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1.  Introduction

Motivated by early empirical work in macroeconomics (e.g., Diebold and Rudebusch,

1989, Sowell, 1992) and later empirical work in finance (e.g., Ding, Engle, and Granger, 1993;

Andersen and Bollerslev, 1997), the last decade has witnessed a renaissance in the econometrics

of long memory and fractional integration, as surveyed for example by Baillie (1996).

The fractional unit root boom of the 1990s was preceded by the integer unit root boom of

the 1980s.  In that literature, the classic work of Perron (1989) made clear the ease with which

stationary deviations from broken trend can be misinterpreted as I(1) with drift.  More generally,

it is now widely appreciated that structural change and unit roots are easily confused, as

emphasized for example by Stock (1994), who summarizes the huge subsequent literature on unit

roots, structural change, and interrelationships between the two.   

The recent more general long-memory literature, in contrast, pays comparatively little

attention to confusing long memory and structural change.  It is telling, for example, that the

otherwise masterful surveys by Robinson (1994a), Beran (1994) and Baillie (1996) don’t so much

as mention the issue.  The possibility of confusing long memory and structural change has of

course arisen occasionally, in a number of literatures including applied hydrology (Klemeš, 1974),

econometrics (Hidalgo and Robinson, 1996, Lobato and Savin, 1997), and mathematical statistics

(Bhattacharya, Gupta and Waymire, 1983, Künsch, 1986, Teverovsky and Taqqu, 1997), but

those warnings have had little impact.  We can only speculate as to the reasons, but they are

probably linked to the facts that (1) simulation examples such as Klemeš (1974) are interesting,

but they offer neither theoretical justification nor Monte Carlo evidence, and (2) theoretical work

such as Bhattacharya, Gupta and Waymire (1983) often seems highly abstract and lacking in
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intuition.

In this paper we provide both rigorous theory and Monte Carlo evidence to support the

claim that long memory and structural change are easily confused, all in the context of simple and

intuitive econometric models.  In Section 2, we set the stage by considering alternative definitions

of long memory and the relationships among them, and we motivate the definition of long

memory that we shall adopt.  In addition, we review the mechanisms for generating long memory

that have been stressed previously in the literature, which differ rather sharply from those that we

develop and therefore provide interesting contrast.  In Section 3, we work with several simple

models of structural change, or more precisely, stochastic regime switching, and we show how

and when they produce realizations that appear to have long memory.  In Section 4 we present an

extensive finite-sample Monte Carlo analysis, which verifies the predictions of the theory and

produces additional insights.  We conclude in Section 5.

2.  Long Memory

Here we consider alternative definitions of long memory and the relationships among

them, we elaborate upon the definition that we adopt, and we review the mechanisms for

generating long memory that have been stressed in the literature.  

Definitions

Traditionally, long memory has been defined in the time domain in terms of decay rates of

long-lag autocorrelations, or in the frequency domain in terms of rates of explosion of low-

frequency spectra.  A long-lag autocorrelation definition of long memory is 

,(x(J) ' cJ2d&1 as J64

and a low-frequency spectral definition of long memory is 



1 Sowell (1990) also makes heavy use of this insight in a different context. 
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.fx(T) ' gT&2d as T60%

An even more general low-frequency spectral definition of long memory is simply

,fx(T) ' 4 as T60%

 as in Heyde and Yang (1997).  The long-lag autocorrelation and low-frequency spectral

definitions of long memory are well known to be equivalent under conditions given, for example,

in Beran (1994).

A final definition of long memory involves the rate of growth of variances of partial sums, 

,var(ST)'O(T 2d%1)

where .  There is a tight connection between this variance-of-partial-sum definition ofST'j
T

t'1

xt

long memory and the spectral definition of long memory (and hence also the autocorrelation

definition of long memory).  In particular, because the spectral density at frequency zero is the

limit of , a process has long memory in the generalized spectral sense of Heyde and Yang if
1
T

ST

and only if it has long memory for some d>0 in the variance-of-partial-sum sense.  Hence the

variance-of-partial-sum definition of long memory is quite general, and we shall make heavy use

of it in our theoretical analysis in Section 3, labeling a series as I(d) if .1var(ST)'O(T 2d%1)

Origins

There is a natural desire to understand the nature of various mechanisms that could

generate long memory.  Most econometric attention has focused on the role of aggregation.  Here

we briefly review two such aggregation-based perspectives on long memory, in order to contrast

them to our subsequent perspective, which is quite different.

First, following Granger (1980), consider the aggregation of i = 1, ..., N cross-sectional
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xit ' "i xi,t&1 % git,

fx (T ) . N
2B

E [var(git) ] m
1

|1&"e iT|2
dF("),

dF(") '
2

B(p,q)
"2p&1 (1&"2)q&1 d", 0#"#1,

(x(J) '
2

B(p,q) m
1

0
"2p%J&1 (1&"2)q&2 d" ' AJ1&q.

units

where  is white noise, , and  for all i, j, t.  As , the spectrum of the aggregategit gitzgjt "izgjt N64

 can be approximated asxt'j
N

i'1

xit

where F is the c.d.f. governing the ’s.  If F is a beta distribution,"

then the J-th autocovariance of  isxt

Thus .x t ~ I 1&
q
2

Granger’s (1980) elegant bridge from cross-sectional aggregation to long memory has

since been refined by a number of authors.  Lippi and Zaffaroni (1999), for example, generalize

Granger’s result by replacing Granger’s assumed beta distribution with weaker semiparametric
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W (

M (Tt)'m
Tt

0
(jM

m'1 W (m)(u))du.

1&F1(x) ~ c1 x
&"1L1(x), with 1<"1 <2

1&F2(x) ~ c2 x
&"2 L2(x), with 1<"2 <2.

assumptions, and Chambers (1998) considers temporal aggregation in addition to cross-sectional

aggregation, in both discrete and continuous time.

An alternative route to long memory, which also involves aggregation, has been studied by

Mandelbrot and his coauthors (e.g., Cioczek-Georges and Mandelbrot, 1995) and Taqqu and his

coauthors (e.g., Taqqu, Willinger and Sherman, 1997).  It has found wide application in the

modeling of aggregate traffic on computer networks, although the basic idea is much more widely

applicable.  Define the stationary continuous-time binary series so that duringW(t ) , t$0 W(t)'1

“on” periods and during “off” periods.  The lengths of the on and off periods are iid at allW(t )'0

leads and lags, and on and off periods alternate.  Consider M sources, , m = 1, ...,W (m) (t ), t$0

M, and define the aggregate packet count in the interval [0, Tt] by

Let  denote the c.d.f. of durations of on periods, and let  denote that for off periods,F1 (x) F2 (x)

and assume that

Note that the power-law tails imply infinite variance.  Now first let and then let . M64 T64

Then it can be shown that , appropriately standardized, converges to a fractionalW (

M (Tt)

Brownian motion.



2 Liu (1995) also establishes a link between long memory and infinite variance.
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vt '

0 w.p. 1&p

wt w.p. p,

Parke (1999) considers a closely related discrete-time error duration model, ,yt' j
t

s'&4
gs,tgs

where , , and  is a stochastic duration.  Long memory arises whengt- iid(0,F2) gs,t'1(t# s%ns) ns

 has infinite variance.  The Mandelbrot-Taqqu-Parke approach beautifully illustrates thens

intimate connection between long memory and heavy tails, echoing earlier work summarized in

Samorodnitsky and Taqqu (1993).2

3.  Long Memory and Stochastic Regime Switching: Asymptotic Analysis

We now explore a very different route to long memory – structural change.  Structural

change is likely widespread in economics, as forcefully argued by Stock and Watson (1996). 

There are of course huge econometric literatures on testing for structural change, and on

estimating models of structural change or stochastic parameter variation. 

A Mixture Model with Constant Break Size, and Break Probability Dropping with T

We will show that a mixture model with a particular form of mixture weight linked to

sample size will appear to have I(d) behavior.  Let

where .  Note that .  If instead of forcing p to bewt

iid
-N(0,F2

w) var j
T

t'1

vt ' pTF2
w ' O(T)
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var j
T

t'1

vt ' O(T 2d&2)TF2
w ' O(T 2d&1) ' O(T 2(d&1)%1).

µ t ' µ t&1 % vt

vt '

0 w.p. 1&p

wt w.p. p,

yt ' µ t % gt

constant we allow it to change appropriately with sample size, then we can immediately obtain a

long memory result.  In particular, we have

Proposition 1:  If , , then .p'O(T 2d&2) 0<d<1 vt'I(d&1)

Proof:

Hence , by the variance-of-partial sum definition of long memory.          ~vt'I(d&1)

It is a simple matter to move to a richer model for the mean of a series:

where .  Note that .  As before, let ,wt

iid
-N(0,F2

w) var j
T

t'1

vt ' pTF2
w ' O(T) p'O(T 2d&2)

, so that , which implies that .0<d<1 vt'I(d&1) µ t'j
T

t'1

vt'I(d)

It is also a simple matter to move to an even richer “mean plus noise model” in state space

form,
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µ t ' µ t&1 % vt

vt '

0 w.p. 1&p

wt w.p. p,

yt ' µ t % gt

µ t ' µ t&1 % qt&1gt&1,

where  and , which will display the same long memory property whenwt

iid
-N(0,F2

w) gt

iid
- N(0,F2

g)

, .p'O(T 2d&2) 0<d<1

Many additional generalizations could of course be entertained.  The Balke-Fomby (1989)

model of infrequent permanent shocks, for example, is a straightforward generalization of the

simple mixture models described above.  Whatever the model, the key idea is to let p decrease

with the sample size, so that regardless of the sample size, realizations tend to have just a few

breaks.

The Stochastic Permanent Break Model

Engle and Smith (1999) propose the “stochastic permanent break” (STOPBREAK)

model,

where  is nondecreasing in  and bounded by zero and one, so that biggerqt'q( |gt | ) |gt |

innovations have more permanent effects, and .  They use  for .gt

iid
- N(0,F2

g) qt'g
2
t / ((%g2

t ) (>0
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yt ' µ t % gt

µ t ' µ t&1 % vt,

vt '

0 w.p. 1&p

wt w.p. p,

yt ' µ t % gt

µ t ' µ t&1 %
g2

t&1

(T % g2
t&1

gt&1.

Quite interestingly for our purposes, Engle and Smith show that their model is an

approximation to the mean plus noise model,

where

, and .  They note, moreover, that although other approximations aregt

iid
- N(0,F2

g) wt

iid
-N(0,F2

w)

available, the STOPBREAK model is designed to bridge the gap between transience and

permanence of shocks and therefore provides a better approximation, for example, than an

exponential smoother, which is the best linear approximation.

We now allow  to change with T and write:(

This process will appear fractionally integrated under certain conditions, the key element of which

involves the nature of time variation in .(
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var(jT
t'1 )yt) ' var gT & g0 % jT

t'1

g3
t&1

(T % g2
t&1

' var(gT & g0) % var jT
t'1

g3
t&1

(T % g2
t&1

& 2E
g4

0

(T % g2
0

' 2F2 & 2E
g4

0

(T % g2
0

% T E
g6

t&1

((T % g2
t&1)

2
& E

g3
t&1

(T % g2
t&1

2

' O(T/(2
T)

' O(T 1&2*)

' O(T 2(&*)%1),

Proposition 2:  If (a)  and (b)  as  and  for some , thenE(g6
t )<4 (T64 T64 (T'O(T *) *>0

.y' I(1&*)

Proof:  Note that

where the second equality follows from the maintained assumption that , the fourthgt

iid
- N(0,F2

g)

equality follows from Assumption (a), and the fifth from Assumption (b).  Thus, , so)yt'I(&*)

.         ~yt'I(1&*)

It is interesting to note that the standard STOPBREAK model corresponds to ,(T'(

which corresponds to   Hence the standard STOPBREAK model is I(1).*'0.

The Markov-Switching Model

All of the models considered thus far are effectively mixture models.  The mean plus noise



3 In the present example, only the mean switches across states.  We could, of course,
examine richer models with Markov switching dynamics, but the simple model used here
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M '

p00 1&p00

1&p11 p11

.

f(yt*st; 2) '
1

2B F
exp

&(yt&µ st
)2

2F2
.

yt ' µ st
% gt,

model and its relatives are explicit mixture models, and the STOPBREAK model is an

approximation to the mean-plus-noise model.  We now consider the Markov-switching model of

Hamilton (1987), which is a rich dynamic mixture model.

Let  be the (latent) sample path of two-state first-order autoregressive process,{st}
T
t'1

taking just the two values 0 or 1, with transition probability matrix given by

The ij-th element of M gives the probability of moving from state i (at time t-1) to state j (at time

t).  Note that there are only two free parameters, the staying probabilities, p00 and p11.  Let {yt}
T
t'1

be the sample path of an observed time series that depends on  such that the density of yt{st}
T
t'1

conditional upon  isst

Thus, yt is Gaussian white noise with a potentially switching mean, and we write

where  and  and  are independent for all t and 3
gt

iid
- N(0,F2)

st gJ J.



illustrates the basic idea.

4 See Hamilton (1994, p. 683) for the expression of  in terms of   and .M j p00, p11 8
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var(jT
t'1 yt) ' var(jT

t'1 µ )>t) % TF2

' µ ) '0 % jT
j'1 (T&j)('j % ')

j) µ % TF2.

'0 '
(1&p00)(1&p11)

(2&p00&p11)
2

1 &1
&1 1

' O(1).

8 ' p00%p11&1 ' 1&c0T
&*0&c1T

&*1.

Proposition 3:  Assume that (a)  and that (b) and , withµ0…µ1 p00'1&c0T
&*0 p11'1&c1T

&*1

 and .  Then .*0,*1 >0 0<c0, c1 <1 y'I(min(*0,*1))

Proof:  Let   and   Then , so>t' (I(st'0) I(st'1))), µ' (µ0, µ1 ), 'j'E(>t>
)

t&j). yt'µ )>t%gt

For every T, the Markov chain is ergodic.  Hence the unconditional variance-covariance matrix of

 is >t

Now let 

Then the jth autocovariance matrix of  is4>t



5 In spite of the fact that it is truly I(0), the standard Markov switching model can
nevertheless generate high persistence at short lags, as pointed out by Timmermann (1999), and
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'j ' M j'0

M j '

(1&p11)%8
j(1&p00)

2&p00&p11

(1&p11)%8
j(1&p11)

2&p00&p11

(1&p00)%8
j(1&p00)

2&p00&p11

(1&p00)%8
j(1&p11)

2&p00&p11

'
1

c0T
&*0%c1T

&*1

1&p11 1&p11

1&p00 1&p00
%

1

c0T
&*0%c1T

&*1

1&p00 &(1&p11)
&(1&p00) 1&p11

8j

' O(T
min(*0,*1)

) % O(T
min(*0,*1)8j

).

1
T

var(jT
t'1 yt) ' O(1) % O

T
min(*0,*1)

1&8
' O T

2min(*0,*1)
,

var(jT
t'1 yt) ' O T

2min(*0,*1)%1
.

Thus

which in turn implies that

Hence .         ~y'I(min(*0,*1))

It is interesting to note that the transition probabilities do not depend on T in the standard

Markov switching model, which corresponds to   Thus the standard Markov switching*0'*1'0.

model is I(0), unlike the mean-plus-noise or STOPBREAK models, which are I(1).5
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Although we have not worked out the details, we conjecture that results similar to those

reported here could be obtained in straightforward fashion for the threshold autoregressive (TAR)

model, the smooth transition TAR model, and for reflecting barrier models of various sorts, by

allowing the thresholds or reflecting barriers to change appropriately with sample size.  Similarly,

we conjecture that Balke-Fomby (1997) threshold cointegration may be confused with fractional

cointegration, for a suitably adapted series of thresholds, and that the Diebold-Rudebusch (1996)

dynamic factor model with Markov-switching factor may be confused with fractional

cointegration, for suitably adapted transition probabilities.

Additional Discussion

Before proceeding, it is important to appreciate what we do and what we don’t do, and

how we use the theory sketched above.  Our device of letting certain parameters such as mixture

probabilities vary with T is simply a thought experiment, which we hope proves useful for

thinking about the appearance of long memory.  The situation parallels the use of “local-to-unity”

asymptotics in autoregressions, a thought experiment that proves useful for characterizing the

distribution of the dominant root.  We view our theory as effectively providing a “local to no

breaks” perspective.  But just as in the context of a local-to-unity autoregressive root, which does

not require that one literally believe that the root satisfies  as T grows, we do not requireD'1& c
T

that one literally believe that the mixture probability satisfies  as T grows.p'cT 2d&2

In practice, and in our subsequent Monte Carlo analysis, we are not interested in, and we

do not explore, models with truly time-varying parameters (such as time-varying mixture

probabilities).  Similarly, we are not interested in expanding samples with size approaching
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infinity.  Instead, our interest centers on fixed-parameter models in fixed finite sample sizes, the

dynamics of which are in fact either I(0) or I(1).  The theory suggests that confusion with I(d) will

result when only a small amount of breakage occurs, and it suggests that the larger the sample

size, the smaller must be the break probability, in order to maintain the necessary small amount of

breakage.

In short, we use the theory to guide our thinking about whether and when finite-sample

paths of truly I(0) or I(1) processes might nevertheless appear I(d), 0<d<1, not as a device for

producing sample paths of truly fractionally integrated processes.

4.  Long Memory and Stochastic Regime Switching:  Finite-Sample Analysis

The theoretical results in Section 3 suggest that, under certain plausible conditions

amounting to a nonzero but “small” amount of structural change, long memory and structural

change are easily confused.  Motivated by our theory, we now perform a series of related Monte

Carlo experiments.  We simulate 10,000 realizations from various models of stochastic regime

switching, and we characterize the finite-sample inference to which a researcher armed with a

standard estimator of the long memory parameter would be led.

We use the log-periodogram regression estimation estimator proposed by Geweke and

Porter-Hudak (GPH, 1983) and refined by Robinson (1994b, 1995).  In particular, let I(Tj )

denote the sample periodogram at the j-th Fourier frequency, Tj = 2Bj/T, j = 1, 2, ..., [T/2].  The

log-periodogram estimator of d is then based on the least squares regression,

log[ I(Tj ) ]  =  $0  +  $1 log(Tj )  +  uj ,



6  The calculations in Hurvich and Beltrao (1994) suggest that the estimator proposed by   
Robinson (1994b, 1995), which leaves out the very lowest frequencies in the regression in the
GPH regression, has larger MSE than the original Geweke and Porter-Hudak (1983) estimator
defined over all of the first m Fourier frequencies.  For that reason, we include periodogram
ordinates at all of the first m Fourier frequencies.
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yt ' µ t % gt

µ t ' µ t&1 % vt

where j = 1, 2, ..., m, and .6  The least squares estimator of $1, and hence , isd̂'&1/2$̂1 d̂

asymptotically normal and the corresponding theoretical standard error, B·(24·m)-½, depends only

on the number of periodogram ordinates used.

Of course, the actual value of the estimate of d also depends upon the particular choice of

m.  While the formula for the theoretical standard error suggests choosing a large value of m in

order to obtain a small standard error, doing so may induce a bias in the estimator, because the

relationship underlying the GPH regression in general holds only for frequencies close to zero.  It

turns out that consistency requires that m grow with sample size, but at a slower rate.  Use of

 has emerged as a popular rule of thumb, which we adopt.m' T

Mean Plus Noise Model

We first consider the finite-sample behavior of the mean plus noise model.  We

parameterize the model as 



7 When p=0, the process is white noise and hence I(0). For all p>0, the change in the mean
process is iid, and hence the mean process is I(1), albeit with highly non-Gaussian increments. 
When p=1, the mean process is a Gaussian random walk.
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vt '

0 w.p. 1&p

wt w.p. p,

where , and , t = 1, 2, ..., T.  To build intuition before proceeding to thegt

iid
- N(0,1) wt

iid
-N(0,1)

Monte Carlo, we first show in Figure 1 a specific realization of the mean plus noise process with

p=0.01 and T=10000.   It is clear that there are only a few breaks, with lots of noise

superimposed.  In Figure 2 we plot the log periodogram against log frequency for the same

realization, using  periodogram ordinates.  We superimpose the linear regression line; the10000

implied d estimate is 0.785.

Now we proceed to the Monte Carlo analysis.  We vary p and T, examining all pairs of

 and .  Inp0{0.0001,0.0005,0.001,0.005,0.01,0.05,0.1} T0{100,200,300,400,500,1000,...,5000}

Table 1 we report the empirical sizes of nominal 5% tests of d=0.  They are increasing in T and p,

which makes sense for two reasons.  First, for fixed p>0, the null is in fact false, so power

increases in T by consistency of the test.7  Second, for fixed T, we have more power to detect I(1)

behavior as p grows, because we have a greater number of non-zero innovations, whose effects

we can observe.

The thesis of this paper is that structural change is easily confused with fractional

integration, so it is important to be sure that we are not rejecting the d=0 hypothesis simply

because of a unit root.  Hence we also test the d=1 hypothesis.  The results appear in Table 2,



8 Here and in all subsequent density estimation, we select the bandwidth by Silverman’s
rule, and we use an Epanechnikov kernel.
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yt ' µ t % gt

µ t ' µ t&1 %
g2

t&1

( % g2
t&1

gt&1,

which reports empirical sizes of nominal 5% tests of d=1, executed by testing d=0 on differenced

data using the GPH procedure.  The d=1 rejection frequencies decrease with T, because the null is

in fact true.  They also decrease sharply with p, because the effective sample size grows quickly as

p grows.

In Figure 3 we plot kernel estimates of the density of  for  andd̂ T0{400,1000,2500,5000}

.8  Figure 3 illuminates the way in which the GPHp0{0.0001,0.0005,0.001,0.005,0.01,0.05,0.1}

rejection frequencies increase with p and T.  The density estimates shift gradually to the right as p

and T increase.  For small p, the estimated densities are bimodal in some cases.  Evidently the

bimodality results from a mixture of two densities:  one is the density of  when no structurald̂

change occurs, and the other is the density of  when there is at least one break.   d̂

Stochastic Permanent Break Model

Next, we consider the finite-sample behavior of the STOPBREAK model:

with .  In Figure 4 we show a specific realization of the STOPBREAK process withgt

iid
- N(0,1)

 and T=10000.  Because the evolution of the STOPBREAK process is smooth, as it is('500



9 The last two columns of the table, however, reveal a non-monotonicity in T:  empirical
size first drops and then rises with T.
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only an approximation to a mixture model, we do not observe sharp breaks in the realization.  In

Figure 5 we plot the realization’s log periodogram against log frequency, with linear regression

line superimposed, using  periodogram ordinates.  The implied d estimate is 0.67.10000

In the Monte Carlo experiment, we examine all pairs of  and(0{10&5,10&4, ...,103, 104}

.  In Table 3 we report the empirical sizes ofT0{100,200,300,400,500,1000,1500,...,5000}

nominal 5% tests of d=0.  The d=0 rejection frequencies are increasing in T and decreasing in ,(

which makes intuitive sense.  First consider fixed ( and varying T.  The STOPBREAK process is

I(1) for all , so the null of d=0 is in fact false, and power increases in T by consistency of the(<4

test.  Now consider fixed T and varying (.  For all , the change in the mean process is iid,(<4

and hence the mean process is I(1), albeit with non-Gaussian increments.  But we have less power

to detect I(1) behavior as gamma grows, because we have a smaller effective sample size.9  In

fact, as approaches , the process approaches I(0) white noise.( 4

As before, we also test the d=1 hypothesis by employing GPH on differenced data.  In

Table 4 we report the empirical sizes of nominal 5% tests of d=1.  The rejection frequencies tend

to be decreasing in T and increasing in , which makes sense for the reasons sketched above.  In(

particular, because the STOPBREAK process is I(1), the d=1 rejection frequencies should

naturally drop toward nominal size as T grows.  Alternatively, it becomes progressively easier to

reject d=1 as  increases, for any fixed T, because the STOPBREAK process gets closer to I(0)(

as ( increases.

In Figure 6 we show kernel estimates of the density of  for d̂ T0{400,1000,2500,5000}
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and .  As the sample size grows, the estimated density shifts to the(0{10&5,10&4, ...,103, 104}

right and the median of  approaches unity for .  This is expected because thed̂ (<10000

STOPBREAK process is I(1).  However, as increases, the effective sample size required to(

detect this nonstationarity also increases.  As a result, when  is large, the median of  is below( d̂

unity even for a sample of size 5000.  

Markov Switching

Lastly, we analyze the finite-sample properties of the Markov switching model.  The

model is

where , and  and  are independent for all t and   We take  and . gt

iid
- N(0,F2) st gJ J. µ0'0 µ1'1

In Figure 7 we plot a specific realization with  and T=10000, and in Figure 8 wep00'p11'0.9995

plot the corresponding log periodogram against log frequency, with the linear regression line

superimposed, using  periodogram ordinates.  It appears that the regime has10000'100

changed several times in this particular realization, and the implied d estimate is 0.616, which is

consistent with our theory in Section 3.

In the Monte Carlo analysis, we explore , ,p000{0.95,0.99, 0.999} p110{0.95,0.99, 0.999}

and .  In Table 5 we show the empirical sizes ofT0{100,200,300,400,500,1000,1500,...,5000}

nominal 5% tests of d=0.  When both  and  are well away from unity, such as whenp00 p11
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, the rejection frequencies eventually decrease as the sample size increases, whichp00'p11'0.95

makes sense because the process is I(0).  In contrast, when both and are both large, suchp00 p11

as when , the rejection frequency is increasing in T.  This would appearp00'p11'0.999

inconsistent with the fact that the Markov switching model is I(0) for any fixed and , but itp00 p11

is not, as the dependence of rejection frequency on T is not monotonic.  If we included T>5000 in

the design, we would eventually see the rejection frequency decrease.

In Table 6 we tabulate the empirical sizes of nominal 5% tests of d=1.  Although the

persistence of the Markov switching model is increasing in  and , it turns out that it isp00 p11

nevertheless very easy to reject d=1 in this particular experimental design.

In Figure 9 we plot kernel estimates of the density of  for d̂ p00,p110{0.95, 0.99,0.999}

and .  When both  and  are away from unity, the estimatedT0{400,1000,2500,5000} p00 p11

density tends to shift to the left and the median of  converges to zero as the sample size grows. d̂

When both  and  are near unity, the estimated density tends to shift to the right.  Thesep00 p11

observations are consistent with our theory as discussed before.  When  and  are close top00 p11

unity and when T is relatively small, the regime does not change with positive probability and, as a

result, the estimated densities appear bimodal.

Finally, we contrast our results for the Markov switching model with those of Rydén,

Teräsvirta and Åsbrink (1998), who find that the Markov-Switching model does a poor job of

mimicking long memory, which would seem to conflict with both our theoretical and Monte Carlo
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results.  However, our theory requires that all diagonal elements of the transition probability

matrix be near unity.  In contrast, nine of the ten Markov Switching models estimated by Rydén,

Teräsvirta and Åsbrink have at least one diagonal element well away from unity.  Only their

estimated model H satisfies our condition, and its autocorrelation function does in fact  decay very

slowly.  Hence the results are entirely consistent.

5.  Concluding Remarks

We have argued that structural change in general, and stochastic regime switching in

particular, are intimately related and easily confused, so long as only a small amount of regime

switching occurs.  Simulations support the relevance of the theory in finite samples and make

clear that the confusion is not merely a theoretical curiosity, but rather is likely to be relevant in

routine empirical economic and financial applications.

We close by sketching the relationship of our work to two close cousins by Granger and

his coauthors.  First, Granger and Teräsvirta (1999) consider the following simple nonlinear

process,

where .  This process behaves like a regime-switching process and, theoretically, thegt

iid
- N(0,F2)

autocorrelations should decline exponentially.  They show, however, that as the tail probability of

 decreases (presumably by decreasing the value of ) so that there are fewer regime switchesgt F2

for any fixed sample size, long memory seems to appear, and the implied d estimates begin to

grow.  The Granger-Teräsvirta results, however, are based on single realizations (not Monte

Carlo analysis), and no theoretical explanation is provided.



10 In a development that supports this conjecture, Clements and Krolzig (1998) show that
fixed-coefficient autoregressions often outperform Markov switching models for forecasting in
finite samples, even when the true data-generating process is Markov switching.
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Second, in contemporaneous and independent work, Granger and Hyung (1999) develop a

theory closely related to ours.  They consider a mean plus noise process and its Markov switching

version, and they show that, if p=O(1/T), the autocorrelations of the mean plus noise process

decay very slowly.  Their result is a special case of ours, with d=0.5.  Importantly, moreover, we

show that p=O(1/T) is not necessary to obtain long memory, and we provide a link between the

convergence rate of p and the long memory parameter d.  We also provide related results for

STOPBREAK models and Markov-Switching models, as well as an extensive Monte Carlo

analysis of finite-sample effects.  On the other hand, Granger and Hyung consider some

interesting topics which we have not considered in the present paper, such as common breaks in

multivariate time series.  Hence the two papers are complements rather than substitutes.

Finally, we note that our results are in line with those of Mikosch and St|ric| (1999), who

find structural change in asset return dynamics and argue that it could be responsible for evidence

of long memory.  We believe, however, that the temptation to jump to conclusions of “structural

change producing spurious inferences of long memory” should be resisted, as such conclusions

are potentially naive.  Even if the “truth” is structural change, long memory may be a convenient

shorthand description, which may remain very useful for tasks such as prediction.10  Moreover, at

least in the sorts of circumstances studied in this paper, “structural change” and “long memory”

are effectively different labels for the same phenomenon, in which case attempts to label one as

“true” and the other as “spurious” are of dubious value.
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Table 1
Mean Plus Noise Model

Empirical Sizes of Nominal 5% Tests of d=0

                                                           p
     T           0.0001   0.0005   0.001     0.005     0.01       0.05       0.1
      100       0.165     0.169     0.180     0.268     0.355     0.733     0.866
      200       0.141     0.167     0.202     0.412     0.590     0.941     0.979
      300       0.141     0.186     0.239     0.554     0.749     0.986     0.994
      400       0.128     0.195     0.276     0.670     0.867     0.996     0.998
      500       0.127     0.210     0.313     0.755     0.922     0.999     1.000
    1000       0.146     0.337     0.519     0.953     0.996     1.000     1.000
    1500       0.177     0.452     0.674     0.993     1.000     1.000     1.000
    2000       0.207     0.555     0.778     0.999     1.000     1.000     1.000
    2500       0.234     0.634     0.850     1.000     1.000     1.000     1.000
    3000       0.265     0.703     0.898     1.000     1.000     1.000     1.000
    3500       0.293     0.762     0.931     1.000     1.000     1.000     1.000
    4000       0.318     0.807     0.957     1.000     1.000     1.000     1.000
    4500       0.355     0.840     0.972     1.000     1.000     1.000     1.000
    5000       0.380     0.873     0.983     1.000     1.000     1.000     1.000

Notes to table:  T denotes sample size, and p denotes the mixture
probability.  We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=0, using a nominal 5% test based on  periodogram ordinates.T



Table 2
Mean Plus Noise Model

Empirical Sizes of Nominal 5% Tests of d=1

                                                           p
     T            0.0001   0.0005   0.001     0.005     0.01       0.05       0.1
  100            0.373     0.376     0.376     0.353    0.343     0.290    0.277

       200            0.481     0.475     0.470     0.424    0.383     0.277    0.258
       300            0.516     0.505     0.494     0.419    0.355     0.246    0.250
       400            0.523     0.509     0.488     0.390    0.315     0.239    0.238
       500         0.568     0.548     0.526     0.399    0.318     0.230    0.231
 1000            0.639     0.596     0.542     0.351    0.262     0.223    0.211

1500            0.681     0.617     0.550     0.303    0.235     0.201    0.198
2000            0.705     0.616     0.542     0.277    0.216     0.200    0.197

     2500            0.721     0.621     0.526     0.255    0.211     0.195    0.194
     3000            0.735     0.616     0.520     0.247    0.200     0.193    0.185
     3500            0.751     0.624     0.502     0.232    0.208     0.182    0.185
 4000            0.761     0.619     0.497     0.226    0.195     0.181    0.179
  4500            0.767     0.615     0.495     0.223    0.191     0.181    0.183

5000            0.763     0.593     0.463     0.209    0.199     0.179    0.184

Notes to table:  T denotes sample size, and p denotes the mixture
probability.  We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=1, using a nominal 5% test based on  periodogram ordinates.T



Table 3
Stochastic Permanent Break Model

Empirical Sizes of Nominal 5% Tests of d=0

                                                           ((
    T      10-5      10-4      10-3     10-2      10-1         1       10         102       103       104

 100   0.976  0.978  0.978  0.978  0.977  0.971  0.844  0.195  0.167  0.166
 200   0.995  0.995  0.995  0.995  0.996  0.995  0.972  0.292  0.134  0.134
 300   0.999  0.999  0.999  0.999  0.998  0.999  0.993  0.444  0.123  0.121

      400   0.999  0.999  0.999  1.000  1.000  0.999  0.998  0.587  0.120  0.119
      500   1.000  1.000  1.000  1.000  1.000  1.000  0.999  0.697  0.115  0.114
     1000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.951  0.118  0.101
     1500  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.995  0.158  0.091

2000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.999  0.213  0.090
     2500  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.266  0.082
     3000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.341  0.084

3500  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.415  0.078
     4000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.486  0.084
    4500  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.554  0.081
     5000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  0.615  0.080

Notes to table:  T denotes sample size, and ( denotes the STOPBREAK
parameter.  We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=0, using a nominal 5% test based on  periodogram ordinates.T



Table 4
Stochastic Permanent Break Model

Empirical sizes of nominal 5% tests of d=1

                                                           ((
    T      10-5      10-4     10-3      10-2      10-1         1        10       102        103       104

                          100  0.176  0.174  0.175  0.176  0.175  0.176  0.379  0.729  0.742  0.742
  200  0.133  0.133  0.133  0.133  0.134  0.141  0.318  0.833  0.842  0.843
  300  0.121  0.121  0.122  0.123  0.121  0.124  0.250  0.838  0.848  0.849

       400  0.122  0.122  0.121  0.119  0.123  0.119  0.206  0.841  0.859  0.859
       500  0.116  0.116  0.116  0.117  0.116  0.114  0.196  0.861  0.872  0.873

1000  0.098  0.098  0.098  0.098  0.100  0.099  0.133  0.892  0.913  0.912
                1500  0.091  0.091  0.092  0.092  0.096  0.095  0.110  0.904  0.922  0.923
     2000  0.088  0.088  0.088  0.088  0.088  0.086  0.101  0.906  0.936  0.936
     2500  0.084  0.084  0.084  0.085  0.080  0.079  0.087  0.910  0.945  0.946
 3000  0.082  0.082  0.083  0.083  0.081  0.082  0.084  0.911  0.947  0.947
     3500  0.082  0.082  0.083  0.081  0.079  0.081  0.082  0.910  0.953  0.954

4000  0.083  0.083  0.083  0.083  0.081  0.081  0.083  0.904  0.960  0.959
     4500  0.079  0.079  0.079  0.079  0.077  0.078  0.083  0.904  0.961  0.961
     5000  0.075  0.075  0.075  0.075  0.076  0.076  0.079  0.891  0.963  0.963

Notes to table:  T denotes sample size, and ( denotes the STOPBREAK
parameter.  We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=1, using a nominal 5% test based on  periodogram ordinates.T



Table 5
Markov Switching Model

Empirical Sizes of Nominal 5% Tests of d=0

       p00   0.95     0.95     0.95     0.99     0.99     0.99     0.999   0.999   0.999
                         T   p11   0.95     0.99     0.999   0.95     0.99     0.999   0.95     0.99     0.999

 100      0.417   0.332   0.186    0.329   0.375   0.208   0.186   0.213   0.196
      200      0.476   0.425   0.180    0.420   0.618   0.257   0.179   0.262   0.232
      300      0.478   0.482   0.187    0.482   0.761   0.313   0.189   0.313   0.290 
      400      0.487   0.514   0.185    0.522   0.858   0.350   0.190   0.353   0.344 
      500  0.460   0.529   0.188    0.541   0.907   0.392   0.191   0.393   0.398
                1000  0.383   0.559   0.214    0.561   0.981   0.549   0.212   0.554   0.628
                1500     0.317   0.552   0.210    0.547   0.991   0.643   0.216   0.644   0.758
             2000     0.266   0.523   0.213    0.522   0.995   0.716   0.215   0.716   0.849
                2500     0.235   0.498   0.213    0.506   0.996   0.772   0.217   0.775   0.903
                3000  0.205   0.472   0.211    0.462   0.997   0.813   0.208   0.810   0.941
                3500     0.188   0.444   0.211    0.458   0.997   0.847   0.207   0.849   0.963
                4000     0.174   0.415   0.203    0.432   0.997   0.869   0.206   0.865   0.975
                4500  0.155   0.405   0.200    0.399   0.998   0.887   0.201   0.888   0.984
                      5000     0.143   0.367   0.195    0.375   0.997   0.902   0.190   0.903   0.990

Notes to table:  T denotes sample size, and p00 and p11 denote the Markov
staying probabilities.  We report the fraction of 10000 trials in which
inference based on the Geweke-Porter-Hudak procedure led to rejection of
the hypothesis that d=0, using a nominal 5% test based on T
periodogram ordinates.



Table 6
Markov Switching Model

Empirical Sizes of Nominal 5% Tests of d=1

       p00   0.95     0.95     0.95     0.99     0.99     0.99     0.999   0.999   0.999
                         T   p11   0.95     0.99     0.999   0.95     0.99     0.999   0.95     0.99     0.999

 100      0.633   0.676   0.736   0.675   0.674    0.732   0.735   0.730   0.735
      200      0.784   0.783   0.831   0.787   0.761    0.822   0.833   0.824   0.832
      300      0.840   0.816   0.853   0.823   0.776    0.840   0.858   0.842   0.849
     400      0.876   0.843   0.866   0.840   0.778    0.844   0.862   0.843   0.852
      500      0.912   0.875   0.886   0.877   0.814    0.870   0.885   0.867   0.875
                1000      0.969   0.939   0.918   0.938   0.869    0.901   0.915   0.901   0.903
                1500      0.983   0.959   0.927   0.959   0.902    0.909   0.927   0.907   0.903
                2000      0.994   0.978   0.948   0.980   0.935    0.931   0.944   0.931   0.927
                2500      0.996   0.986   0.957   0.986   0.954    0.941   0.954   0.939   0.930
                3000      0.998   0.988   0.960   0.991   0.969    0.948   0.959   0.945   0.934
                3500      0.998   0.993   0.966   0.994   0.981    0.956   0.966   0.958   0.947
                       4000     0.999   0.994   0.971   0.995   0.984    0.962   0.970   0.961   0.948
               4500      0.999   0.996   0.975   0.997   0.990    0.966   0.974   0.966   0.951
                5000      1.000   0.998   0.975   0.997   0.992    0.968   0.977   0.969   0.951

Notes to table:  T denotes sample size, and p00 and p11 denote the Markov
staying probabilities.  We report the fraction of 10000 trials in which
inference based on the Geweke-Porter-Hudak procedure led to rejection of
the hypothesis that d=1, using a nominal 5% test based on T
periodogram ordinates.
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Figure 1
Mean-Plus-Noise Realization
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Figure 3
Mean-Plus-Noise Model

Distribution of Long-Memory Parameter Estimate
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Figure 4
STOPBREAK Realization
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Figure 5
STOPBREAK Model

Low-Frequency Log Periodogram
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Figure 6
STOPBREAK Model

Distribution of Long-Memory Parameter Estimate
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Figure 7
Markov Switching Realization
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Figure 8
Markov Switching Model

Low-Frequency Log Periodogram
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Figure 9
Markov Switching Model

Distribution of Long-Memory Parameter Estimate


