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Long-lived quantummemory
R. Zhao1, Y. O. Dudin1, S. D. Jenkins1,2*, C. J. Campbell1, D. N. Matsukevich3, T. A. B. Kennedy1

and A. Kuzmich1

Quantum memories for the storage and retrieval of quantum
information are extremely sensitive to environmental
influences, which limits their storage times. The ground states
of atoms and ions are potential candidates for quantum
memories, but although coherence times of the order of a
few seconds for atoms1,2 and hundreds of seconds for ions3–5

have been demonstrated, long-lived storage and retrieval of
single quantum excitations remains an outstanding challenge.
Here, we report a quantum memory using the magnetically
insensitive clock transition in atomic rubidium confined
in a one-dimensional optical lattice. We observe quantum
memory lifetimes exceeding 6 ms, more than two orders of
magnitude longer than previously reported6. This advance is
an important step towards the realization of long-distance
quantum networks and the controlled production of complex
entangled states of matter and light.

Protocols for quantum communication are typically based on
remote parties sharing and storing an entangled quantum state.
The generation of such remote entanglement must necessarily be
done locally and distributed by light transmission over optical fibre
links or through free space7. For the distribution of entanglement
over a length L, the characteristic timescale for storage is the light
travel time L/c , where c is the speed of light in the medium. For
L=1,000 km, L/c≈5ms for an optical fibre.

In practice, direct entanglement distribution over optical
fibres is limited by absorption to distances l ∼ 100 km. To
distribute entanglement over longer distances, the channel should
be divided into links of length ≤ l . The division circumvents
attenuation in the fibre provided the intermediate memory nodes,
which terminate the links, have a non-zero quantum memory
time. Entanglement distributed over these shorter links is then
connected over length L according to a family of protocols
generically known as the quantum repeater8. The entanglement
distribution rate of a network depends critically on the memory
time of these storage elements. For L ∼ 1,000 km, required
memory times vary from many seconds for a simple network
topology8,9 to milliseconds for more complex (for example,
multiplexed) topologies and architectures10–12. Such long-lived
quantum memories could revolutionize deterministic single-
photon sources6 and lead to the generation of entangled states
over extended systems13.

Enhancing the matter coupling to a single spatial light mode
is an advantage shared by cold optically thick atomic ensembles14
and single atoms in high-finesse cavities15. The longest quantum
memory time previously reported, 32 µs in a cold rubidium
ensemble6, is insufficient to carry out quantum repeater protocols
over the distances where direct transmission fails. The rubidium
sample, prepared in a state of zero average magnetization, was
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allowed to freely fall during the protocol and the quantum
memory time was limited by the effects of small uncompensated
magnetic fields. In short, equally populated atomic states of
oppositemagnetization,±mµB, wherem is the angularmomentum
projection and µB is the Bohr magneton, respond asymmetrically
to ambient fields16–23. Ballistic expansion of the freely falling
gas provides a longer memory time limitation, which can be
estimated from the time τ = Λ/(2πv) ∼ 100 µs it takes an
atomic spin grating to dephase by atomic motion (we use
some representative parameters typical of the magneto-optical
trap (MOT) environment: grating wavelength Λ= 50 µm, atomic
velocity v =

√
kBT/M ' 8 cm s−1 for T = 70 µK and rubidium

mass M ). Millisecond storage of classical, coherent light has been
reported in atomic gases24–26, whereas coherence times in excess of
1 s have been achieved in the solid state27.

To demonstrate quantum memory lifetimes of many
milliseconds, we must suppress atomic motion and use
magnetically insensitive atomic coherence as the basis of the
quantummemory. Here, we report achieving this goal by confining
rubidium-87 atoms in an optical lattice of 25 µm period using the
m=0↔0 ground-state atomic hyperfine transition for storage.We
thereby take advantage of the magnetic insensitivity of the so-called
clock transition, the energy of which depends only quadratically
on the magnetic field strength. The ground hyperfine levels a
and b of 87Rb have angular momenta Fa = 1 and Fb = 2, and the
upper and lower clock states are written as |+〉 ≡ |b,m= 0〉 and
|−〉 ≡ |a,m = 0〉, respectively. If the atoms are prepared in the
upper clock state by optical pumping, the |+〉 and |−〉 states can
be coupled by Raman scattering of a weak linearly polarized write
laser field into an orthogonally polarized signal field detected in the
near-forward direction (Fig. 1).

The detection of the signal photon implies a momentum change
~(kw− ks) of the atoms (along the x ′ axis), where kw and ks are
the write and signal field wave vectors, respectively. The excitation
amplitude for an atom at position rµ is proportional to e−i(kw−ks)·rµ .
The collective atomic excitation, imprinted with this phase grating,
is the write spin wave. The spin wave coherence is essential in
providing efficient coupling to a single spatial electromagnetic
field mode in the retrieval stage, or read process, carried out
after a controllable storage period. Optical confinement preserves
the spin wave coherence by suppressing atomic motion along
the kw−ks direction.

The physics of the read process can be described using the
concept of the clock polariton28, a bosonic light–matter excitation
with creation operator

Ψ̂ †
0 (z,t )=

Ω ϕ̂†(z,t )+ iκ
√
nŝ†(z,t )

√

|Ω |2+n|κ|2
. (1)
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Figure 1 | Essential elements of the experimental set-up. Between 105 and
106 sub-Doppler-cooled 87Rb atoms are loaded into an optical lattice (see
the Methods section), and detection of the signal field, generated by
Raman scattering of the write laser pulse (red-detuned by 20 MHz),
heralds the presence of a write spin wave excitation. A resonant
read/control field converts the surviving atomic excitation into an idler field
after a storage period Ts. The inset shows the atomic level scheme of 87Rb
with levels a and b being the hyperfine components of the ground 5S1/2

level, and level c being a hyperfine component of the excited 5P1/2 level.
The write laser excites the b↔ c transition, with Raman emission of the
signal field on c→ a. The read laser excites the a↔ c transition, with
Raman emission of the idler field on c→ b.

This is a linear combination of the read spin wave associated
with the clock transition and the idler field propagating along
the quantization axis z , and linearly polarized in the x direction;
these are described by creation operators ŝ† and ϕ̂†, respectively.
The form of the polariton operator shows that adiabatic variation
of the y-polarized read field Rabi frequency Ω causes reversible
conversion between the propagating idler field and the read spin
wave. The collective Rabi frequency associated with the idler
transition c→ b is given by κ

√
n, where κ is the dipole coupling

strength and n is the atomic number density.
Our goal is to convert the write spin wave, heralded by signal

photodetection, into the idler field, with high efficiency. It is
therefore essential to have a large overlap between the write and
read spin waves. To maximize this overlap, the signal and idler
spatial mode functions should be matched and the condition
ki = kw− ks+ kr satisfied29, where ki and kr are wave vectors for
the idler and read fields, respectively. The overlap is also influenced
by the atomic state preparation, angular momentum quantum
numbers and transition strengths of the atomic levels a, b and c . For
Fa = 1,Fb = Fc = 2 with atoms prepared in the |+〉 (upper clock)
state, the write and read spin wave operators are equal, implying
maximum efficiency.

As noted earlier, ballistic expansion limits the quantummemory
time, and to increase it into the millisecond regime we load the
atoms into a one-dimensional optical lattice as shown in Fig. 1.
The period of the lattice 25 µm is shorter than the spin grating
wavelength Λ ' λ/θ ≈ 50 µm, determined by the angle θ ≈ 0.9◦
between thewrite and signal fields of wavelength λ=795 nm.

We outline in the Methods section the experimental procedure
used to determine the retrieval efficiency and to demonstrate the
quantum character of the memory through the α-parameter30. In
Fig. 2, we show the retrieval efficiency as a function of storage
time for an unpolarized atomic sample loaded into the lattice. We
observe fast oscillations in the first two hundred microseconds fol-
lowed by a slow decay on the scale of several milliseconds. The oscil-
lations are caused by Larmor precession of magnetic hyperfine co-
herences of the write spin wave. A superposition of the states |b,m〉
and |a,m′〉 (hereafter referred to asm↔m′ coherence) precesses at
a frequency ωm,m′ = (µBB0/~)[ga(m′+m)−δgm], where the Landé
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Figure 2 | Retrieval efficiency as a function of storage time: unpolarized
atoms in an optical lattice. Experimental data, circles, show rapid damped
oscillations due to Larmor precession at short times followed by slow decay
on the millisecond timescale associated with the clock transition
dephasing. The inset shows details of the short-time damped oscillations.
The solid curves are fits based on the theory (see the Methods section).
The observed 350 kHz oscillation frequency corresponds to B0≈0.25 G.
Error bars represent±1 standard deviation based on photoelectron
counting statistics.

factors ga ≈−0.5018, gb ≈ 0.4998 and δg ≡ ga+ gb =−0.002; B0 is
the magnetic field. We note that because ω1,−1∝ δg , it is about 500
times smaller than ω1,1 ≈ ω2,0. The inset to Fig. 2 shows that the
fast oscillations, associated with the 2↔ 0 and 1↔ 1 coherences,
have a period of 2.8 µs corresponding to B0≈ 0.25G. The expected
1.4ms period oscillation of the slow 1↔−1 magnetic coherence,
which has a small transition weight for this configuration, is not
visible for this field. We have, however, observed this modulation
by increasing the magnetic field to 2G. The 0↔ 0 coherence of
the clock transition survives the decay of the magnetic coherences
to a storage time of 6ms (with a small contribution from the
1↔−1 coherence). The solid lines are fits to the data from the
theory discussed in the Methods section, where the frequencies
and decay times are treated as adjustable parameters. The ratio of
maximum efficiency at short times to the efficiency at times longer
than 200 µs is predicted, in the absence of atomic motion, to be
(32/13)2 ≈ 6.1, whereas the observed value is approximately 13.
As we discuss further below, the effects of atomic motion result in
an extra dephasing of the spin wave, which may account for this
observation. The asymptotic retrieval efficiency is clearly limited
by the initial population p0 = 1/5 of the clock state |+〉 in the
unpolarized sample.

To further increase the efficiency at long times, we optically
pump the atoms into the |+〉 state (see the Methods section). In
this situation, much higher retrieval efficiencies at long storage
times are observed. We note, however, that optical pumping
results in a reduction of overall atomic number by a factor of
2–3, which must be accounted for when comparing the relative
efficiencies. In Fig. 3a, two sets of data are shown, corresponding
to maximum trap depths U0= 40 µK and U0= 80 µK, respectively,
with a longer coherence time in the former case. All magnetic
coherences are strongly suppressed by optical pumping, and, on
the timescale shown, the fast magnetic coherences are completely
dissipated, leaving primarily the clock hyperfine coherence. Atoms
in the |+〉 and |−〉 clock states experience different, spatially
varying light shifts in the lattice. The observed millisecond-scale
decoherence of the clock spin wave may be attributed to the
atomic motion in the lattice potential, accompanied by the phase
broadening resulting from the differential light shifts31. Assuming
a single harmonic trap, a formula for the decay of the clock
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Figure 3 | Retrieval efficiency as a function of storage time for optically pumped atoms in an optical lattice. a, Diamonds, U0=80 µK; circles,
U0=40 µK. The solid lines are fits of the form (1+(t/Tc)2)−3/2, with Tc= 7.2±0.25 ms (blue) and Tc= 5.0±0.1 ms (red)31. b, Short-time oscillations
due to imperfect optical pumping. Experimental data, circles; solid line fit gives B0=0.43 G and p0≈0.85 (see the Methods section), for U0=60 µK.
c, Intermediate-time motional dephasing and damped oscillation, U0=60 µK. Error bars represent±1 standard deviation based on photoelectron
counting statistics.

transition coherence of the form (1+ (t/Tc)2)−3/2 was derived31.
Our lattice instead has a distribution of trap depths and the
atoms do not necessarily perform simple harmonic motion.Within
each well of the lattice the atoms are expected to be thermally
distributed; however, they are not necessarily thermalized with
respect to the global potential. Nevertheless, our data fit the formula
well, and from this we extract the decay times Tc ' (7,5)ms
for U0 ' (40,80) µK, respectively. According to the model of
ref. 31, the decay time Tc corresponds to the (homogeneous
lattice) equilibrium temperature T = 2~/(ξkBTc), where ξ is
the ratio of the ground-state hyperfine splitting to the effective
detuning of the lattice light—here ξ = 6.8× 10−5—resulting in
values of (30,42) µK.

In Fig. 3b, we show short-time dynamics for the optically
pumped sample and, as expected, observe much lower visibility
oscillations than those in Fig. 2. The data suggest the clock state
|+〉 population p0≈ 0.85, and p±1≈ 0.07, assuming that p±2≈ 0. In
Fig. 3c, optical pumping enables us to observe motional dephasing
on the scale of a few hundred microseconds, followed by a damped
evolution towards the 1ms timescale, the efficiency dropping by
about 50% (this typical behaviour is also to be expected in the
data of Fig. 3a, but is not shown here). In common with Fig. 2,
we attribute this fast dephasing to atomic oscillations along the
lattice axis x ′. A simple one-dimensionalmodel of harmonicmotion
yields the characteristic behaviour shown in Fig. 3c if we average
over a distribution of oscillator frequencies corresponding to a
distribution of trap depths. We have also observed this qualitative
behaviour in (3+1)-dimensional Monte Carlo simulations that
include the full atomic orbits.

Having measured high retrieval efficiencies, we now
demonstrate the quantum nature of the memory, on the 5ms
timescale. Specifically, we characterize how well the retrieved
idler field compares to a single-photon state by measuring the
α-parameter of Grangier et al.30. The value α= 0 corresponds to an
ideal, heralded single-photon state, whereas for classical fieldsα≥1.

A field in a single-photon state incident on a beamsplitter is
either transmitted or reflected, and the joint photoelectric detection
probability vanishes. As described in the Methods section, we
determine α from the measured set of joint photoelectric detection
probabilities on the three detectors, D1–3, Fig. 1. It is important to
appreciate that α is weakly dependent on retrieval efficiency until
the idler field background becomes significant16, and for this reason
we do not expect α to significantly increase with storage time under
the conditions of our experiment. Accounting for the measured
signal field detection probability and efficiency, and idler channel
background contribution, we theoretically estimate α ≈ 0.02 for
1.2 µs delay and α ∼ 0.05–0.1 for longer delays. In Table 1, we

Table 1 | Measured values of α, measured efficiency η and
intrinsic efficiency ηint (see the Methods section).

T (ms) α η (%) ηint (%)

0.0012 0.02±0.01 6.3 25
1 0.12±0.04 2.8 11
4 0.17±0.07 1.3 5
6 0.10±0.10 1.1 4.5

Table 2 | Measured values of g(2)
D (0), measured deterministic

single-photon source efficiency ε and intrinsic source
efficiency εint (see the Methods section).

tp (ms) g(2)D (0) ε (%) εint (%)

4 0.06±0.04 1.9 8
5 0±0.06 1.6 6

give the measured values of α, the main results of this paper,
demonstrating quantum memory for storage times up to 6ms. We
have verified that detection of classical light with our protocol gives
α = 0.97± 0.08, consistent with unity. Also shown in Table 1 are
the corresponding values of the measured and intrinsic retrieval
efficiencies obtained from the same data runs as the α-parameter
(see the Methods section). We note that the short time measured
(6.3%) and intrinsic (25%) retrieval efficiencies are smaller than
our previous values of 7.5% and 34%, respectively6, owing to the
difficulty of spatiallymatching the lattice-loaded atomic sample and
the signal–idler modes.

An important, immediate application of this long quantum
memory is the realization of a deterministic single-photon source
based on quantum measurement and feedback, as proposed in
ref. 6. There, the source was implemented using a freely expanding
atomic cloud, with a quantum memory time of 32 µs, and two-
photon events were reduced to 40% of the coherent state value6. As
the protocol’s success is based on long memory times, we are now
able to significantly improve the quality of the single-photon source.
The procedure closely resembles that used to measure retrieval
efficiencies and α, with the following important distinction: instead
of waiting for a period Ts after the signal detection event, we decide
to read out the idler at time tp. Hence, we begin the quantum
feedback protocol at time tp−Ts (see theMethods section).
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The quality of a deterministic single-photon source is

demonstrated bymeasuring sub-Poissonian photoelectron statistics
of the second-order coherence function 0≤ g (2)

D (0)< 1. The source
efficiency, defined as the probability ε to detect a photoelectric
event per trial, is the second important figure of merit. Ideally,
g (2)
D (0)=0 and ε=1. Themeasured values of g (2)

D (0) and ε are given
in Table 2. The former are comparable to those recently achieved
using a single trapped atom in a high-finesse cavity, whereas our
measured efficiencies are about a factor of two greater15.

Methods
Retrieval efficiency. Awrite process using a detuned laser field creates an excitation
in the atomic ensemble as illustrated in Fig. 1, resulting in the emission of a signal
photon as an atom is transferred between levels b and a.

Under the phase-matching conditions discussed in the text, the read spin
wave takes the form29

Ŝ(t )=
∫

dz
√
f (z)ŝ(z,t ),

where f (z) ≡ n(z)/
∫
dz n(z). The corresponding clock polariton

operator is given by

Υ̂ (t )=
∫

dz
√
f (z)Ψ̂0(z,t ),

and these are identical in the absence of the control field, Ω = 0, equation (1).
To calculate the retrieved idler field efficiency, we evaluate the average
number of polaritons stored at time Ts after detection of the signal photon,
NΥ (Ts)≡〈Υ̂ †(Ts)Υ̂ (Ts)〉=Tr (ρ̂Υ̂ †(Ts)Υ̂ (Ts)).

Conditioned on the detection of a signal photon, the collective atomic state is
given by the density operator6

ρ̂=
1
ps

∞∑
n=1

tanh2nχ

cosh2χ
(1−(1−ηs)n)

Â†n
√
n!
ρ̂0

Ân

√
n!
,

whereχ is the coupling strength, Â, Â† are single-mode write spin wave annihilation
and creation operators, ηs is the overall propagation and detection efficiency for the
signal field and ps = ηssinh2χ/(1+ηssinh2χ)� 1 is the probability of the signal
photoelectric detection event per write pulse. For a perfectly optically pumped
sample ρ̂0=

⊗
i |+〉i〈+|, the operator Â= Ŝ(t =0).

It is straightforward to show that NΥ (Ts)= |[Υ (Ts),Â†
]|
2
〈Â†Â〉, so that the

retrieved idler efficiency is given by

ηi (Ts)=

∣∣∣[Υ̂ (Ts),Â†
]∣∣∣2 .

To assess the effects of an inhomogeneous magnetic field on the retrieval efficiency,
we assume a magnetic field B=B0 ẑ+B′(zẑ−ρρ̂/2) and a Gaussian cloud density
distribution of the form f (z)= exp

(
−z2/2l2

)
/
√
2πl2. We find

ηi(Ts)=
∣∣∣∣∫ dz f (z)e−i1ω0(z)Ts

∣∣∣∣2= e−T
2
s /τ

2
,

where 1/τ = 4π ·575 [HzG−2] B0B′l follows from the quadratic Zeeman shift
1ω0(z) of the clock transition. Under the conditions of our experiment B0= 0.5G,
B′� 100mG cm−1, we find τ� 100ms.

The effects of the magnetic field on a partially polarized sample can be
explained by generalizing the previous theoretical arguments to an N-atom
mixed state of the form ρ̂0 =

⊗N
µ=1

∑
pm|b,m〉µ〈b,m|, with pm = p−m. We find

the retrieval efficiency

ηi (Ts) = η0

∣∣∣∣p0e− T2s
4τ2 +

p1
12

e
−

T2s
2τ21,−1 cos

(
ω1,−1Ts

)
+

5p1
4

e
−

T2s
2τ21,1 cos

(
ω1,1Ts

)
+

p2
3
e
−

T2s
2τ22,0 cos

(
ω2,0Ts

)∣∣∣∣2 ,
where η0 is the retrieval efficiency of an optically pumped sample at Ts = 0
and the numerical coefficients depend on 3j symbols; details will be given
elsewhere. Furthermore, τ1,±1 and τ2,0 are decay times associated with the magnetic
hyperfine coherences |b,1〉↔ |a,±1〉 and |b,2〉↔ |a,0〉. These are due to the
linear Zeeman effect and are given by τm,m′ = ~/(|gam′−gbm|µB1B), where
1B=B′l+δB, and δB is a phenomenological width due to fast temporal variations
of the magnetic field.

Experimental methods. The main elements of our experiment are shown in
Fig. 1. A sample of 87Rb atoms is collected and cooled in a MOT for a period of

0.2–0.5 s. Next, the trap laser is detuned to 90MHz below atomic resonance and
the repump laser intensity is lowered, for 20ms, to optimize sub-Doppler cooling
and lattice loading. The quadrupole coils of the MOT are switched off, and the bias
field of 0.2–2G, directed along the z axis, is switched on (the ambient magnetic
field compensated by three pairs of Helmholtz coils). The optical lattice is made
by interfering two beams of light at 1.06 µm, with power varying between 3.5 and
7W per beam, and intersecting at an angle θ ≈ 2.5◦. The waists of the two beams
were ∼130 and ∼260 µm, respectively. The maximum lattice depth U0 is varied
between∼40 (3.5W per beam) and∼80 (7W per beam) µK. For the latter case, the
corresponding (maximum) trap frequencies are≈2.5×103, 110 and 2Hz along the
x ′, y and z ′ axis, respectively. We use optical pumping with light propagating along
the x axis and linearly polarized along the z axis, resonant to the b↔ c transition. A
repump laser resonant on the a↔ c transitions assists in the transfer of the atoms
into the upper clock state |+〉.

The temperature of the cloud, which is strongly confined in the x ′–y plane,
was measured by ballistic expansion at an angle of 30◦ to the horizontal, and found
to be (8,17) µK forU0' (40,80) µK, respectively. As might be expected, these differ
significantly from the homogeneous lattice model discussed in the text. There are a
number of extra mechanisms, such as misalignment of the lattice with respect to the
spin wave, quadratic Zeeman (clock) shift, collisional broadening, laser pointing
instability and spontaneous scattering of the lattice light, that we believe produce
much smaller decoherence than differential light shifts.

The retrieval efficiency and α-parameter are measured using the following
protocol. We carry out a sequence of trials; each trial begins with a write pulse
and terminates with a clean pulse, which resets the atomic state, until the signal
detector, D1, registers a photoelectric detection event. At this point, the sequence
is terminated, and the prepared spin wave is stored for the time Ts, after which
time a read pulse converts the excitation into an idler field, which is directed onto a
beamsplitter followed by photodetectors D2 and D3.

The measured retrieval efficiency is determined by the sum of probabilities
p2+p3 to detect photoelectric events at D2 and D3, respectively. All of the measured
retrieval efficiencies shown in Figs 2 and 3 are taken for the signal photodetection
probability at detector D1, p1 ≈ 5–7×10−4, whereas for the data in Table 1,
p1 ≈ 1.6–4×10−4. We have verified that all of the measured idler efficiencies are
independent of p1, so that they have negligible background contributions up to
times longer than 7ms.

The anticorrelation parameter α is given by the ratio of various onefold,
twofold and threefold photoelectric detection probabilities measured by the set of
detectors D1, D2 and D3 (ref. 30):

α=
p1p123
p12p13

.

The second-order coherence function g (2)
D ,

g (2)
D (0)= p23/(p2p3),

quantifies the quality of single photons produced by the following quantum
feedback protocol. Each trial begins with a write pulse. If D1 registers a signal
photoelectric event, the protocol is halted. The memory is now armed with a spin
wave excitation and is left undisturbed until the time tp when a read pulse converts
it into the idler field. If D1 does not register an event, the atomic memory is reset
to its initial state with a cleaning pulse, and the trial is repeated. The duration of a
single trial is 1 µs. If D1 does not register a signal detection event by tp−49 µs, the
protocol is halted and any background counts in the idler channel are detected and
included in the measurement record.

We have verified that for classical light our experimental protocol resulted
in g (2)

D (0)= 0.99±0.05. In this letter, the retrieval efficiencies η discussed are
measured efficiencies, referring to photoelectric detection probabilities per read
pulse. The uncertainties given are based on the statistics of photoelectron counting
events. The measured passive losses from the atomic sample to the detector in
the idler channel produce an efficiency factor of 0.25±10%. Intrinsic efficiencies
ηint and εint are therefore greater than η and ε by a factor of 4, respectively, as
shown in Tables 1 and 2.
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