in identical spherical bodies of density ρp, radius r and mass

m = 4πρpr
3/3 – a monodisperse planetesimal system (see the end

of Section 4.3 for further discussion of this approximation). The

densities of the planets in the Solar system range from 5.5 g cm−3

(Earth) to 0.7 g cm−3 (Saturn); in general gas-giant planets have

smaller densities than terrestrial planets, but we will sacrifice ac-

curacy for simplicity and assume that all planetesimals have ρp =
3 g cm−3. The surface number density of planetesimals is

N =
�

m
. (2)

We assume that the eccentricities e and inclinations i of the plan-

etesimals follow a Rayleigh distribution,

d2n ∝ ei exp
[

− (e/e0)2 − (i/i0)2
]

di de, (3)

where e0 and i0 are the root mean square (rms) eccentricity and

inclination. The density of the disc in the direction normal to its

symmetry plane (which we call the z-direction) is given by

dN = n(z) dz = n0 exp

(

−
1

2
z2/h2

)

dz, (4)

where h ≡ ai0/
√

2 is the rms z-coordinate. The mid-plane number

density n0 is related to the surface number density by

n0 =
N

√
2πh

=
�

√
πmai0

. (5)

The radial velocity dispersion is

σr =
�ae0√

2
. (6)
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Long-lived planetesimal discs 869

The ratio i0/e0 can in principle have a wide range of values de-

pending on the dynamical history of the disc, but in a variety of

theoretical models and observed astrophysical discs i0/e0 ≃ 0.5

(Dones & Tremaine 1993; Stewart & Ida 2000) so we will adopt

this value throughout the paper (see also discussion following equa-

tion 29).

With these assumptions, the local properties of the planetesimal

disc are specified by four parameters: the semimajor axis a, the

surface density �, the planetesimal radius r or mass m and the rms

eccentricity e0. (We take the planetesimal density ρp, the disc age

t0 and the stellar mass M⊙ to be fixed.) Collision-limited discs

are specified by three parameters, since the requirement that the

collision time equals the age provides one constraint on the four

parameters.

We will find it useful to express many of our results in terms of

the following three dimensionless parameters:

μ ≡
�a2

M⊙
,

ν ≡
ρpa

3

M⊙
= 5.0 × 109

(

ρp

3 g cm−3

)

( a

10 au

)3

,

τ ≡
�a2

M⊙
�t0 = 6.0 × 104

( μ

10−4

) ( a

10 au

)−3/2
(

t0

3 Gyr

)

.
(7)

The parameter μ is a dimensionless mass, of order the ratio of the

disc mass to the stellar mass. The parameter ν is a dimensionless

density, which is almost always quite large for planetesimal discs,

so we may assume ν ≫ 1 when necessary. The parameter τ is

a dimensionless age, scaled by � and by �a2/M⊙ since most

evolutionary processes run slower if the orbital time is longer or the

disc contains less mass.

We parametrize discs in terms of surface density � and semimajor

axis a since these are likely to vary much less than planetesimal

mass m or rms eccentricity e0 during the planet formation process.

As points of reference, we will refer to a set of six discs (Table 1)

with semimajor axes a = 1, 10 and 100 au (a typical radius for

spatially resolved debris discs), and with dimensionless mass μ =
10−4 and 10−6. The former mass corresponds to Mdisc ∼ π�a2 =
πµM⊙ ≃ 0.3M Jupiter ≃ 100M⊕, about the solid mass needed to

form the giant planets and comets in the Solar system (Goldreich

et al. 2004b), while the latter mass corresponds to Mdisc ≃ M⊕.

3 DYNA M ICAL PROCESSES IN

THE PLA N ETESIMAL DISC

There are a few general criteria that planetesimal discs must satisfy.

Firstly, we require that the planetesimal eccentricities and inclina-

tions are not too large, which can be interpreted as the condition

that most of the planetesimals are bound (e < 1), or that the disc is

thin (h < a), or that the radial velocity dispersion is less than the

circular speed (σ r < �a). We will write this criterion as

e0 � fe or
h

a
� 0.35fe or

σr

�a
�

fe√
2
. (8)

In this paper, we adopt fe = 0.5. (See Table 2 for a summary of the

dimensionless numbers used in our study.)

Naturally, non-trivial planetesimal discs must contain more than

one body. Assuming that the surface density does not vary strongly

with radius and the disc is not too extended, the disc mass may be

written

Mdisc = πfm�a2 (9)

Table 2. Summary of dimensionless numbers.

Symbol Assumed value Defining equation and/or section

i0/e0 0.5 (3)

fe 0.5 (8)

fm 1 (9)

fd 0.3 (11)

f c 1 (14)

fQ 1 (21), (23)

f 1 0.690 (27), Appendix A

f 2 1.521 (27), Appendix A

f 3 0.28 (37)

f 4 22.67 (30), Appendix A

f 5 12.94 (30), Appendix A

f 6 1 (42)

f 7 0.46 (56)

μ various (7)

ν various (7)

τ various (7)

a −0.13 (44)

b 0.44 (44)

with fm of order unity, so the criterion that the number of planetes-

imals N = Mdisc/m > 1 becomes

m < πfm�a2 or πfmNa2 > 1. (10)

In this paper, we adopt fm = 1, which corresponds to a disc with a

radial width of about 0.5a.

We will also require that the total disc mass is small compared to

the stellar mass,

Mdisc

M⊙
< fd , (11)

where we adopt fd = 0.3.

The total cross-sectional area of the disc is πr2N . Thus, in the

absence of mutual shadowing the geometrical optical depth of the

disc as seen from the host star is

τp =
Nr2

4a2
=

fm

4
Nπr2. (12)

Note that this differs by a factor of order unity from the normal

geometrical optical depth of the ring, Nπr2.

3.1 Cold discs

A ‘cold’ disc is one in which planetesimal orbits do not cross. A

planetesimal in an orbit with eccentricity e has a total radial ex-

cursion of 2ae. The typical radial separation between planetesimals

is

	a =
m

2π�a
. (13)

Thus, most orbits do not cross if the rms eccentricity is

e0 < ehot ≡ fc

m

4π�a2
, (14)

and we will choose f c = 1, at which point just over half of the

particles cross if their semimajor axes have a Poisson distribution.

(A refinement of the preceding condition is to include the radius

of the planetesimal in the crossing condition, that is, 2(ae + r) <

	a, but in the cases of interest to us this correction is unimportant.)

Equivalently, one can describe cold discs as those for which σ r <

σ hot, where

σhot ≡
fc

25/2π

m�

a�
=

fc

3
√

2

√

GM⊙ρpr
3

a5/2�
. (15)
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870 K. Heng and S. Tremaine

3.1.1 Gravitational stability

Gravitational instability in cold discs is associated with dynamical

chaos, which leads to growth in the eccentricities and inclinations

of the planetesimals. The growth rate can be extremely slow –

for example, tens of Gyr for Mercury in the current Solar system

configuration (Laskar 2008). No rigorous analytical formulae for

the rate of chaotic evolution in cold discs are available. However,

N-body experiments suggest that cold discs can survive for millions

of orbits if the separation (13) is typically a few times larger than

the Hill radius

rH ≡ a

(

m

3 M⊙

)1/3

. (16)

Thus, stability requires

	a

a
> k

(

m

3 M⊙

)1/3

or
m

M⊙
> 9.1 (kμ)3/2 . (17)

Chambers, Wetherill & Boss (1996) find k = 7–11 from integrations

of planetesimals with masses between 10−5 and 10−7 M⊙ lasting

∼107 yr.2 They also find that the factor k varies slowly with plan-

etesimal mass, so a stability criterion that fits their results more

accurately is

	a

a
> 4

(

m

M⊙

)0.3

or
m

M⊙
> 100μ1.43. (18)

This result depends on the duration of the integrations, but only

weakly: increasing the duration by a factor of 10 typically increases

the minimum stable separation by about one Hill radius.

The criterion (18) was derived from simulations with planetesi-

mals of mass 10−5–10−7 M⊙; the extrapolation to larger planets is

somewhat uncertain but probably not a major source of error. For

Jupiter-mass planets, the formula predicts 	a/a > 0.5, correspond-

ing to k ≃ 7 in the notation of equation (17). For comparison, Jurić

& Tremaine (2008) estimate k ≃ 12–14 from orbit integrations of

planets with masses between 0.1 and 10 Jupiter masses; their larger

value of k probably arises because they used a range of masses

rather than a single common mass for the planets. In any event,

equation (18) should be correct to within a factor of 2 or so.

When the planetesimals in a cold disc have non-zero eccentric-

ities, larger separations are required for stability (e.g. Yoshinaga,

Kokubo & Makino 1999); however, we will not include this refine-

ment since the detectability of cold discs does not depend on the

rms eccentricity (equation 14).

3.2 Hot discs

A hot disc is one in which planetesimal orbits cross. In hot discs, the

rms eccentricity or radial velocity dispersion exceeds ehot or σ hot,

respectively (equations 14 and 15). As we discuss below (equa-

tion 40), ‘warm’ discs may also be defined, in which the orbits

cross but the collisions do not substantially damage the planetesi-

mals over the lifetime of the disc.

3.2.1 Gravitational stability

The disc must be gravitationally stable to axisymmetric perturba-

tions (Toomre 1964). The Toomre stability criterion is derived from

2 Note that Chambers et al. (1996) define the Hill radius as (2m/3 M⊙)1/3,

a factor of 21/3 larger than our definition.

the Wentzel–Kramers–Brillouin (WKB) dispersion relation for ax-

isymmetric density waves. For a fluid disc in a Keplerian potential,

this may be written as (Binney & Tremaine 2008)

ω2

�2
= 1 −

λcrit

λ
+

Q2

4

λ2
crit

λ2
, (19)

where ω is the frequency, λ is the radial wavelength, and

Q ≡
σr�

πG�
=

e0√
2πμ

,

λcrit =
4π

2G�

�2
= 4π

2aμ.
(20)

This dispersion relation was derived for a barotropic fluid whereas

the planetesimal disc more closely approximates a collisionless

fluid, but for our purposes the results should be accurate enough.

The disc is stable to perturbations at a given wavelength λ if ω2 >

0, which requires

Q2 > 4
λ

λcrit

(

1 −
λ

λcrit

)

. (21)

The maximum of the right-hand side occurs at λ = λcrit/2 and equals

unity, so the disc is stable to perturbations of all wavelengths if

Q > 1. However, this result needs to be modified if the number

of planetesimals is so small that the disc cannot be approximated

as a continuous fluid. The typical separation between planetesimals

is given by equation (13), so the number of planetesimals in one

wavelength λ is Nλ = λ/	a = 2πa� λ/m. The continuum approx-

imation should be valid if Nλ ≫ 1 or λ > λc ≡ fQm/(2πa�) with

fQ of order unity. We adopt fQ = 1 when a choice is necessary.

Then, a necessary requirement for stability is that equation (21) is

satisfied for all λ > λc or

Q2 >

{

1 if λc < λcrit/2,

4(λc/λcrit) − 4(λc/λcrit)
2 if λc > λcrit/2.

(22)

This may be rewritten as

e0 >
√

2πμ, if
m

M⊙
<

4π
3μ2

fQ

,

e0 >

√

fQm

πM⊙

[

1 −
fQm

(2π)3 M⊙μ2

]

, otherwise; (23)

there is no constraint if the square root in the second equation is

negative.

The relation between the stability criteria for hot and cold discs

can be clarified using Fig. 1, which plots allowed regions as a func-

tion of the dimensionless parameters m/M⊙ (ratio of planetesimal

mass to stellar mass; horizontal axis) and e0 (rms eccentricity, ver-

tical axis). The axes are logarithmic. We aim for clarity at the sake

of accuracy by neglecting all factors of order unity for the rest of

this subsection. The diagram shows the following constraints.

(i) There must be at least one planetesimal in the disc (equa-

tion 10), so m/�a2 � 1 or m/M⊙ � μ where μ is defined in

equation (7). The boundary m/M⊙ = μ is represented by a green,

vertical solid line; the excluded region to the right-hand side of this

line is labelled ‘N < 1’.

(ii) The division between hot and cold discs (14) may be written

e0 � m/μM⊙, which is marked by a slanted solid line.

(iii) The condition (18) for the gravitational stability of cold discs

is m/M⊙ � μ1.43, which appears in the figure as a vertical dotted

line; the unstable region to the left-hand side of this line is labelled

‘unstable’ (in blue).
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Long-lived planetesimal discs 871

Figure 1. Stability and other properties of planetesimal discs, as a function of planetesimal mass m and rms eccentricity e0. The parameter μ ≡ �a2/M⊙ ∼
Mdisc/M⊙ is approximately the disc mass relative to the stellar mass. The region to the right-hand side of the green, vertical solid line, labelled ‘N < 1’, is not

allowed because the planetesimal mass exceeds the assumed disc mass. The slanted solid line divides hot discs, in which planetesimal orbits cross, from cold

discs (equation 14). The regions labelled ‘unstable’ represent hot discs that are unstable (in pink) and cold discs that are unstable (in blue) according to the

approximate equations derived at the end of Section 3.2.1. The slanted dashed line separates hot discs in which the encounters are shear-dominated from those

in which encounters are dispersion-dominated. The pink and blue shaded regions represent the allowed parameter values for hot and cold discs, respectively.

(iv) The condition (23) for gravitational stability of hot discs be-

comes e0 � μ if m/M⊙ � μ2. The second of equations (23) is

neglected because it applies only over a range of a factor of 2 in

planetesimal mass. The unstable region is bounded by a solid hori-

zontal line and labelled ‘unstable’ in pink. Although this derivation

was carried out for hot discs, it should apply to cold discs as well so

long as m/M⊙ � μ2; however, it adds no new restrictions on cold

discs since these are already unstable by condition (18).

The pink and blue shaded regions represent the allowed parameter

values for hot and cold discs, respectively.

3.2.2 Collisions

The collision time in a system with isotropic velocity dispersion

σ and number density n is given by (Binney & Tremaine 2008,

equation 7.195)

t−1
c = 16

√
πnσr2 (1 + �) , (24)

where

� ≡
Gm

2σ 2r
(25)

is the Safronov number. The factor (1 + �) reflects the enhancement

in the collision rate due to gravitational focusing. If the velocity-

dispersion tensor is anisotropic, we define � by replacing σ by the

radial dispersion σ r, and then with equation (6) we have

� =
m

M⊙
a

r

1

e2
0

= 1.61

(

m

M⊙

)2/3
ν1/3

e2
0

, (26)

where the dimensionless density ν is defined in equation (7).

Equation (24) requires several corrections for use in discs. First,

the velocity-dispersion tensor in a Keplerian disc is not isotropic;

for the Rayleigh distribution (3) and our choice i0/e0 = 0.5, this

requires replacing σ with the radial dispersion σ r and the factor (1 +

�) with (f 1 + f 2�), where f 1 = 0.690 and f 2 = 1.521. Secondly,

we must account for the falloff in density above the disc mid-plane,

which we do by replacing the number density n in equation (24)

with the number-weighted average
∫

n2(z)dz/
∫

n(z)dz = n0/
√

2,

where n(z) is given by equation (4). Thus, we replace equation (24)

by

t−1
c = 27/2

π
1/2n0σrr

2 (f1 + f2�)

= 16N�r2 (f1 + f2�)
(27)

for i0/e0 = 0.5, as we assume throughout. See Appendix A for

details on how to modify the more general formulae of Dones &

Tremaine (1993) to arrive at the preceding result.

Equation (27) neglects the Keplerian shear in the disc and thus is

only valid for dispersion-dominated encounters, for which

σr � � max {r, rH} , (28)

where the Hill radius rH is defined in equation (16). Note that rH >

r if the dimensionless parameter ν (equation 7) exceeds 0.7, which

is almost always true, so in practice condition (28) reduces to

σr � �rH or e0 � (m/M⊙)1/3. (29)

This boundary is marked as a slanted dashed line in Fig. 1. The

allowed region in parameter space below this line, in which en-

counters are shear-dominated, is relatively small but still requires

consideration. Note that condition (29) can be rewritten with the

help of (26) as � � ν1/3 so shear-dominated encounters occur

only if the rms eccentricity is so small that the Safronov number

is greater than unity by the large factor ν1/3. When the condition

in equation (29) is violated, the disc is so flat that encounters may

excite out-of-plane motions less efficiently than in-plane motions,

so that i0/e0 may be less than our assumed value of 0.5. We do not,

however, attempt to model variations in i0/e0 in this paper.

Formulae for the shear-dominated collision rate are given by

Greenzweig & Lissauer (1992) and Dones & Tremaine (1993).
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872 K. Heng and S. Tremaine

Adapting these formulae to the present model and notation (see

Appendix A), we have

t−1
c =

{

f4N�2a2rσ−1
r

(

m/M⊙
)2/3

, �rH/ν1/6 � σr � �rH,

f5N�r1/2a3/2
(

m/M⊙
)1/2

, σr � �rH/ν1/6,
(30)

where f 4 = 22.67, f 5 = 12.94 and ν is defined in equation (7).

Collisions between equal-mass planetesimals may have various

outcomes. If the gravitational binding energy of the planetesimals

is negligible compared to their relative kinetic energy (Safronov

number � ≪ 1) then (i) high-speed collisions will shatter the plan-

etesimals and disperse the fragments, while (ii) low-speed collisions

will leave the planetesimals unaffected or produce small craters. If

the gravitational binding energy is much larger than the kinetic en-

ergy then (iii) high-speed collisions will still shatter and disperse

the planetesimals, while (iv) the outcome of low-speed collisions

will be a single gravitationally bound object containing most of the

mass of the two planetesimals (see Section 4.1 for further detail).

For our purposes, any of the outcomes (i), (iii) or (iv) leads to a

substantial change in the mass distribution of planetesimals if the

collision time is less than the age of the disc, tc � t0 – and therefore

is inconsistent with our requirement that the disc is long-lived in its

present state.

However, many collisions of type (ii) could occur without sub-

stantially altering the planetesimal mass distribution. We therefore

differentiate between dynamically hot discs, in which the collision

time is longer than the age, t c � t0, and ‘warm’ discs, in which the

collision time is shorter than the age but the velocity dispersion σ r

is small enough that the collisions do not substantially damage the

planetesimals over the lifetime of the disc. The survival criteria for

warm discs are discussed in Section 3.3.

3.2.3 Gravitational scattering

The time-scale for a substantial change in the rms eccentricity and

inclination due to gravitational scattering of planetesimals must also

be longer than the disc age. We write this as tg > t0, where

t−1
g =

d log e2
0

dt

=
�

e4
0

μm

M⊙

[

S1(i0/e0)C + S2(i0, e0, m/M⊙)
]

. (31)

Here, the term S1(i0/e0)C incorporates the effects of close or

dispersion-dominated encounters, in which the relative velocity is

dominated by the velocity dispersion σ r, while S2(i0, e0, m/M⊙)

represents the effects of distant or shear-dominated encounters. The

factor C is usually called the Coulomb logarithm. We evaluate these

terms by specializing the formulae of Stewart & Ida (2000) to

the case where the colliding planetesimals have the same mass

and the same eccentricity and inclination distributions. From equa-

tions (3.29), (3.31) and (6.6)–(6.8) of that paper, we find S1(0.5) =
4.50 and

2C = log(
2 + 1) − log
(


2
c + 1

)

+
1


2 + 1
−

1


2
c + 1

,


 =
M⊙
m

(

e2
0 + i2

0

)

[

√
2i0 +

(

2

3
m/M⊙

)1/3
]

,


c =
M⊙
m

2r

a

(

e2
0 + i2

0

)

×

⎧

⎨

⎩

1 +
ma

M⊙r
[

e2
0 + i2

0 + (1/2)
(

2

3
m/M⊙

)2/3
]

⎫

⎬

⎭

1/2

. (32)

From equations (4.8) and (6.5) of Stewart & Ida (2000),

S2(i0, e0, m/M⊙) =
3.8ξ

1 − i2
0/e

2
0

[

W
(

ǫ/e2
0

)

− W
(

ǫ/i2
0

)]

, (33)

where ǫ ≡ (1/2) ξ [(2/3)m/M⊙]2/3,

W (Y ) ≡
∫ ∞

Y

exp(Y − y)
dy

y
, (34)

and ξ ≃ 2 is determined by an empirical fit to N-body simulations.

Using equation (26), equation (31) may be rewritten as

t−1
g = N�r2�2S1C

′, (35)

where

C ′ ≡ C + S2/S1 (36)

is the correction factor arising from the Coulomb logarithm and

shear-dominated encounters.

The characteristic time-scales (27) and (35) for physical colli-

sions and gravitational scattering can be combined into a single

relaxation time-scale,

t−1
relax = t−1

c + t−1
g = 16N�r2

(

f1 + f2� + f3C
′�2

)

, (37)

where f 3 = S1/16 = 0.28. A long-lived disc must have t relax � t0.

The effects of collisions and gravitational scattering can be clar-

ified using Fig. 2, which plots allowed regions as a function of

m/M⊙ and e0, in logarithmic coordinates. We neglect all factors

of order unity for the rest of this subsection. In this approximation,

the requirement for survival of hot discs simplifies to

(�t0)−1 �
�

m1/3ρ
2/3
p

max

{

1, ν2/3

(

m

M⊙

)4/3

e−4
0

}

. (38)

This result holds only if the collisions are dispersion-dominated, but

if they are shear-dominated the relaxation time becomes shorter than

this formula would predict so the criterion (38) remains necessary

(but not sufficient) for survival of the disc.

The results can be rewritten in terms of the dimensionless time

τ defined in equation (7). Discs with Safronov number � > 1 have

m/M⊙ > e3
0/

√
ν and the survival criterion (38) is m/M⊙ � τ 3/ν2

(� � 1) or m/M⊙ � e4
0/τ (� � 1). These constraints are shown

in Fig. 2. The excluded regions are bounded by the cyan, vertical

solid (m/M⊙ = τ 3/ν2) and green, slanted dot–dash (e4
0 = mτ/M⊙)

lines, and are labelled ‘t relax < t0’. Note that for a given value of the

rms eccentricity e0 or velocity dispersion σ r, there is only a finite

range of planetesimal masses or radii in which the relaxation time

exceeds the age: the disc cannot survive if the planetesimal mass

is either too small or too large. This behaviour arises because for

small masses m or radii r (� ≪ 1), we have t relax ∝ r ∝ m1/3 at a

given surface density and eccentricity, while for large masses (� ≫
1), we have t relax ∝ m−1 ∝ r−3.

3.3 Warm discs

As described in Section 3.2.2, planetesimals in warm discs may

suffer collisions but the velocity dispersion is low enough that these

collisions do not destroy the planetesimals. Thus, a necessary con-

dition for the survival of warm discs is that the squared velocity

dispersion σ 2
r must be less than Q∗

D, the energy per unit mass re-

quired to disperse the planetesimal into fragments, which we obtain

from equation (44) below.

This criterion is not sufficient, for two reasons. Firstly, if the grav-

itational binding energy of the planetesimals is much larger than the

kinetic energy, an inelastic collision is likely to leave the colliding
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Long-lived planetesimal discs 873

Figure 2. Survival of hot discs as a function of planetesimal mass m and rms eccentricity e0. The parameters τ and ν are defined in equation (7). The slanted

solid line divides discs according to their Safronov number �. The regions marked by ‘t relax < t0’ are not allowed because the collision time (when � < 1) or

the gravitational scattering time (when � > 1) is shorter than the disc age. The pink shaded region represents the allowed parameter values for hot discs.

planetesimals as a gravitationally bound pair, which alters the mass

distribution and therefore is inconsistent with our assumption that

the disc has not evolved. Therefore, we require that the Safronov

number � � 1 for warm discs.

Secondly, low-velocity collisions can chip or crater the planetes-

imals even if they are not disrupted. Thus, if the collision time tc

is much less than the age t0 the planetesimals may be gradually

eroded away even if they are not dispersed in a single collision. A

simple parametrization of the erosive process is to assume that the

mass lost in a typical collision of two objects of mass m at relative

velocity v is (e.g. Thébault & Augereau 2007)

	m = 0.5m

(

v2

Q∗
D

)γ

, v2 � Q∗
D (39)

(the factor 0.5 arises because the usual definition of a dispersive

impact is one in which the mass of the largest fragment is less than

half of the target mass; see Section 4.1).

Erosion through impact involves a number of complicated pro-

cesses such as crack propagation in brittle materials and plastic flow

in ductile materials, and melting or sublimation at high impact ve-

locities. Our present state of knowledge is derived from a variety of

approximate physical models, experiments and numerical simula-

tions, most intended for situations far removed from planetesimal

collisions. These typically yield values of γ between 1 and 1.5. For

example (i) impacts of small pellets into targets composed of ice-

silicate mixtures at speeds up to 12 km s−1 yield γ ≃ 1.2 (Koschny

& Grün 2001), (ii) numerical simulations of collisions between

rocky and icy bodies yield γ ≃ 1 (Benz & Asphaug 1999; Stewart

& Leinhardt 2009). We will adopt γ = 1 recognizing that this is

(a) oversimplified; (b) conservative (in that the actual erosion rate

is expected to be smaller for low-velocity collisions if γ is larger).

The criterion for survival is that the cumulative mass loss

	m(t0/t c) � m. Thus warm discs must satisfy

tc � t0, � � 1, and σ 2
r � (tc/t0) Q∗

D. (40)

where Q∗
D is given by equation (44).3

An additional constraint for warm discs is that collisions do not

result in excessive ‘viscous’ spreading of the disc. A disc initially

localized at semimajor axis a that loses a small amount of energy

δE must spread by δa ≪ a (Brahic 1977), where

δE = −
GM⊙Mdisc

32a3
δa2. (41)

If the typical energy lost per unit mass in a collision is f 6σ
2
r , where

f 6 ∼ 1, then the rate of energy loss is f 6σ
2
r Mdisc/t c. Therefore, in

a time t0 the disc spreads to

δa

a
=

√

32f6aσ 2
r

GM⊙
t0

tc
. (42)

Requiring δa/a � 1 and assuming � ≪ 1 yields

σr � 8 × 102 cm s−1

(

fm

f6

)1/2(
f1

0.69

)−1/2(
ρp

3 g cm−3

r

105 cm

)1/2

×
(

μ

10−4

t0

3 Gyr

)−1/2
( a

10 au

)5/4

. (43)

This constraint does not restrict the allowed range for warm discs

among the six sample discs considered in this paper, i.e. it is satisfied

so long as the warm discs satisfy all of the other constraints we have

already discussed.

4 C OLLI SI ON-LI MI TED DI SCS

4.1 The effects of collisions

Collisions or impacts may crater, shatter or disperse the target,

as discussed in Sections 3.2.2 and 3.3. The distinction between

shattering and dispersive impacts arises because the pieces of the

3 The distinction between ‘hot’ and ‘warm’ discs based on whether or not

the collisions are destructive is moot when the collision time is longer than

the age. Our (arbitrary) convention is that such discs are ‘hot’, not ‘warm’.
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874 K. Heng and S. Tremaine

target may remain gravitationally bound even after the target is

shattered (Benz & Asphaug 1999).

The outcome of an impact depends mainly on the relative speed,

masses and composition of the impacting bodies. Consider an im-

pact between two planetesimals of masses m1 (the target) and m2

≤ m1 (the projectile), at relative velocity 	v. The kinetic energy of

relative motion is Ek = (1/2)m̃	v2, where m̃ ≡ m1m2/(m1 + m2)

is the reduced mass. The impact is shattering if the kinetic energy

per unit target mass Ek/m1 > Q∗
S, and dispersive if Ek/m1 > Q∗

D,

where Q∗ is a function of the mass and composition of the tar-

get. Roughly speaking, Q∗(m) is the binding energy per unit mass

of the target – the energy needed to rupture its internal chemical

bonds for Q∗
S and this energy plus its gravitational potential energy

for Q∗
D. In the strength-dominated regime, when the target is small

enough that its self-gravity is negligible, we expect Q∗
S ∼ Q∗

D, and

both should be independent of m in the idealized case in which the

strength of the target is independent of its size. In practice, both

simulations and experiments find that Q∗ declines slowly with m

in the strength-dominated regime. In the gravity-dominated regime,

Q∗
S ≪ Q∗

D (an impact that shatters a target may not impart escape

speed to the fragments, so they re-accumulate as a gravitationally

bound rubble pile) and we might expect that Q∗
D ∝ m2/3 since the

gravitational binding energy per unit mass of a homogeneous body

scales as m2/3.

The dependence of Q∗
D on target mass is typically parametrized

as

Q∗
D(m) = Q0

(

xa
0 + xb

0

)

, (44)

where x0 ≡ m/m0; Q0, m0, a and b are parameters to be fitted

to experiments or simulations. We will adopt m0 = 1014 g, Q0 =
6 × 105 erg g−1, a = −0.13 and b = 0.44, these values being

compromises between the results for ice and basalt given by Benz

& Asphaug (1999). This simple form fails for very small mass, since

it predicts Q∗
D(m) → ∞ as m → 0; experiments with high-velocity

impacts of small bodies suggest Q∗
D ≈ 107 erg g−1 independent of

mass (Flynn & Durda 2004), so for x0 ≪ 1 we use the smaller of

this value and the prediction of equation (44) – the transition occurs

at m ≈ 104 g.

4.2 The collisional cascade

When the collision time is much less than the age of the disc,

the mass distribution of the smaller planetesimals is likely to be

established by a ‘collisional cascade’, in which large bodies are

dispersed by collisions into smaller bodies, these in turn being dis-

persed into smaller ones, until bodies of size �1 µm (‘dust grains’)

are removed by Poynting–Robertson drag and radiation pressure

(see Section 5). We now derive an approximate form for the steady-

state mass distribution in a collisional cascade (Dohnanyi 1969;

O’Brien & Greenberg 2003; Pan & Sari 2005), using the following

assumptions.

(i) The number density of planetesimals per unit mass is a power-

law function of mass, at least over a limited range,

dn

dm
∝ m−p. (45)

(ii) The rms eccentricity of the planetesimals is independent of

mass. (This assumption is made for simplicity, but appears to hold

approximately in the asteroid and Kuiper belts.)

(iii) The velocity dispersion (6) is large enough that a typical im-

pact between two bodies of equal mass has much more than enough

energy to disperse the two bodies, i.e. σ 2
r ≫ Q∗

D, which requires

σ r ≫ 3 × 103 cm s−1 (Q∗
D/107 erg g−1)1/2 or e0 ≫ 0.005(a/10 au)1/2

× (Q∗
D/107 erg g−1)1/2.

(iv) The specific impact energy required for a dispersive impact

is a power-law function of mass, Q∗
D ∝ mj . According to equa-

tion (44), we expect j = a for m ≪ m0 (strength-dominated) and

j = b for m ≫ m0 (gravity-dominated).

(v) The cross-section for a collision between two bodies of

masses m1 and m2 ≪ m1 is σ coll(m1, m2) ∝ ml
1. From equation (24),

we expect l = 2/3 for � ≪ 1 (σ coll ∝ r2 ∝ m2/3) and l = 4/3 for

� ≫ 1 (σ coll ∝ r2� ∝ rm ∝ m4/3).

According to assumption (iii), the smallest projectile mass that

can disperse a target of mass m in an impact is mmin(m) ≈
mQ∗

D/σ 2
r ≪ m. The rate of collisions in which planetesimals of

mass >m are dispersed is approximately

�n(m) ∝
∫ ∞

m

dm1

∫ m1

mmin(m1)

dm2

dn (m1)

dm1

dn(m2)

dm2

σcoll (m1, m2) .

(46)

This formula is accurate to a factor of order unity only, since it

neglects the fact that one object of mass >m is dispersed when

m1 > m and m2 < m, while two are dispersed when m1, m2 >

m; it also neglects the possibility that one or more of the collision

fragments is more massive than m. These inaccuracies do not affect

our final result.

Since most of the fragments in the collisions that dominate this

rate will have masses <m, the mass per unit volume in planetesimals

larger than m decreases at a rate given approximately by

�m(m) ≈ m�n(m) ∝ m

∫ ∞

m

dm1

×
∫ m1

mmin(m1)

dm2

dn (m1)

dm1

dn (m2)

dm2

σcoll (m1, m2) .

(47)

With assumptions (i), (iv) and (v), we find

�m(m) ∝ m3+j+l−p(2+j ). (48)

In a steady state, the mass flux �m(m) must be independent of mass,

so

p =
3 + l + j

2 + j
. (49)

With the parameters used in this paper, almost all dispersive colli-

sions have � ≪ 1 so we can set l = 2/3 and obtain (O’Brien &

Greenberg 2003)

p =
11 + 3j

6 + 3j
. (50)

Matching the power-law behaviour for m ≪ m0 and m ≫ m0, we

have (Löhne, Krivov & Rodmann 2008)

dn(m)

dm
=

{

(m/m0)−(11+3b)/(6+3b), m > m0,

(m/m0)−(11+3a)/(6+3a), m < m0.
(51)

These expressions are only valid if (i) the collision time at mass

m is short compared to the age of the disc, (ii) the typical impact

velocity is sufficient to disperse a body of mass m, σ 2
r ≫ Q∗

D(m),

(iii) the velocity dispersion is independent of mass, (iv) the mass

m is sufficiently large that the lifetime to radiation pressure and

Poynting-Robertson drag is much larger than the collisional life-

time.

For the exponents a = −0.13, b = 0.44 given after equation (44),

we have p = 1.89 for m ≪ m0 and p = 1.68 for m ≫ m0.

With these exponents the total mass in the collisional cascade

(∝
∫

m dn ∝ m2−p) is dominated by the largest bodies, while

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 867–889

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
0
1
/2

/8
6
7
/1

1
4
8
4
4
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Long-lived planetesimal discs 875

the total cross-section (∝
∫

m2/3 dn ∝ m5/3−p) is dominated by the

smallest bodies.

4.3 Properties of collision-limited discs

Collision-limited discs can arise if we assume that there is an initial

distribution of planetesimal masses in which the total disc mass

is dominated by small bodies, say dn ∝ m−Pdm with P > 2.4 In

such discs, the collision time is shorter for planetesimals of smaller

mass; thus a collisional cascade is established for all masses below

some maximum mmax. We have seen that the mass in the collisional

cascade is dominated by the largest bodies in the cascade, while if

P > 2 the mass in the ‘primordial’ regime m>mmax is dominated by

the smallest bodies. Thus, the overall mass in the disc is dominated

by bodies with mass ∼mmax, and for many purposes we may treat

the disc as a monodisperse system composed of bodies with a single

mass mmax. The difference from our earlier discussions is that now

the planetesimal mass is not a free parameter; rather, it is determined

by the condition that the lifetime of a planetesimal of mass mmax

subject to dispersive impacts is equal to the disc age. We now derive

this condition.

Following the discussion in the preceding section, we will as-

sume that dispersive impacts have Safronov number � ≪ 1 and are

dominated by impactors of mass much less than the target mass.

Then if we equate the collision time from equation (27) to the disc

age t0, we have

t−1
0 = 8

√
2πf1σr

(

3mmax

4πρp

)2/3∫ mmax

mmin(mmax)

dn0 (m′)

dm′ dm′, (52)

where mmin = mmaxQ
∗
D(mmax)/σ 2

r is the smallest impactor that will

disperse a target of mass mmax. Assuming that the mass distribution

in the mid-plane of the disc is

dn0 (m)

dm
=

nmax

mmax

{

(m/mmax)−p m ≤ mmax,

(m/mmax)−P m ≥ mmax,
(53)

we have

t−1
0 ≃

5.32

p − 1

f1

0.69

nmaxm
2/3
maxσr

ρ
2/3
p

[

Q∗
D(mmax)

σ 2
r

]1−p

. (54)

The total mid-plane mass density ρ0 is related to the surface density

by � =
√

πρ0ai0 (equation 5) and ρ0 is given by

ρ0 =
nmax

mmax

(

mp
max

∫ mmax

0

m1−pdm + mP
max

∫ ∞

mmax

m1−P dm

)

= nmaxmmax

(

1

2 − p
+

1

P − 2

)

, (55)

assuming p < 2 < P . If we divide the second equation by the first

and use equations (5) and (6) we obtain

�t0 ≃ 1.25f7

(

f1

0.69

)−1 m1/3
maxρ

2/3
p

�

[

Q∗
D (mmax)

σ 2
r

]p−1

, (56)

which is an implicit equation for the characteristic planetesimal

mass mmax. Here, f 7 ≡ (p − 1)[1/(2 − p) + 1/(P − 2)]/5.32. We

4 The condition P � 2 appears to hold for most planetesimal populations

in the Solar system. For the classical and excited Kuiper belts, P ≃ 3.3 and

2.1, respectively, and for trans-Neptunian objects P ≃ 2.5 (Bernstein et al.

2004). Numerical models of the formation of the Kuiper belt give P = 2.3

(Kenyon & Bromley 2004). Asteroid observations yield P between 1.9 and

2.3 (Parker et al. 2008) and Jupiter-family comets have P = 1.9 though with

large uncertainties (Fernández 2005).

choose p = 1.68 and P = 4 so f 7 = 0.46; a steeper high-mass slope

P = 6 would change this only to f 7 = 0.43. Alternatively, we may

write

σr ≃

[

1.25f7

(

f1

0.69

)−1 m1/3
maxρ

2/3
p

��t0

]1/[2(p−1)]
√

Q∗
D (mmax). (57)

By replacing the mass m in our discussion of monodisperse discs

with mmax, most of the results of Sections 2 and 3 can be ap-

plied to collision-limited discs without major errors. For example

(i) the gravitational stability of hot discs depends on the surface

density � ∝
∫

m dn, which is dominated by masses near mmax

when p < 2 < P . (ii) For most purposes the appropriate replace-

ment for the collision rate t−1
c ∝ nr2(f 1 + f 2�) (equation 27)

in a disc with a distribution of masses is the mass-weighted colli-

sion rate ∝
∫

mr2(f1 + f2�) dn, which in turn is proportional to
∫

m5/3 dn for � ≪ 1 and
∫

m7/3 dn for � ≫ 1. These integrals

are dominated by masses near mmax when p < 8/3 < P and p <

10/3 < P , respectively. (iii) The gravitational scattering rate is

t−1
g ∝

∫

r2�2 dn ∝
∫

m2 dn so this is dominated by masses near

mmax when p < 3 < P . All of these inequalities are satisfied for our

nominal values p = 1.68 and P = 4.

Finally, we note an interesting inconsistency in the results we

have derived so far. Neglecting factors of order unity, the collision

time t c,m for a monodisperse disc with � ≪ 1 is given by equa-

tion (27) as t−1
c,m ∼ n0σ rm

2/3/ρ2/3
p . The analogous collision time

t c,cl for a collision-limited disc is given by equation (54) as t−1
c,cl ∼

nmaxσ rm
2/3
max/ρ

2/3
p (Q∗

D/σ 2
r )1−p ∼ t−1

c,m (Q∗
D/σ 2

r )1−p � t−1
c,m. The differ-

ence arises because the collision-limited disc has a large population

of bodies with mmin � m � mmax that can collide with and disperse

the large planetesimals, whereas in the monodisperse disc these are

destroyed only by collisions among themselves. What then is the

state of a disc in which t c,cl � t0 � t c,m? Should it be regarded as

monodisperse or collision-limited? We assume here that such discs

are monodisperse but this assumption may be oversimplified.

5 N O N - G R AV I TAT I O NA L FO R C E S O N D U S T

We also describe the most important non-gravitational forces on

dust grains (Burns, Lamy & Soter 1979), since the distribution of

dust grains determines the IR flux from debris discs; these forces

can also be relevant for the planetesimals in warm discs. Gas drag

on the dust is unimportant since we are focusing on discs older than

a few Myr, at which point the gas in the protoplanetary disc has

disappeared. The ratio of repulsive forces from the stellar wind and

radiation pressure to the attractive gravitational force is

β =
3

16π

L⊙Pr

GM⊙cρpr
= 0.19Pr

(

ρp

3 g cm−3

)−1 (

r

1 µm

)−1

, (58)

in which we have assumed that the host star has the solar mass M⊙
and luminosity L⊙, ρp is the dust grain density, r is the grain radius,

and

Pr = Qpr +
Ṁvwc

L⊙
, (59)

where Ṁ is the rate of mass loss in the stellar wind, vw is the wind

speed, and Qpr is the radiation pressure efficiency factor (averaged

over the stellar spectrum) as defined by Burns et al. (1979). For

stars with the Sun’s luminosity and age, the contribution of the

stellar wind to Pr is negligible (�10−3). Grains created by colli-

sions on circular orbits with the Keplerian speed are unbound if

β ≥ 1/2 – because their eccentricity is β/(1 − β) (Burns et al.
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876 K. Heng and S. Tremaine

1979) – and thus β = 1/2 defines the ‘blow-out radius’,

rb = 0.38 µm Pr

(

ρp

3 g cm−3

)−1

. (60)

The rate of orbital decay from Poynting–Robertson and stellar-

wind drag is (Burns et al. 1979)

1

tPR

≡ −
1

a

da

dt
=

3

8π

L⊙Pφ

c2a2ρpr
=

2Pφ

Pr

GM⊙
ca2

β, (61)

where

Pφ = Qpr +
Ṁc2

L⊙
. (62)

Numerically, we have

tPR = 8.0 × 104 yr β−1 Pr

Pφ

( a

10 au

)2

. (63)

The contribution of the stellar wind to Pφ is negligible for particles

with r � 1 µm but grows as r−1 for r � 0.3 µm, and equals the

contribution due to Poynting-Robertson drag at r ≈ 0.1 µm (Burns

et al. 1979).

The thermal emission from the dust is determined by its absorp-

tion efficiency factor Qa, which is similar in magnitude to Qpr and

equal to it if scattering is neglected. In the geometric optics limit,

Qa is independent of wavelength and close to unity for typical dust

grains; in the limit of long wavelength, where X ≡ 2πr/λ ≪ 1,

Qa ∼ X (equation 92). The contribution of a grain to the thermal

emissivity at wavelength λ is proportional to πr2Qa. Thus for a

power-law mass distribution with exponent − p (equation 45) in

the range 5/3 < p < 2 (as is the case for a collisional cascade; see

Section 4.2)5 the total thermal emissivity is dominated by grains

with X = 2πr/λ ∼ 1 or r ≃ r IR(λ) ≡ λ/(2π). More precisely,

a fraction f of the emission comes from particles with radii that

exceed r IR/κ , where f = 1 − (3p − 5)κ3(p−2). For p = 11/6, the

expected value for a collisional cascade (we use p = 11/6 = 1.83

rather than p = 1.89 as at the end of Section 4.2 for reasons given

after equation 94), 75 per cent of the emission comes from particles

with radii that exceed 0.25r IR. For observations at λ = 20 µm, r IR =
3 µm and 75 per cent of the emission comes from particles with radii

that exceed 0.8 μm, where β = 0.24 (assuming ρp = 3 g cm−3 and

Qa = 1, since most of the stellar emission is at shorter wavelengths).

At longer observational wavelengths β is even smaller for the parti-

cles dominating the emission. Thus radiation pressure is negligible,

except perhaps for accurate modelling at the shortest observational

wavelengths.

Poynting–Robertson drag is also negligible, at least for detectable

debris discs, as shown by the following argument. Assume for sim-

plicity that the dust particles have a single size. Using equations (12)

and (27) the collision time tc for dust is related to the geometrical

optical depth as seen from the host star τ p by

�tc =
πfm

64f1τp

or tc = 3.6 × 104 yr fm

(

f1

0.69

)−1

×
( τp

10−5

)−1 ( a

10 au

)3/2

. (64)

5 The assumption of a power-law mass distribution neglects the oscillations

that appear in the mass distribution of a collisional cascade at radii that are

not too far from the blow-out radius (Krivov, Löhne & Sremčević 2006);

these oscillations can change the number density at a given radius or mass

by a factor of ∼3.

For particles with absorption efficiency Qa ≃ 1, the optical depth

τ p is equal to the bolometric luminosity of the disc relative to the

star, which exceeds 10−5 in almost all observed debris discs (Wyatt

2008). Therefore, the collision time t c � 4 × 104 yr (a/10 au)3/2

in observed discs, shorter than the Poynting–Robertson drag time

(63), so the grains are destroyed by collisions before they experience

significant orbital decay.

Based on these arguments, we neglect non-gravitational forces

on the dust distribution when calculating its emission properties.

6 THE PROPERTI ES OF LONG-LI VED DIS CS

The primary goal of this paper is to explore the properties of plan-

etesimal discs that can survive for most of the age of the Galaxy.

Even in our highly simplified model, the local properties of discs

are specified by four parameters: semimajor axis a, surface density

�, planetesimal radius r or mass m, and rms eccentricity e0, while

collision-limited discs are specified by three parameters. It is chal-

lenging to visualize the properties of a four-dimensional parameter

space. As a first step, we outline some general conclusions that arise

from the discussion of the previous section. We later examine six

sample discs in Figs 3–5.

6.1 Cold discs

6.1.1 The minimum planetesimal mass in cold discs

Eliminating the separation 	a between equations (13) and (18)

yields the minimum mass in cold discs,

m > mcold
min ≡ 100 M⊙μ1.43 ≃ 60M⊕

( μ

10−4

)1.43

. (65)

Thus, the minimum planetesimal mass in a cold disc with μ = 10−4

is 0.2 Jupiter masses, while if μ = 10−6 the minimum mass is 0.1

Earth masses.

6.1.2 The maximum number of planetesimals in cold discs

If we write the disc mass as Mdisc = πfm�a2 (with fm = 1 this

is roughly the mass per octave in semimajor axis; a disc extending

over multiple octaves in semimajor axis could have fm ≫ 1), then

with equation (65) we have

N =
Mdisc

m
< N cold

max ≡
fm

8

(

M⊙
m

)0.3

(66)

or N ∼ 1 for Jupiter-mass planets, 6 for Earth-mass planets and 20

for lunar-mass planets.

This result can be re-cast in terms of the surface density,

N < N cold
max ≡ 1.6fm

( μ

10−4

)−0.43

. (67)

Thus cold discs with μ = 10−4 can host no more than one or two

equal-mass planetesimals per octave in radius, while cold discs with

μ = 10−6 can host up to 12.

6.2 Hot discs

6.2.1 The maximum surface density for hot discs

Comparing Figs 1 and 2 shows that a necessary condition for the

survival of a hot disc is that the allowed regions in the two figures

overlap, and that this requires (i) τ 3/ν2 � μ (the minimum planetes-

imal mass for which the collision time is longer than the age must
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Long-lived planetesimal discs 877

be smaller than the disc mass) and (ii) τ/ν1/2 � 1 (the minimum ec-

centricity for which the collision and gravitational scattering times

are less than the age must be less than unity). The first of these can

be written more accurately using equations (10) and (27) as

μ < μmax,c, (68)

where

μmax,c =
π

3/2f 1/2
m

48f
3/2

1

ν

(�t0)3/2
,

= 7.0 × 10−5f 1/2
m

(

ρp

3 g cm−3

) (

t0

3 Gyr

)−3/2
( a

10 au

)21/4

.

(69)

To describe condition (ii) more accurately, we re-write the relax-

ation time (37) using equation (26):

t−1
relax =

16��

e0

(

3a

4πρpM⊙

)1/2

(f1�
−1/2 + f2�

1/2 + f3�
3/2log 
),

(70)

in which we have assumed 
 ≫ 1, as is usually the case, and

neglected the contribution of shear-dominated encounters. The

minimum of the expression in brackets occurs when � = f
1/2
1 /

(3f 3 log 
)1/2 for log 
 ≫ 1, and equals 0.97(log 
)1/4. Since

e0 < fe (equation 8), the relaxation time cannot be greater than the

age t0 for any rms eccentricity unless

μ < μmax,relax (71)

where

μmax,relax = 4.4 × 10−6

(

fe

0.5

) (

f1

0.69

)−3/4 (

f3

0.28

)−1/4

×
(

log 


10

)−1/4 (

ρp

3 g cm−3

)1/2 (

t0

3 Gyr

)−1
( a

10 au

)3

. (72)

The existence of a maximum surface density implies a maximum

value for the IR excess emission due to dust (see Section 8.2).

6.2.2 The maximum number of planetesimals in hot discs

When a hot disc satisfies the constraints (68) and (71), for a given

surface density and semimajor axis there is a minimum planetesimal

mass and maximum number of planetesimals, given approximately

by (cf. Fig. 2)

mhot
min

M⊙
∼

τ 3

ν2
=

(��t0)3

M⊙ρ2
p

, N hot
max ∼

(ρpa

�

)2 1

(�t0)3
. (73)

More precisely, by evaluating t c = t0 (� ≪ 1) we get:

mhot
min =

2304f 3
1

π2

(��t0)3

ρ2
p

= 210M⊕

( μ

10−4

)3
(

f1

0.69

)3 (

ρp

3 g cm−3

)−2

×
(

t0

3 Gyr

)3
( a

10 au

)−21/2

,

N hot
max =

π
3fm

2304f 3
1

(ρpa

�

)2 1

(�t0)3

= 0.49fm

(

f1

0.69

)−3
( μ

10−4

)−2
(

ρp

3 g cm−3

)2

×
(

t0

3 Gyr

)−3
( a

10 au

)21/2

. (74)

6.3 Warm discs

Similarly, for given values of the surface density and semimajor axes

there is a maximum mass (mwarm
max ) – and thereby a minimum number

(Nwarm
min ) – of planetesimals in warm discs. Generally, the maximum

mass and minimum number of planetesimals need to be evaluated

numerically, but for the cases considered below (Section 6.4), these

extremes are attained when the line t c = t0 intersects the line � =
1 (cf. Figs 4 and 5). At this point,

mwarm
max = 0.007M⊕

(

f1 + f2

2.211

)3
( μ

10−6

)3
(

ρp

3 g cm−3

)−2

×
(

t0

3 Gyr

)3
( a

10 au

)−21/2

,

Nwarm
min = 150fm

(

f1 + f2

2.211

)−3
( μ

10−6

)−2
(

ρp

3 g cm−3

)2

×
(

t0

3 Gyr

)−3
( a

10 au

)21/2

.
(75)

6.4 Sample discs

As described at the end of Section 2, we examine six possible

planetesimal discs (Table 1), with semimajor axes a = 1, 10 and

100 au, and dimensionless masses μ = 10−4 and 10−6. The allowed

values of velocity dispersion σ r and planetesimal radius r are shown

in Figs 3–5. In all cases, we assume that the disc age is t0 = 3 Gyr

and the planetesimal density is ρp = 3 g cm−3.

(A) a = 1 au, μ = 10−4: hot and warm discs cannot survive (see

equations 40, 68, 71 and 75). Cold discs can survive, but only for

a narrow range of planetesimal masses (the thin blue trapezoid in

the upper panel of Fig. 3): there can be at most one or two plan-

etesimals per octave of semimajor axis, of mass mcold
min ≃ 60M⊕ ≃

0.2M Jupiter (equation 65). Such discs are rather similar to some of

the many extrasolar planetary systems already detected by radial-

velocity variations in the host star.

(B) a = 1 au, μ = 10−6: hot and warm discs cannot survive. Cold

discs can have planetesimal masses in the range 0.1–1M⊕ (equa-

tion 65); the lower limit corresponds to about a dozen planetesimals

per octave of semimajor axis (equation 67). These discs may be

detectable with space-based transit surveys and are reminiscent of

the terrestrial planets in our own Solar system.

(C) a = 10 au, μ = 10−4: hot and warm discs cannot survive. As

in the case of disc A, only one or two planetesimals (or planets) per

octave of mass mcold
min ≃ 60M⊕ can survive in a cold disc. We suggest

in Section 7.5.3 that some discs of this type may be detectable by

gravitational microlensing.

(D) a = 10 au, μ = 10−6: hot, warm, and cold discs can all

survive. The hot discs may contain up to about 5000 planetesimals

per octave with minimum masses of mhot
min ≈ 1024 g, about the mass

of Ceres. The dynamical constraints on cold discs are the same as for

disc B; such discs are not detectable with current or planned transit

surveys because the probability of transits is too small and the orbital

period is too large but could be detected by targeted searches for

gravitational microlensing. A wide range of warm discs is possible,

with at least 200 planetesimals per octave and masses at most 0.4

times that of the Moon. A more typical warm disc might have 5

× 105 planetesimals per octave, of radius 100 km, with velocity

dispersion σ r ≃ 0.1 km s−1 and a collision time of 0.6 Gyr.
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878 K. Heng and S. Tremaine

Figure 3. Allowed values of planetesimal velocity dispersion and radius for discs with age t0 = 3 Gyr, semimajor axis a = 1 au, and dimensionless mass

μ = 10−4 (Mdisc ≃ 100 M⊕) and μ = 10−6 (Mdisc ≃ M⊕), i.e. discs A and B of Table 1. The blue-shaded region denotes allowed cold discs. There are no

allowed hot or warm discs. The various lines represent conditions for: gravitational stability (equations 18 and 23), gravitational scattering time exceeds disc

age (equation 31), thin disc (equation 8), N > 1 (equation 10), collisions are not erosive/disruptive (equations 40 and 44), and viscous spreading time exceeds

disc age (equation 43). The arrows attached to each line indicate the region in which long-lived discs could exist. The dividing line between hot/warm and cold

discs is given by equation (14) and the dividing line between collision speeds greater than or less than the escape speed from the planetesimal surface (� < 1

or � > 1 respectively) is given by equation (26).

(E) a = 100 au, μ = 10−4: hot, warm, and cold discs can all

survive. As in the case of discs A and C, the cold discs can have

only one or two planetesimals per octave. Hot discs can have up

to 2 × 1010 objects per octave with masses of at least 4 × 1019

g. Warm discs contain at least 5 × 108 objects per octave with

maximum masses of 1021 g (r ≃ 40 km; approaching the largest

sizes of comet nuclei).

(F) a = 100 au, μ = 10−6: hot discs have at most 2 × 1014

objects per octave with mhot
min ≃ 4 × 1013 g. Warm discs contain

objects with m � 1015 g (r ≃ 400 m), of which there are at least

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 867–889
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Long-lived planetesimal discs 879

Figure 4. Same as Fig. 3, but for a = 10 au, i.e. discs C and D. For disc D, the pink shaded regions denote allowed hot discs (solid colour) and warm discs

(vertical hatching). An additional constraint for disc D is tc � t0 (equations 27 and 30). The dashed curve represents collision-limited discs (equation 57).

5 × 1012 per octave. The constraints on cold discs are the same as

for discs B and D.

It is worthwhile to emphasize that Figs 3–5 do not show how

a planetesimal disc of a given initial mass will evolve, but rather

whether a disc with a current mass Mdisc can survive in approx-

imately its current state for 3 Gyr; the ‘allowed’ regions in these

figures can be interpreted as the allowed regions for discs with

an age t0 = 3 Gyr on the assumption that it is unlikely to find

objects in states that evolve on a time-scale much less than their

age.

6.5 Collision-limited discs

Collision-limited discs are shown by dashed curves in Figs 3 and 4

for discs D, E and F (equation 57). The allowed ranges of masses

are 1024 g � mmax � 8 × 1024 g (disc D), 4 × 1019 g � mmax � 3 ×
1021 g (disc E) and 4 × 1013 g � mmax � 4 × 1018 g (disc F).
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880 K. Heng and S. Tremaine

Figure 5. Same as Figs 3 and 4, but for a = 100 au, i.e. discs E and F.

7 D ETECTION TECHNIQUES

7.1 Radial velocity measurements

The stellar wobble or reflex radial velocity induced by an edge-on

disc containing N planetesimals of mass m is approximately

vwobble ≃
√

GM⊙N

a

m

M⊙
,

= πfmμ

√

GM⊙
aN

,

= 3.0 m s−1fmN−1/2
( a

10 au

)−1/2 ( μ

10−4

)

.
(76)

With current technology we can detect reflex velocities as small

as vwobble ∼ 1 m s−1 with orbital periods as long as ∼10 yr, cor-

responding to a ≃ 4.6 au. For hot discs with ages of several Gyr,

equations (71) and (76) imply vwobble � 0.1 m s−1 (a/10 au)5/2, too

small to be detectable.

Cold discs are detectable if the semimajor axis is small: com-

bining equation (67) with the second of the equations above, we

have

vwobble > 2.3 m s−1f 1/2
m

( a

10 au

)−1/2 ( μ

10−4

)1.22

. (77)
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Long-lived planetesimal discs 881

Thus, all long-lived cold discs with μ � 10−4 and a � 10 au can

be detected by current radial-velocity surveys; this of course is

because gravitational stability requires that they have only a few

large planets.

7.2 Transits

Space-based transit surveys such as NASA’s Kepler mission are

capable of detecting photometric variations as small as ∼10−5,

corresponding to the transit of a planetesimal of radius 2000 km =
0.35R⊕. Thus, edge-on discs containing lunar-mass planetesimals

may be detectable by transit surveys. Reliable detection of transits of

such small objects requires that the stellar variability is negligible;

this is likely to be true for at least some stars as the solar variability

on the hourly time-scales relevant to transit detection is only a few

times 10−5 (Batalha et al. 2002).

Other criteria for detectability of edge-on planetesimal discs by

transits include the following. (i) The orbital period must be less

than a year or so, so that several transits of a given object can be

detected in a mission of reasonable duration. (ii) There must not be

too few transits, that is, at least one planetesimal in the disc must

transit the star. If the disc is nearly edge-on and the characteristic

thickness h (equation 4) is small compared to the stellar radius R⋆

then most planetesimals transit the stellar disc in the course of an

orbit, while if h ≫ R⋆ the fraction of transiting planetesimals is

(2/π)1/2 R⋆/h, so the expected number of transiting planetesimals

is roughly

Nt = N min

[

1,

(

2

π

)1/2
R⋆

h

]

. (78)

(iii) There must not be too many transits: if multiple planetesimals

are transiting the disc at any one time, the fluctuations in stellar

flux will be difficult to distinguish from normal stellar variability.

The average number of planetesimals in transit at a given time is

NR⋆/(πa) if h ≪ R⋆ and NR2
⋆/(

√
8πha) if h ≫ R⋆ so the average

number of planetesimals in transit at any instant is

nt = N min

(

R⋆

πa
,

R2
⋆√

8πha

)

. (79)

7.3 Microlensing

7.3.1 Microlensing by individual planetesimals

The classical lensing equation is (e.g. Schneider, Ehlers & Falco

1992)

αd⋆ =
d⋆L

d
−

2Rsdl⋆

L
, (80)

where Rs = 2Gm/c2 is the Schwarzschild radius of the lens and L

is the projected separation between the light ray and the lens in the

lens plane. The distance to the source and lens and the separation

between them are denoted by d⋆, d and d l⋆ = d⋆ − d , respectively.

The quantity α is the subtended angle between the lines of sight to

the lens and the source. The Einstein radius is defined by the value

of L when α = 0 (i.e. lens and source are aligned),

rE =
2

c

√

Gmd⋆ζ (1 − ζ ) (81)

where ζ ≡ d/d⋆.

A planetesimal can be far from or near to its parent star, where

‘far’ and ‘near’ are defined with respect to the stellar Einstein radius,

RE = 4.0 au

[

M⋆

M⊙
d⋆

8 kpc

ζ (1 − ζ )

0.25

]1/2

, (82)

with M⋆ being the stellar mass.

The magnification of the total flux from the source is

A =
u2 + 2

u
√

u2 + 4
, (83)

where u ≡ αd/rE. In our simple treatment, we assume that a plan-

etesimal can produce a detectable lensing event of non-negligible

magnification when the distance αd between the lines of sight to the

planetesimal and the source star, measured in the lens plane, is less

than the Einstein radius; this corresponds to u = 1 or amplification

A = 3/
√

5 ≃ 1.34.

We must check that the planetesimal radius is small compared to

the Einstein radius to ensure that the magnified light curve is not

blocked (Agol 2002). We have

r

rE

=
[

3c2

16πGρprd⋆ζ (1 − ζ )

]1/2

,

= 0.66

[

r

1 km

ρp

3 g cm−3

d⋆

8 kpc

ζ (1 − ζ )

0.25

]−1/2

, (84)

so obscuration by the planetesimals is unimportant if they are much

larger than 1 km.

In addition, we require that the stellar (source) radius as projected

on the lens plane – equal to the stellar radius R⋆ multiplied by ζ –

cannot be much larger than the Einstein radius, to ensure that the

magnified light curve is not smeared out. We have

R⋆ζ

rE

=
(

3c2R2
⋆

16πGρpr3d⋆

ζ

1 − ζ

)1/2

,

= 7.3

(

R⋆

R⊙

)

( r

1000 km

)−3/2
(

ρp

3 g cm−3

d⋆

8 kpc

1 − ζ

ζ

)−1/2

.
(85)

We have parametrized R⋆ in terms of the solar radius since this is

the typical size of the source star in existing planetary microlensing

events (at 8 kpc the corresponding angular size is 0.6 μ as). With the

nominal parameters and ζ = 0.5, R⋆ ζ/rE < 1 only for planetesimal

radii r > 3750 km, corresponding to mass m > 0.11M⊕ (Paczyński

1996 gives a similar estimate, 0.07M⊕). This limit is conservative

because the magnification of extended sources remains substantial

when the projected source radius is as large as several times the

Einstein radius – for example, a uniform source whose centre is

separated from the lens by one Einstein radius is magnified more

than a point source so long as R⋆ ζ/rE < 2.17 (Gould 1994; Witt &

Mao 1994). Thus, microlensing searches are likely to be sensitive

to planetesimals as small as ∼10−1.5M⊕ or a few times the mass of

the Moon (but see Heng & Keeton 2009).6

6 Events associated with lower amplifications have larger microlensing

cross-sections, that is π(φrE)2 where φ > 1. Planetesimals with Einstein

radii smaller than the projected size of the source star may contribute ap-

preciably to the expected number of events per planetesimal disc crossing

because the range of masses involved in microlensing now extends down to

much lower values.
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882 K. Heng and S. Tremaine

If the transverse velocity of the lens relative to the source is v⊥,

the characteristic duration of the event is

tE,d ∼
2rE

v⊥
= 16 min

(

v⊥

100 km s−1

)−1
( r

1000 km

)3/2

×
[

ρp

3 g cm−3

d⋆

8 kpc

ζ (1 − ζ )

0.25

]1/2

. (86)

In the most cases, the transverse velocity is dominated by the ap-

parent angular speed of the source star relative to the host star of

the planetesimal, rather than the motion of the planetesimal around

its host star.

If we assume that the surface density of the disc is uniform over

a circle of radius a, the probability of lensing at any given moment

for a star whose image lies within the disc (i.e. the optical depth) is

τlens ≃ N
( rE

a

)2

,

= 5 × 10−5fm

(

μ

10−4

d⋆

8 kpc

)

( a

10 au

)−2 ζ (1 − ζ )

0.25
. (87)

The optical depth of a planetesimal disc of a given size a and mass

Mdisc = πfm�a2 is independent of the mass of the individual plan-

etesimals. Thus (for example) the optical depth for a disc composed

of 100 Earth-mass planets (Mdisc/M⊙ = 3 × 10−4, μ = 10−4) is

the same as the optical depth of a single 0.3 Jupiter-mass planet at

the same radius.

A related quantity is the probability that at least one lensing event

by a planetesimal will be seen at some time during the passage of

the source star near the host star of the planetesimal disc. If the

impact parameter associated with this passage is small compared to

the size of the planetesimal disc, this probability is 1−exp(−Ñlens),

where

Ñlens =
4NrE

πa
,

=
8

c

[

fm

π
G�d⋆Nζ (1 − ζ )

]1/2

= 9.1 × 10−3

(

10 au

a

) [

fmN
d⋆

8 kpc

μ

10−4

ζ (1 − ζ )

0.25

]1/2

.
(88)

Note that the probability of observing an event goes up as the

planetesimal mass goes down, since N ∼ �a2/m (although the

duration of the event is shorter). In this respect, a disc consisting of

many small planetesimals may actually be easier to detect than a

single large planet.

The short duration (86) of the events is one of the principal

challenges in reliably observing microlensing by planetesimals of

an Earth mass or less. To avoid being swamped by noise, it is

useful to focus on source stars that are experiencing – or have

recently experienced – microlensing by an intervening star. Strong

amplification by the host star of a planetesimal disc requires that

the impact parameter is less than the Einstein radius of the host

star, given by equation (82). Since many planetesimal discs may be

substantially larger than RE the source star should be monitored for

short-duration events for some time after the amplification by the

host star has returned to unity.

7.3.2 Other microlensing effects

Planetesimal discs can produce other signals in microlensing sur-

veys. Zheng & Ménard (2005) point out that if the source star for a

microlensing event hosts a debris disc, the mid-/far-IR light curve

will contain a component determined by the surface-brightness pro-

file of the thermal emission from the debris disc. Similarly, the

optical and near-IR light curve will contain a component from the

scattered light from the disc. In both cases we may expect that the

light curve is no longer wavelength independent. These effects are

challenging to detect since (i) many debris discs are much larger

than the stellar Einstein radius RE ≃ 4 au (equation 82), so the

maximum magnification is only ∼(RE/a)2, (ii) accurate mid-/far-

IR photometry is exceedingly difficult, except from space and (iii)

the fractional flux of scattered light is small, typically 10−3–10−5 in

observed debris discs (e.g. Wyatt 2008).

Other signals may arise if the lens star hosts a planetesimal disc.

The overall mass distribution in the disc will contribute to the mag-

nification and thereby distort the microlensing light curve, but this

distortion will be difficult to detect because the magnification due

to the disc will only be of order μRE/a where μ is defined in equa-

tion (7). We have assumed that the disc is not far from face-on and

that its semimajor axis a is larger than the Einstein radius of the host

star (see Hundertmark, Hessman & Dreizler 2009 for a discussion

of lensing by edge-on discs). A potentially more sensitive probe

is high-magnification events. The gravitational field from distant

stellar companions or other external mass distributions can produce

a characteristic double-peak structure near the point of maximum

magnification; for example, Kim et al. (2008) estimate that typical

high-magnification events can detect stellar companions with mass

m and separation 	d such that m/M⊙ � (	d/100 au)2. Unfortu-

nately, these events are insensitive to distant discs in most cases,

for the following reason: the deflection angle from a surface mass

density distribution �proj(x) on the sky plane is (Schneider et al.

1992)

α(x) =
∫

4G�proj(x
′)

c2

x − x′

|x − x′|2
d2x′. (89)

which is proportional to the gravitational field from a cylindrical

mass distribution with density ρ(x1, x2, x3) ∝ �proj(x1, x2). The

deflection angle for light rays passing inside an inclined ring of

material is therefore proportional to the gravitational field inside an

elliptical, cylindrical shell, which is zero from Newton’s theorem.

Only discs in which �proj is non-zero near the host star (e.g. nearly

edge-on discs with a significant thickness) will affect the light curve

near the peak magnification.

7.4 Infrared emission due to dust generated from collisions

Most extrasolar detections of planetesimal discs are based on mea-

surements of IR excesses, i.e. the presence of a debris disc (Wyatt

2008) in which a steady supply of dust is generated by planetesimal

collisions; the dust is heated by the host star and the heated dust

generates IR emission. At a given wavelength, the IR excess, f IR, is

the dust luminosity measured relative to the stellar luminosity.7 In

this section we estimate the IR excess due to planetesimal collisions

in discs. The discs considered here differ from the collision-limited

discs of Section 4 in that the collision time exceeds the age of the

discs, t c � t0.

7 Confusingly, f is also used by many authors to denote the bolometric

luminosity of the disc relative to the star. For particles with absorption

efficiency Qa = 1 (equation 92), this ratio is equal to the geometrical optical

depth τ p defined in equation (12).
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Long-lived planetesimal discs 883

If the dust grains are treated as grey bodies, their equilibrium

temperature is

Tdust =
(

L⋆

16πa2σSB

)1/4

= 279 K
( a

au

)−1/2
(

L⋆

L⊙

)1/4

, (90)

where σ SB is the Stefan–Boltzmann constant. The peak wavelength

of the blackbody spectrum λBλ(λ, T ) at this temperature is λmax =
13 μm (a/ au)1/2(L/L⊙)−1/4. The IR excess is then

fIR(λ) =
Bλ (λ, Tdust)

Bλ (λ, T⋆)

∫

Qa

(

r

R⋆

)2

dNdust, (91)

where T ⋆ and R⋆ are the stellar temperature and radius, Qa is the

absorption efficiency, and dN dust(r) is the number of dust particles

as a function of their radius r. As discussed at the end of Section 5,

the absorption efficiency can be approximated as

Qa = min {1, X} where X ≡
2πr

λ
, (92)

so if the number of dust particles is a power law in radius,

dNdust = Kr−q dr, (93)

we have

fIR(λ) =
Bλ (λ, Tdust)

Bλ (λ, T⋆)

K

(4 − q)(q − 3)R2
⋆

(

λ

2π

)3−q

. (94)

The radius exponent q is related to the mass exponent p defined

in equation (45) by q = 3p − 2. For small particles such as dust,

we expect that the specific kinetic energy required for disruption,

Q∗
D, is independent of mass (cf. Section 4.1). In this case, p = 11/6

(equation 50) so q = 7/2, and we will use this value in evaluating

equation (94) numerically. Note that equation (94) is only valid if 3

≤ q ≤ 4 and if the minimum grain size in the distribution is much

smaller than λ/2π.

The physical processes governing the effects of collisions are

outlined in Section 4.1. In a steady state, the rate of dust mass

production in a monodisperse planetesimal disc of the kind we are

considering is

�m ≈
mN

tc
, (95)

where as usual m and N are the mass and total number of planetesi-

mals and tc is the collision time, given by equation (27). To estimate

the corresponding dust mass, we use the conservation of mass flux.

First, we generalize the collision time (27) to the case where

particles of radius r1 are colliding with particles of radius r2. We

have

t−1
c (r1) = 23/2

π
1/2f1σr

∫ rmax

rmin

(r1 + r2)2 dn0 (r2)

dr2

dr2, (96)

here we have assumed that self-gravity is negligible (� ≪ 1). If

the number density is a power law in radius, dn0(r)/dr ∝ r−q,

and the integral is dominated by projectiles with radii r2 much less

than the target radius r1, we have

t−1
c (r1) =

23/2
π

1/2f1

q − 1

dn0 (r1)

dr1

σrr
3
1 θ q−1, (97)

where θ ≡ r1/rmin ≫ 1, that is r1 ≫ rmin. If we define rmin to be

the minimum projectile radius that will disrupt a grain of radius r1,

then the mass flux in the disc is roughly

�m(r1) ≈
m(r1)

tc(r1)

(

dNdust

d log r

)

r1

, (98)

where m(r1) = 4πρpr
3
1/3 is the mass of a grain of radius r1. The

number density and the total number of grains are related by equa-

tions (5) and (6),
(

dNdust

d log r

)

r1

= Kr
1−q

1 = 21/2
π

3/2fm

i0

e0

σra
2

�
r1

dn0 (r1)

dr1

. (99)

Equating equations (95) and (98), using equation (99) to elim-

inate dn0(r1)/dr1 in favour of K, and assuming that the velocity

dispersion, internal density and radial distribution of the dust and

planetesimals are equal, we have

θ5/2K2 ≈ 10N 2r5(1 + f2�/f1), (100)

which relates the properties of the dust distribution on the left-hand

side of the equation to those of the parent planetesimals on the

right-hand side. Although we have assumed q = 7/2 for the dust

particles (i.e. the particles that dominate the IR emission), which

is equivalent to the assumption that the specific dispersion energy

Q∗
D is independent of mass for these particles, this derivation does

not require any assumption about the dependence of Q∗
D on mass

for larger bodies – the argument relates the mass flux from the

destruction of equal-mass planetesimals (equation 95) to the mass

flux in dust (equation 98) and since mass flux is conserved the

properties of intermediate-mass bodies are irrelevant. The value of

θ is estimated from the specific dispersion energy Q∗
D; following

the discussion after equation (44) a typical value is Q∗
D = 107 erg

g−1 and we equate m(r1)Q∗
D to m(rmin)σ 2

r /2 to obtain

θ = 28 e
2/3
0

(

a

10 au

Q∗
D

107 erg g−1

)−1/3

. (101)

The approximations that we have made to derive equation (100) are

invalid unless θ ≫ 1.

Equation (100) determines the normalization K of the dust dis-

tribution, which is substituted into equation (94) to determine the

IR excess. This derivation is for hot discs, and implicitly assumes

a monodisperse disc in which collisions slowly feed a population

of smaller debris. These assumptions are only valid for discs in

which the collision time exceeds the age, t c � t0. Once t c ∼ t0 the

appropriate model is a collision-limited disc (Section 4.3), and the

factor tc in equation (95) should be replaced by t0. The analogue to

equation (100) is then

θ5/2K2 ≈
15

32�t0

fm

f1

Mdisca
2

ρp

. (102)

As discussed in Section 3.2.2, collisions also occur in warm discs,

but in this case the collisions do not disrupt the planetesimals and a

collisional cascade is not established. We evaluate the IR emission

properties of warm discs in Section 7.5 by assuming that most of

the emission comes from the planetesimals themselves.

For calibration-limited detections – in which the limiting factor

is the accuracy of the extrapolation of the photospheric flux to long

wavelengths8 – the minimum detectable flux produced by the dust,

normalized by the stellar flux, is f det. For illustration, we set f det =
0.1 (λ = 24 µm) and 0.55 (λ = 70 µm), similar to the limits in

Su et al. (2006). We show examples of hot planetesimal discs with

detectable IR excesses in Fig. 6. It is apparent that the IR excess is

a poor diagnostic for the disc mass Mdisc: the IR flux from discs of

a given mass and semimajor axis in Fig. 6 can vary by more than

an order of magnitude.

8 See section 2.4 of Wyatt (2008) for a discussion of calibration- versus

sensitivity-limited surveys.
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884 K. Heng and S. Tremaine

Figure 6. Allowed values of the infrared excess, f IR(λ), for hot discs around solar-type stars with masses Mdisc = M⊕ and 10 M⊕. The shaded regions denote

hot discs that are detectable via their IR excesses; the assumed detection thresholds f det at λ = 24 and 70 µm are shown as horizontal lines.

Figure 7. Different detection techniques probe different ranges of planetesimal disc mass and semimajor axis. Each of the four disc parameters (mass,

semimajor axis, planetesimal radius, and velocity dispersion) is randomly generated and the various detection criteria are checked (see text). Only discs that

survive for 3 Gyr are shown. The detectability criteria are summarized in Sections 7.5.1–7.5.5.

7.5 Probing disc mass and size

We now ask what long-lived planetesimal discs are detectable by

the methods we have discussed in Sections 7.1–7.4. To efficiently

explore the four-parameter space of disc mass and semimajor axis,

planetesimal radius, and velocity dispersion (Mdisc, a, r , σ r), we

randomly generate 3 × 106 discs, uniformly sampled on logarithmic

scales: 10−4 ≤ Mdisc/M⊕ ≤ 104, 0.1 ≤ a/ au ≤ 1000, 10−6 ≤
r/cm ≤ 1012 and 10−5 ≤ σ r/cm s−1 ≤ 107. We then ask whether

each disc can survive for t0 = 3 Gyr and is detectable by one

or more methods using the detection thresholds described below.

Fig. 7 shows the detectable planetesimal discs as projected onto the

Mdisc–a plane.9

9 Note that the density of generated points in Fig. 7 is generally lower at

higher disc masses (Mdisc � 100 M⊕), which is a surprising result since

massive discs should be easier to detect. The low density comes about

because the range of allowed planetesimal radii for cold discs becomes

narrower for higher disc masses (see Section 6.4 and Figs 3–5), and we are

sampling log10r uniformly.
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Long-lived planetesimal discs 885

7.5.1 Radial velocities

We consider a planetesimal disc to be detectable by this method if the

orbital period 2π(a3/G M⊙)1/2 is less than 10 yr and vwobble ≥ vdet,

where vwobble is given by equation (76) and the detection threshold

vdet = 1 m s−1. Black crosses in Fig. 7 denote discs that survive for

3 Gyr and are detectable by this method. The minimum detectable

mass scales ∝ a1/2, as expected. No warm or hot discs of age 3 Gyr

were detectable by this method. Not surprisingly, planetesimal discs

that are detectable by radial velocity variations in the host star tend to

be massive and contain a small number of large bodies, i.e. planets;

they resemble Disc A of Section 6.4.

7.5.2 Transits

As described in Section 7.2, planetesimals in nearly edge-on discs

can be detected transiting their parent star if r � 0.35R⊕, and

a � 1 au. We also require that Nt > 1 (equation 78) and nt <

1 (equation 79). It could be argued that the condition Nt > 1 is

unnecessarily stringent, since even if Nt ≪ 1 a fraction of discs

with these properties could be detected in a large transit survey.

No warm or hot discs of age 3 Gyr were detectable via transits.

Discs A and B of Section 6.4 are detectable via transits.

7.5.3 Microlensing

We consider a planetesimal disc to be detectable via microlensing if

the microlensing optical depth τ lens (equation 87) exceeds 10−6 (for

comparison, the measured microlensing optical depth towards the

Galactic bulge is 2–3 × 10−6). Since τ lens is maximized when the

planetesimal is halfway to the source, we adopt ζ = d/d⋆ = 0.5 for

illustration. We also assume a solar-type source star at a distance

d⋆ = 8 kpc. With these parameters, no warm or hot discs are de-

tectable by microlensing. In Fig. 7, the cut-off for Mdisc � 0.1M⊕
arises because the projected source size becomes larger than the

Einstein radius, while for a � 1 au we have the detectable disc mass

scaling ∝ a2 (equation 87). Discs A, B, and C of Section 6.4 are

detectable by microlensing.

7.5.4 Debris discs

Debris discs are dynamically hot discs that produce a collisional

cascade of dust whose associated IR excess exceeds the detection

threshold, f det. We consider both hot and collision-limited discs.

As discussed in Section 7.4, we take f det = 0.1 (24 µm) and 0.55

(70 µm). In Fig. 7, there is a minimum and maximum detectable

disc mass at a given semimajor axis. This feature appears to arise

because the relaxation time trelax (equation 37) at fixed disc mass

and velocity dispersion has a minimum near � = 1. There is also a

cut-off at small semimajor axes, which arises because the maximum

allowable surface density for hot discs (equations 68 and 71) is a

strongly increasing function of semimajor axis. Discs E and F of

Section 6.4 are detectable via their IR excesses at 70 µm.

It is remarkable that the discs detectable by radial-velocity/transit

surveys or microlensing do not overlap with those detectable from

their IR excesses. This result is consistent with the observational

findings of Beichman et al. (2005), Bryden et al. (2006), Greaves,

Fischer & Wyatt (2006), Moro-Martı́n et al. (2007) and Kóspál et al.

(2009) that there is little or no correlation between the occurrence

of planets and debris discs.

This lack of overlap does not preclude the possibility that a single

host star may have planetesimals that are detectable by both meth-

ods, so long as the planetesimal disc extends over several octaves

in semimajor axis. Beichman et al. (2005) and Kóspál et al. (2009)

list six and 10 planet-bearing stars with debris discs, and planets

have been imaged in the debris-disc systems HR 8799 (Marois et al.

2008) and Fomalhaut (Kalas et al. 2008).

7.5.5 Warm discs

In warm discs, collisions may cause cratering of the planetesimals

but do not shatter them. Although cratering collisions produce sig-

nificant amounts of dust, they do not establish a collisional cascade

of the kind described in Section 4.2, so it is likely that IR emis-

sion is dominated by the planetesimals themselves. Based on this

assumption, we show the detectability of warm discs from their IR

emission in Fig. 7. We again adopt f det = 0.55 at 70 µm (we choose

not to show detectable warm discs at 24 µm so as not to over-crowd

Fig. 7).

In the figure, we see that there is again a minimum and maximum

detectable disc mass at a given semimajor axis. This feature is

now associated with the constraints set by non-gravitational forces

(tPR � t0 and β < 0.5; see Section 5) and condition (40) for warm

discs, respectively.

In principle, cold discs may also be detectable through the IR

emission from the planetesimals, but we found no such discs given

our assumed detection limits at 24 and 70 µm.

7.5.6 Undetectable discs

Many planetesimal discs that survive for 3 Gyr are not detectable

using any of the methods described in this section.

8 D I SCUSSI ON AND SUMMARY

8.1 Can warm discs mimic debris discs?

It is generally believed that the IR excesses around main-sequence

stars older than a few Myr are due to dust that is produced in

collisions between large solid bodies orbiting the star (hence the

term ‘debris disc’). Direct evidence that the emitting material is

dust comes from several sources: (i) submillimetre observations of

a handful of debris discs show that the absorption efficiency Qa

(equation 91) declines roughly as λ−1 for wavelengths � 100 µm

(Dent et al. 2000; Williams & Andrews 2006; Backman et al. 2009),

suggesting grain sizes of a few tens of µm (equation 92). (ii) Chen

et al. (2006) obtained Spitzer Space Telescope IR spectra of 59

stars with IR excesses and found five with 10–20 µm features that

imply the presence of micron-sized silicate grains. (iii) The polar-

ization of scattered light from the debris discs around β Pictoris

and au Microscopii is consistent with simple models of scattering

by dust (Gledhill, Scarrott & Wolstencroft 1991; Graham, Kalas &

Matthews 2007).

Despite this evidence, it is instructive to consider the possibility

that in some stars the IR excess arises not from dust produced by

a collisional cascade but rather from a population of planetesimals

with much larger radii. The most likely candidates are warm plan-

etesimal discs, in which the collision time is less than the disc age

but the collision velocities are too small to destroy the planetesimals

over the lifetime of the disc. To simplify the calculations, we con-

sider the lowest possible radial velocity dispersion for warm discs,
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886 K. Heng and S. Tremaine

Figure 8. Allowed surface density of warm discs as a function of the planetesimal radius according to equations (103) and (104). The allowed region is shaded

in different colours for different values of the semimajor axis a = 1, 10 and 100 au. The disc age is assumed to be 3 Gyr. Also shown are lines of constant

optical depth τ p (equation 12).

which occurs when the Safronov number � = 1 (cf. discs D, E, and

F in Figs 4 and 5). Using equations (25), (27) and the third condition

in equation (40), we obtain

r ≤
1

8 (f1 + f2)

(

Q∗
D

G��t0

)

. (103)

If � < 1, then the preceding constraint becomes stronger, that is

the numerical coefficient in equation (103) becomes larger.

The minimum planetesimal size in warm discs is typically set

by Poynting–Robertson drag. Using equations (58) and (63), the

condition tPR � t0 yields

r � 0.7 cm Pφ

(

t0

3 Gyr

) (

ρp

3 g cm−3

)−1
( a

10 au

)−2

. (104)

In Fig. 8, we show the constraints (103) and (104) for a = 1, 10

and 100 au; also shown are lines of constant optical depth τ p (equa-

tion 12). This optical depth is equal to the ratio of the bolometric

disc luminosity to the bolometric stellar luminosity and hence pro-

vides a convenient measure of the detectability of the disc. Known

discs typically have τ p � 10−5 (Wyatt 2008). We conclude from

Fig. 8 that the IR emission from so-called ‘debris discs’ at a =
100 au could in some cases be coming from planetesimals as large

as r ≈ 10 m (m ≈ 1010 g). A strong test of this possibility is that

the emission spectrum from such a disc should resemble a black-

body spectrum, even at submm wavelengths (or a superposition of

blackbody spectra if the emission originates from a range of disc

semimajor axes).

8.2 The maximum optical depth of a debris disc

Wyatt et al. (2007) argue that a simple model for the collisional

evolution of planetesimal discs implies that the maximum optical

depth or fractional bolometric disc luminosity is (their equation 21)

τ (max)
p = 1.6 × 10−4

( a

au

)7/3
(

t0

Myr

)−1

. (105)

This result is based on several plausible but arbitrary assumptions

(planetesimal radius r = 2000 km; rms eccentricity e0 = 0.05,

strength Q∗
D = 2 × 106 erg g−1, etc). To examine the applica-

bility of this result, we employ the same Monte Carlo procedure

used to produce Fig. 7 to randomly generate hot, collision-limited,

and warm planetesimal discs and calculate the corresponding values

of τ p. For warm discs, the optical depth is given by equation (12)

with N and r equal to the number and radius of the planetesimals.

For hot and collision-limited discs, the optical depth is given by

τp =
1

4a2

∫

Qar
2 dNdust; (106)

taking the absorption efficiency Qa from equation (92) and the

number of particles dN dust from equation (93) with q = 7/2, we

find

τp =
K

a2

(

λ

2π

)−1/2

, (107)

where K is taken from equations (100) or (102) for hot and collision-

limited discs, respectively. In the discussion below we assume λ =
70 µm.

The results are shown in Fig. 9 for disc ages t0 = 30 Myr,

300 Myr and 3 Gyr. We also show Wyatt et al.’s estimate (105) for

t0 = 30 Myr as a dashed white line; this is easily scaled to other ages

since τ (max)
p ∝ 1/t0. Wyatt et al. estimate the uncertainties involved

to span ∼2 orders of magnitude and this is reflected in the light blue

band shown in Fig. 9.

We are able to generate hot and collision-limited discs with opti-

cal depths substantially larger than the estimate of equation (105);

however, these still lie within the estimated range of uncertainty

given by Wyatt et al. (2007). A major source of uncertainty is in the

planetesimal strength Q∗
D. In the calculations shown in Fig. 9, we

used a mass-dependent Q∗
D as defined in equation (44). As a check,

we carried out additional calculations assuming the constant value

adopted by Wyatt et al. (2007) (Q∗
D = 2 × 106 erg g−1), and found

that in this case our results (not shown) agreed more closely with

equation (105).
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Long-lived planetesimal discs 887

Figure 9. Optical depth associated with dust grains in hot (left) and collision-limited (middle) planetesimal discs, as well as for planetesimals in warm discs

(right). Blue, green and yellow symbols are for planetesimal disc ages of 30 Myr, 300 Myr and 3 Gyr. The white dashed line and light blue band represent

the maximum optical depth and its associated uncertainty, respectively, as estimated by Wyatt et al. (2007) – see equation (105). Also shown are the observed

values for HD 12039 and BD +20 307.

Our simulations show that the maximum optical depth is roughly

∝ t−1
0 , as predicted by equation (105), but the scaling with semimajor

axis is quite different. The numerical simulations of Löhne et al.

(2008) also show that the scaling of τ p with a is generally more

complicated than a power law (see top right-hand panel of their

Fig. 11).

We also find that the maximum optical depth of warm discs

can be almost an order of magnitude higher than that of hot and

collision-limited discs of the same age and semimajor axis. The

absence of warm discs in the bottom right corner of Fig. 9 is simply

a consequence of the defining condition of warm discs, t c � t0

(equation 27), together with equation (64) relating the collision

time to the optical depth. Discs exist below this line, but we label

them ‘hot’ rather than ‘warm’. For collision-limited discs, there is

a similar cut-off caused by the thin-disc condition (equation 8) and

equation (57) imposing a maximum value for mmax (e.g. see Fig. 5).

Wyatt et al. (2007) point out that a number of debris discs with

a � 10 au have optical depths that exceed the limit (105) by factors

of 103 or more (see also Moór et al. 2009). In Fig. 9, we show

two debris discs with small semimajor axes, HD 12039 (t0 = 30

Myr) and BD +20 307 (t0 = 300 Myr), taken from table 1 of Wyatt

et al. (2007). These stars have a range of spectral types, from F2 to

K4, but our models based on a solar-type host star should still be

reasonably accurate. We verify that the optical depth of BD +20 307

exceeds the maximum allowed for steady-state hot and collision-

limited planetesimal discs with an age equal to the stellar age, while

the optical depth of the disc around HD 12039 is consistent with

steady-state models.

In Fig. 10, we show all seven debris discs listed in table 1 of Wyatt

et al. (2007). For each system, we use the quoted values of the age t0

and semimajor axis a to compute the maximum value of τ p for hot,

collision-limited and warm discs. The figure shows that two systems

(HD 113766 and HD 12039) have optical depths consistent with a

steady-state hot or collision-limited disc; one (BD +20 307) has an

optical depth that is inconsistent with a steady-state hot, collision-

limited or warm disc (by factors of 100, 50 and 10, respectively); and

four (HD 72095, HD 69830, η Corvi, and HD 98800) are consistent

with warm discs but not hot or collision-limited discs. However, of

these last four, the first three have 10 µm silicate features in their

spectra which imply that the IR emission comes from micron-sized

grains, thus ruling out warm discs as well. All of our conclusions

about hot and collision-limited discs are consistent with Wyatt et al.

(2007), who suggest that the dust arises from planetesimals that

have been scattered to small semimajor axes from a disc at much

larger radii.

8.3 Summary

We have described a unified model of the evolution of gas-poor plan-

etesimal discs, which is general enough to apply to all Keplerian

discs of solid bodies, including debris discs, asteroid belts and plan-

etary systems. Our model includes such processes as gravitational

stability, evolution due to dynamical chaos, gravitational scattering,

radiation and stellar wind pressure, Poynting–Robertson drag, and

erosion or destruction by physical collisions. We characterize the

discs by four parameters: disc mass (Mdisc), disc semimajor axis (a),

planetesimal size (r) and radial velocity dispersion or rms eccen-

tricity (σ r or e0). The salient conclusions of our study include the

following.

(i) Planetesimal discs can be categorized as dynamically ‘hot’,

‘warm’ or ‘cold’ depending on whether the planetesimal orbits

cross and therefore collide and whether the collisions are ero-

sive/disruptive. In cold discs the orbits do not cross and collisions

do not occur; in hot discs the orbits cross but the collision time

is longer than the disc age, and in warm discs the collisions are

frequent but gentle enough that they do not substantially erode the

particles within the age of the disc.
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888 K. Heng and S. Tremaine

Figure 10. Maximum optical depths for hot and warm discs as calculated by our model, compared to the observed values, for the 7 systems listed in table 1

of Wyatt et al. (2007).

(ii) Massive discs with small semimajor axes can only survive for

Gyr time-scales if they are cold. For example, after 3 Gyr hot discs

at 1 or 10 au cannot exceed 1.3 × 10−4M⊕ or 1.5M⊕ respectively

(see Section 6.2). Gravitational stability imposes an upper limit on

the number of planetesimals per octave that can be present in a

cold disc of given surface density; for example, a cold disc of mass

100M⊕ cannot host more than 1–2 planetesimals per octave, while

a disc of mass 1M⊕ can host ∼10 per octave (equation 67).

(iii) Warm discs can survive for Gyr time-scales over a wide range

of semimajor axes and masses. At 1 au warm discs that survive for 3

Gyr must have mass �10−4M⊕; in this case the planetesimal radius

is only 1 m, and warm discs composed of larger planetesimals

must have even smaller masses (Fig. 8). At larger semimajor axes

the allowed masses of warm discs and the planetesimals within

them are much larger (Fig. 5). In some cases, warm discs may be

detectable from the IR emission from the planetesimals themselves.

(iv) Planetesimal discs can be detected by a wide variety of obser-

vational techniques, including transits, gravitational microlensing,

radial-velocity variations, and ‘excess’ IR emission (‘debris discs’).

With current technology the discs that can be detected by any of

the first three methods are disjoint from those that can be detected

in the IR (see Fig. 7). Many possible long-lived planetesimal discs

cannot be detected by any method at present.

Despite the length of this paper, our analysis suffers from several

shortcomings. The assumption of a monodisperse planetesimal disc

is oversimplified, and probably incorrect given our limited under-

standing of disc formation. We suspect that our results are reason-

ably accurate provided that the total mass in the disc is dominated

by planetesimals in a relatively small mass range, but this suspicion

should be tested by analysis of discs with a range of planetesimal

sizes. Our results also depend on a number of poorly determined

parameters of order unity (Table 2) and do not incorporate a realis-

tic model of the radial structure of the disc. In this paper, we have

deliberately ignored all considerations of the formation process of

planetesimal discs. It remains to be determined, by observations and

theory, which of the wide variety of possible long-lived planetesimal

discs are actually found in nature.
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A P P E N D I X A : M O D I F Y I N G VA R I O U S

F O R M U L A E I N D O N E S & T R E M A I N E ( 1 9 9 3 )

The rate of mass accretion in a rotating disc of planetesimals has

been evaluated by Greenzweig & Lissauer (1992) and Dones &

Tremaine (1993; hereafter DT). We need to modify their formulae,

because their results are for the mass accretion rate of a large body

(a planet) on a circular orbit in the mid-plane of the planetesimal

disc, while we are interested in the rate for a typical planetesimal

in a monodisperse planetesimal disc. Unless otherwise mentioned,

the notation used in this Appendix is the same as in the main text.

In the dispersion-dominated regime, the rate of mass accretion is

given by equations (72) and (90) of DT,

Ṁ =

{

2.7603��R2
p, � ≪ 1,

6.0828��3RpR
3
Hσ−2

r , � ≫ 1,
(A1)

where Rp is the radius of the planet, RH = a(M/M⊙)1/3 is its Hill

radius (as defined by DT, which is different from the definition in the

present paper) and σ r is the planetesimal velocity dispersion in the

radial direction. In the shear-dominated regime, we use equations

(83) and (75) of DT,

Ṁ =

{

10.1��2RpR
2
Hσ−1

r , σr � �
√

RpRH,

6.47��R1/2
p R

3/2
H , σr � �

√

RpRH.
(A2)

We first write these formulae in terms of the number density of

planetesimals in the mid-plane, n0, using � =
√

2πn0mσz/� (see

text below equation 18 of DT),

Ṁ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2.7603
√

2πn0mσzR
2
p,

6.0828
√

2πn0mσz�
2RpR

3
Hσ−2

r ,

10.1
√

2πn0mσz�RpR
2
Hσ−1

r ,

6.47
√

2πn0mσzR
1/2
p R

3/2
H .

(A3)

The collision time as defined in the present paper is t−1
c = Ṁ/m.

The following modifications are made:

σr,z →
√

2σr,z,

Rp → 2r,

RH = a
(

M/M⊙
)1/3 → a

(

2m/M⊙
)1/3

.
(A4)

The first modification comes from assuming the colliding bodies

have the same velocity dispersion, as opposed to one of them being

on a circular orbit. The second and third modifications arise both

colliding bodies have the same radius r and mass m, as opposed

to one large body having radius R and mass M while the other has

negligible mass and radius. We also note that σ z = σ r(i0/e0), where

we again choose i0/e0 = 0.5. Thus, the reciprocal of the collision

time is

t−1
c =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2.7603 × 4 ×
√

πn0r
2σr ,

6.0828 × 2 ×
√

πn0�
2ra3σ−1

r

(

m/M⊙
)

,

10.1 × 27/6 ×
√

πn0�ra2
(

m/M⊙
)2/3

,

6.47 × 2 ×
√

πn0r
1/2a3/2σr

(

m/M⊙
)1/2

.

(A5)

Finally, we decrease t−1
c by

√
2 since the vertical motions of the

particles imply that the mean density is reduced by this factor com-

pared to the mid-plane density. We also replace n0 by
√

2/πN�/σr ,

t−1
c =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2.7603 × 4 × N�r2,

6.0828 × 4 × N�r2�,

10.1 × 27/6 × N�2ra2σ−1
r

(

m/M⊙
)2/3

,

6.47 × 2 × N�r1/2a3/2
(

m/M⊙
)1/2

.

(A6)

Comparing with equation (27), we get f 1 = 4 × 2.7603/16 =
0.690 and f 2 = 6.0828/4 = 1.521. Similarly, by comparison with

equation (30), we get f 4 = 27/6 × 10.1 = 22.67 and f 5 = 2 ×
6.47 = 12.94.
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