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1. Introduction

Motivated by early empirical work in macroeconomics (e.g., Diebold and Rudebusch,
1989, Sowell, 1992) and later empirical work in finance (e.g., Ding, Engle, and Granger, 1993;
Andersen and Bollerdev, 1997), the last decade has withessed a renaissance in the econometrics
of long memory and fractional integration, as surveyed for example by Baillie (1996).

The fractional unit root boom of the 1990s was preceded by the integer unit root boom of
the 1980s. In that literature, the classic work of Perron (1989) made clear the ease with which
stationary deviations from broken trend can be misinterpreted as 1(1) with drift. More generally,
it is now widely appreciated that structural change and unit roots are easily confused, as
emphasized for example by Stock (1994), who summarizes the huge subsequent literature on unit
roots, structural change, and interrelationships between the two.

The recent more general long-memory literature, in contrast, pays comparatively little
attention to confusing long memory and structural change. It istelling, for example, that the
otherwise masterful surveys by Robinson (1994a), Beran (1994) and Baillie (1996) don’t so much
as mention the issue. The possibility of confusing long memory and structural change has of
course arisen occasionaly, in a number of literatures including applied hydrology (Klemes, 1974),
econometrics (Hidalgo and Robinson, 1996, Lobato and Savin, 1997), and mathematical statistics
(Bhattacharya, Gupta and Waymire, 1983, Kiinsch, 1986, Teverovsky and Tagqu, 1997), but
those warnings have had little impact. We can only speculate as to the reasons, but they are
probably linked to the facts that (1) ssmulation examples such as Klemes (1974) are interesting,
but they offer neither theoretical justification nor Monte Carlo evidence, and (2) theoretical work

such as Bhattacharya, Gupta and Waymire (1983) often seems highly abstract and lacking in
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intuition.

In this paper we provide both rigorous theory and Monte Carlo evidence to support the
clam that long memory and structural change are easily confused, all in the context of simple and
intuitive econometric models. In Section 2, we set the stage by considering aternative definitions
of long memory and the relationships among them, and we motivate the definition of long
memory that we shall adopt. In addition, we review the mechanisms for generating long memory
that have been stressed previoudly in the literature, which differ rather sharply from those that we
develop and therefore provide interesting contrast. 1n Section 3, we work with severa ssmple
models of structural change, or more precisely, stochastic regime switching, and we show how
and when they produce realizations that appear to have long memory. In Section 4 we present an
extensive finite-sample Monte Carlo analysis, which verifies the predictions of the theory and
produces additional insights. We conclude in Section 5.

2. Long Memory

Here we consider aternative definitions of long memory and the relationships among
them, we elaborate upon the definition that we adopt, and we review the mechanisms for
generating long memory that have been stressed in the literature.

Definitions

Traditionally, long memory has been defined in the time domain in terms of decay rates of
long-lag autocorrelations, or in the frequency domain in terms of rates of explosion of low-
frequency spectra. A long-lag autocorrelation definition of long memory is

Y () = ct®?t as 1o,

and alow-frequency spectral definition of long memory is
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f(w) = g as w-0".
An even more genera low-frequency spectral definition of long memory is simply
f(w) = ~ as w-0",

asin Heyde and Yang (1997). The long-lag autocorrelation and low-frequency spectral
definitions of long memory are well known to be equivalent under conditions given, for example,
in Beran (1994).

A fina definition of long memory involves the rate of growth of variances of partia sums,

var(S;)=0(T ),

T
where S; =) x.. Thereisatight connection between this variance-of-partial-sum definition of

t=1

long memory and the spectral definition of long memory (and hence a so the autocorrelation
definition of long memory). In particular, because the spectral density at frequency zero isthe
limit of %ST , aprocess has long memory in the generalized spectral sense of Heyde and Yang if
and only if it has long memory for some d>0 in the variance-of-partial-sum sense. Hence the
variance-of-partial-sum definition of long memory is quite general, and we shall make heavy use
of it in our theoretical analysisin Section 3, labeling aseries as I(d) if var(S;)=O(T %) .*
Origins

Thereisanatural desire to understand the nature of various mechanisms that could
generate long memory. Most econometric attention has focused on the role of aggregation. Here
we briefly review two such aggregation-based perspectives on long memory, in order to contrast

them to our subsequent perspective, which is quite different.

First, following Granger (1980), consider the aggregation of i =1, ..., N cross-sectional

! Sowell (1990) also makes heavy use of thisinsight in a different context.
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it~ ifNit-1 it?

where g, iswhite noisg, ¢, L& and o; L € forali,j,t. AsN-~, the spectrum of the aggregate

N
X,=Y, X, can be approximated as
i=1

f () = =E[var(s.t)][ oce""|2 dF (@),

where F isthe c.d.f. governing the o’s. If Fisabetadistribution,

2
B(p.q)

o1 (1-0®)9 da, O<ac<l,

dF(er) =

then the t-th autocovariance of x, is

Y,(7) = f fa? Tl (1-0)9 2 do = At

B( Q)

Thus xt~l(1—%] .

Granger’s (1980) elegant bridge from cross-sectional aggregation to long memory has
since been refined by a number of authors. Lippi and Zaffaroni (1999), for example, generalize

Granger’ s result by replacing Granger’ s assumed beta distribution with weaker semiparametric



assumptions, and Chambers (1998) considers temporal aggregation in addition to cross-sectional
aggregation, in both discrete and continuous time.

An dternative route to long memory, which also involves aggregation, has been studied by
Mandelbrot and his coauthors (e.g., Cioczek-Georges and Mandelbrot, 1995) and Tagqu and his
coauthors (e.g., Tagqu, Willinger and Sherman, 1997). It has found wide application in the
modeling of aggregate traffic on computer networks, athough the basic idea is much more widely

applicable. Define the stationary continuous-time binary series W(t),t> 0so that W (t) =1during

“on” periodsand W(t) =0during “off” periods. The lengths of the on and off periods areiid at al
leads and lags, and on and off periods alternate. Consider M sources, W™ (t), t=0,m=1, ...,

M, and define the aggregate packet count in the interval [0, Tt] by

Wy (7= [ (2 W) d

Let F,(x) denote the c.d.f. of durations of on periods, and let F,(x) denote that for off periods,

and assume that

1-F,(X) ~ ¢, x “Ly(X), with 1<a, <2

1-F,(X) ~ c,X “2L,(X), with 1<a,<2.

Note that the power-law tails imply infinite variance. Now first let M-~ ~and thenlet T - .

Then it can be shown that W, (Tt), appropriately standardized, converges to a fractional

Brownian motion.



t
Parke (1999) considers a closely related discrete-time error duration model, y, = Y g_&.,
S=-o0

where €, ~ iid(0,0?), g, = L(t<s+ny, and n, isastochastic duration. Long memory arises when
n, hasinfinite variance. The Mandelbrot-Tagqu-Parke approach beautifully illustrates the

intimate connection between long memory and heavy tails, echoing earlier work summarized in
Samorodnitsky and Tagqu (1993).?
3. Long Memory and Stochastic Regime Switching: Asymptotic Analysis

We now explore avery different route to long memory — structural change. Structural
changeislikely widespread in economics, as forcefully argued by Stock and Watson (1996).
There are of course huge econometric literatures on testing for structural change, and on
estimating models of structural change or stochastic parameter variation.

A Mixture Model with Constant Break Size, and Break Probability Dropping with T

We will show that a mixture model with a particular form of mixture weight linked to
sample size will appear to have I(d) behavior. Let

Ow.p. 1-p
V =

W, W.p. p,

iid
where w, ~ N(O,ovzv). Note that var
t=1

;
th] = pTa., = O(T). If instead of forcing p to be

2 Liu (1995) also establishes a link between long memory and infinite variance.
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constant we allow it to change appropriately with sample size, then we can immediately obtain a
long memory result. In particular, we have

Proposition 1: If p=O(T %*2), 0<d<1, then v,=I(d-1).

Proof:
.
va| Y v,| = O(TX2)Toj, = (T2 = O(T 24D,
t=1
Hence v,=1(d-1), by the variance-of-partial sum definition of long memory. O

It is asimple matter to move to aricher model for the mean of a series:

He = Mg V4

Ow.p. 1-p
W, W.p. p,

iid
where w, ~ N(O,ovzv). Note that var

.
D vt] = pTo., = O(T). Ashbefore, let p=O(T 2¢?),
t=1 T
0<d<1, so that v,=I(d-1), which implies that ut:Z v,=1(d).
t=1
It is also asimple matter to move to an even richer “mean plus noise model” in state space

form,

Yo = K T &



He = Mg + Y4

Ow.p. 1-p

W, W.p. p,

iid iid
where w, ~ N(O,ovzv) and g, ~ N(O,oi), which will display the same long memory property when

p=0(T 292), 0<d<1.

Many additional generalizations could of course be entertained. The Balke-Fomby (1989)
model of infrequent permanent shocks, for example, is a straightforward generalization of the
simple mixture models described above. Whatever the model, the key ideaisto let p decrease
with the sample size, so that regardless of the sample size, redlizations tend to have just afew
breaks.

The Stochastic Permanent Break Model

Engle and Smith (1999) propose the “ stochastic permanent break” (STOPBREAK)

model,

Yo = K T &

Me = B * G &gy

where ¢, =q(|¢,|) isnondecreasing in |e,| and bounded by zero and one, so that bigger

iid
innovations have more permanent effects, and ¢, ~ N(O,oi). They use g, :sf/ (vy +8t2) for y>0.



Quite interestingly for our purposes, Engle and Smith show that their model isan

approximation to the mean plus noise model,

Yo = Ky T &

He = Mg + Vo

where

Ow.p. 1-p
W, W.p. p,

iid X iid ) o
g, ~ N(0,0;), and w, ~ N(O,0,). They note, moreover, that although other approximations are
available, the STOPBREAK model is designed to bridge the gap between transience and
permanence of shocks and therefore provides a better approximation, for example, than an

exponential smoother, which is the best linear approximation.

We now alow vy to change with T and write:

This process will appear fractionally integrated under certain conditions, the key element of which

involves the nature of time variationin .



Proposition 2: 1f (&) E(e;)<« and (b) y~ as T-e and y;=O(T ) for some 8>0, then

y=1(1-9).

Proof: Note that

var (ZtT=1 Ay,)

3
€
T t-1
varl er - g + thl—z
Yr * &
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O(Tlv3)

O(T 1—26)

_ O(T 2(—6)+1)’
iid X
where the second equality follows from the maintained assumption that €, ~ N(O,o;), the fourth
equality follows from Assumption (a), and the fifth from Assumption (b). Thus, Ay,=1(-0), so
y,=1(1-9). O

It isinteresting to note that the standard STOPBREAK model correspondsto vy, =v,

which correspondsto 6=0. Hence the standard STOPBREAK model isl(1).

The Markov-Switching Model

All of the models considered thus far are effectively mixture models. The mean plus noise
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model and its relatives are explicit mixture models, and the STOPBREAK model is an
approximation to the mean-plus-noise model. We now consider the Markov-switching model of

Hamilton (1987), which is arich dynamic mixture model.

Let {s} thl be the (latent) sample path of two-state first-order autoregressive process,

taking just the two values O or 1, with transition probability matrix given by
[ Poo 1poo]
M = :
1-py Py
Theij-th element of M gives the probability of moving from statei (at timet-1) to statej (at time

t). Note that there are only two free parameters, the staying probabilities, p, and p,;. Let {y} tT:l

be the sample path of an observed time series that depends on { s} th1 such that the density of v,

conditional upon s is

2
1 (Ve Ky)
f(y,|s; 0) = exp| ————| -
s =P -~
Thus, y, is Gaussian white noise with a potentialy switching mean, and we write
yt = ust + Sta

iid
e, ~ N(0,0%)
where and S, and ¢_ areindependent for al t and t.°

% In the present example, only the mean switches across states. We could, of course,
examine richer models with Markov switching dynamics, but the smple model used here
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Proposition 3: Assumethat (a) p,#H, and that (b) p,,=1-c,T “oand p,,=1-¢T 1 with
8,,6,>0 and 0<c,,c,<1. Then y=I(min(d,,0,)).

Proof: Let £=(1(§=0) 1(5=1)) K=(HeM,), and [}=E(EE;). Theny,=p¥ +¢, s0

var(Y L y) = var(Y ., WE) + To?

W, + S, (T + Tl + To?
For every T, the Markov chainis ergodic. Hence the unconditional variance-covariance matrix of
g, is

_ (1_poo)(1_p11)( 1-1

r = 0(2).
° (Z_pOO_pll)z \_1 1)

Now let

A= PytPy-1= 1—cOT*6°—clT*61.

Then the jth autocovariance matrix of &, is*

illustrates the basic idea.

* See Hamilton (1994, p. 683) for the expression of M1 in terms of Poor Py @ AL
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I, = MIT,

[(1-p) +A(1-py)  (1-pyy)+A(1-p,y)]

Ml < 2-Poo Py 2-Poo P11
(1-pog) *M(1-pyy)  (1-Pye) +A(1-p,y)

2-Poo P11 2-Pyo Py

1 1_p11 1_p11} N 1
c,T o, T ™ 17Poo 1-Pog c, T o, T ™

1-py ~(1-Pyy) A
_(1_poo) 1_p11

O(T min(6o,61)) N O(T mi”(f’ovf’l)}vj).

Thus

min(,,8,)

1 T B . T
?Var(thl y) = O(1) Q[—l—)u

) _ O(T 2min(6o,61)),

which in turn implies that
in(84,0,) +
var (le Yo = O(T 2oty l)-

Hence y=I(min(5,,5,)). O

It isinteresting to note that the transition probabilities do not depend on T in the standard

Markov switching model, which correspondsto 6,=06, =0. Thusthe standard Markov switching

model is1(0), unlike the mean-plus-noise or STOPBREAK models, which are I(1).°

® In spite of the fact that it is truly 1(0), the standard Markov switching model can
nevertheless generate high persistence at short lags, as pointed out by Timmermann (1999), and
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Although we have not worked out the details, we conjecture that results similar to those
reported here could be obtained in straightforward fashion for the threshold autoregressive (TAR)
model, the smooth transition TAR model, and for reflecting barrier models of various sorts, by
allowing the thresholds or reflecting barriers to change appropriately with sample size. Similarly,
we conjecture that Balke-Fomby (1997) threshold cointegration may be confused with fractional
cointegration, for a suitably adapted series of thresholds, and that the Diebold-Rudebusch (1996)
dynamic factor model with Markov-switching factor may be confused with fractional
cointegration, for suitably adapted transition probabilities.

Additional Discussion

Before proceeding, it isimportant to appreciate what we do and what we don’t do, and
how we use the theory sketched above. Our device of letting certain parameters such as mixture
probabilities vary with T is smply a thought experiment, which we hope proves useful for
thinking about the appearance of long memory. The situation parallels the use of “local-to-unity”
asymptotics in autoregressions, a thought experiment that proves useful for characterizing the
distribution of the dominant root. We view our theory as effectively providing a“local to no
breaks’ perspective. But just asin the context of alocal-to-unity autoregressive root, which does
not require that one literally believe that the root satisfies pzl—% as T grows, we do not require
that one literally believe that the mixture probability satisfies p=cT 242 as T grows.

In practice, and in our subsequent Monte Carlo analysis, we are not interested in, and we
do not explore, models with truly time-varying parameters (such as time-varying mixture

probabilities). Similarly, we are not interested in expanding samples with size approaching

as verified in our subsequent Monte Carlo.
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infinity. Instead, our interest centers on fixed-parameter models in fixed finite sample sizes, the
dynamics of which arein fact either 1(0) or 1(1). The theory suggests that confusion with 1(d) will
result when only a small amount of breakage occurs, and it suggests that the larger the sample
size, the smaller must be the break probability, in order to maintain the necessary small amount of
breakage.

In short, we use the theory to guide our thinking about whether and when finite-sample
paths of truly 1(0) or (1) processes might nevertheless appear I(d), 0<d<1, not as adevice for
producing sample paths of truly fractionally integrated processes.

4. Long Memory and Stochastic Regime Switching: Finite-Sample Analysis

The theoretical resultsin Section 3 suggest that, under certain plausible conditions
amounting to a nonzero but “small” amount of structural change, long memory and structural
change are easily confused. Motivated by our theory, we now perform a series of related Monte
Carlo experiments. We simulate 10,000 realizations from various models of stochastic regime
switching, and we characterize the finite-sample inference to which a researcher armed with a
standard estimator of the long memory parameter would be led.

We use the log-periodogram regression estimation estimator proposed by Geweke and
Porter-Hudak (GPH, 1983) and refined by Robinson (1994b, 1995). In particular, let I(w,)
denote the sample periodogram at the j-th Fourier frequency, w, = 2xj/T,j=1,2,...,[T/2]. The
log-periodogram estimator of d is then based on the least squares regression,

log[ I(w;)] = Bo + Bylog(w;) + U,
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wherej=1,2,...,m, and d=-1/28,.° The least squares estimator of B,, and hence d, is
asymptotically normal and the corresponding theoretical standard error, -(24-m)™*, depends only
on the number of periodogram ordinates used.

Of course, the actual value of the estimate of d also depends upon the particular choice of
m. While the formulafor the theoretical standard error suggests choosing alarge value of min
order to obtain asmall standard error, doing so may induce a bias in the estimator, because the
relationship underlying the GPH regression in general holds only for frequencies close to zero. It
turns out that consistency requires that m grow with sample size, but at a sower rate. Use of
m=/T has emerged as a popular rule of thumb, which we adopt.

Mean Plus Noise Modd

We first consider the finite-sample behavior of the mean plus noise model. We

parameterize the model as

Yo = Ky T &

He = Mg V4

® The calculationsin Hurvich and Beltrao (1994) suggest that the estimator proposed by
Robinson (1994b, 1995), which leaves out the very lowest frequenciesin the regression in the
GPH regression, has larger M SE than the original Geweke and Porter-Hudak (1983) estimator
defined over al of the first m Fourier frequencies. For that reason, we include periodogram
ordinates at all of the first m Fourier frequencies.
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Ow.p. 1-p
W, W.p. p,
iid iid
where ¢, ~ N(0,1), and w, ~ N(0,1),t=1, 2, ..., T. To build intuition before proceeding to the
Monte Carlo, we first show in Figure 1 a specific realization of the mean plus noise process with

p=0.01 and T=10000. It isclear that there are only afew breaks, with lots of noise

superimposed. In Figure 2 we plot the log periodogram against log frequency for the same

realization, using /10000 periodogram ordinates. We superimpose the linear regression line; the

implied d estimate is 0.785.

Now we proceed to the Monte Carlo analysis. Wevary pand T, examining al pairs of
pe{0.0001,0.0005,0.001,0.005,0.01,0.05,0.1} and Te{100,200,300,400,500,1000,...,5000} . In
Table 1 we report the empirical sizes of nominal 5% tests of d=0. They areincreasingin T and p,
which makes sense for two reasons. Firgt, for fixed p>0, the null isin fact false, so power
increasesin T by consistency of thetest.” Second, for fixed T, we have more power to detect 1(1)
behavior as p grows, because we have a greater number of non-zero innovations, whose effects
we can observe.

The thesis of this paper is that structural change is easily confused with fractional
integration, so it isimportant to be sure that we are not rejecting the d=0 hypothesis simply

because of aunit root. Hence we aso test the d=1 hypothesis. The results appear in Table 2,

" When p=0, the process is white noise and hence 1(0). For all p>0, the change in the mean
processisiid, and hence the mean processis (1), albeit with highly non-Gaussian increments.
When p=1, the mean process is a Gaussian random walk.
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which reports empirical sizes of nominal 5% tests of d=1, executed by testing d=0 on differenced
data using the GPH procedure. The d=1 regjection frequencies decrease with T, because the null is
in fact true. They also decrease sharply with p, because the effective sample size grows quickly as
p grows.

In Figure 3 we plot kernel estimates of the density of d for Te{400,1000,2500,5000} and
pe{0.0001,0.0005,0.001,0.005,0.01,0.05,0.1} .2 Figure 3 illuminates the way in which the GPH
rejection frequencies increase with p and T. The density estimates shift gradually to the right as p
and T increase. For small p, the estimated densities are bimodal in some cases. Evidently the
bimodality results from a mixture of two densities: one is the density of d when no structural
change occurs, and the other is the density of d when there is at least one break.

Stochastic Permanent Break Model

Next, we consider the finite-sample behavior of the STOPBREAK model:

Ye = K T &
2
B . €1
ut - ut—l 2 & 1
Y * &

iid
with g, ~ N(0,1). In Figure 4 we show a specific realization of the STOPBREAK process with

vy =500 and T=10000. Because the evolution of the STOPBREAK processis smooth, asit is

8 Here and in all subsequent density estimation, we select the bandwidth by Silverman’s
rule, and we use an Epanechnikov kernel.

-18-



only an approximation to a mixture model, we do not observe sharp breaks in the redlization. In

Figure 5 we plot the realization’ s log periodogram against log frequency, with linear regression

line superimposed, using /10000 periodogram ordinates. The implied d estimate is 0.67.

In the Monte Carlo experiment, we examine all pairsof ye{107°,10%, ...,10% 10* and

Te{100,200,300,400,500,1000,1500,...,5000} . In Table 3 we report the empirical sizes of
nominal 5% tests of d=0. The d=0 rejection frequencies areincreasing in T and decreasing in vy,
which makes intuitive sense. First consider fixed y and varying T. The STOPBREAK processis
[(2) for al y<e, sothe null of d=0isin fact false, and power increasesin T by consistency of the
test. Now consider fixed T and varying y. For al y<e~, the change in the mean processisiid,
and hence the mean processis 1(1), albeit with non-Gaussian increments. But we have less power
to detect 1(1) behavior as gamma grows, because we have a smaller effective sample size.® In
fact, as y approaches «, the process approaches 1(0) white noise.

As before, we aso test the d=1 hypothesis by employing GPH on differenced data. In
Table 4 we report the empirical sizes of nominal 5% tests of d=1. The rejection frequencies tend
to be decreasing in T and increasing in vy, which makes sense for the reasons sketched above. In
particular, because the STOPBREAK processis (1), the d=1 regjection frequencies should
naturally drop toward nominal sizeas T grows. Alternatively, it becomes progressively easier to
reject d=1 as vy increases, for any fixed T, because the STOPBREAK process gets closer to 1(0)
asy increases.

In Figure 6 we show kernel estimates of the density of d for Te{400,1000,2500,5000}

° The last two columns of the table, however, reveal a non-monotonicity in T: empirical
size first drops and then rises with T.
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and ye{107°,10%,...,10%,10% . Asthe sample size grows, the estimated density shifts to the

right and the median of d approaches unity for y<10000. Thisis expected because the
STOPBREAK processis|(1). However, as yincreases, the effective sample size required to
detect this nonstationarity also increases. Asaresult, when vy islarge, the median of d is below
unity even for a sample of size 5000.

Markov Switching

Lastly, we anayze the finite-sample properties of the Markov switching model. The

mode! is

Y = Hg * &

iid
where g, ~ N(0,0?), and S, and ¢_ areindependent for al t and t. Wetake ;=0 and p,=1.

In Figure 7 we plot a specific realization withp,,=p,,=0.9995 and T=10000, and in Figure 8 we

plot the corresponding log periodogram against log frequency, with the linear regression line

superimposed, using y/10000 = 100 periodogram ordinates. It appears that the regime has

changed several timesin this particular redlization, and the implied d estimate is 0.616, which is
consistent with our theory in Section 3.

In the Monte Carlo analysis, we explore p,,c{0.95,0.99,0.999} , p,,{0.95,0.99,0.999},

and Te{100,200,300,400,500,1000,1500,...,5000} . In Table 5 we show the empirical sizes of

nominal 5% tests of d=0. When both p,, and p,, are well away from unity, such as when
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Pyo =Py, =0.95, the rgjection frequencies eventually decrease as the sample size increases, which
makes sense because the processis 1(0). In contrast, when both p,,and p,, are both large, such
aswhen p,, =p,, =0.999, the rejection frequency isincreasing in T. This would appear
inconsistent with the fact that the Markov switching model is 1(0) for any fixed p,,and p,,, but it

is not, as the dependence of rgection frequency on T is not monotonic. If weincluded T>5000 in
the design, we would eventually see the rgjection frequency decrease.
In Table 6 we tabulate the empirical sizes of nominal 5% tests of d=1. Although the

persistence of the Markov switching model isincreasing in p,, and p,,, it turns out that it is

nevertheless very easy to reject d=1 in this particular experimental design.

In Figure 9 we plot kernel estimates of the density of d for Poor P1,610.95,0.99,0.999}
and Te{400,1000,2500,5000} . When both p,, and p,, are away from unity, the estimated

density tends to shift to the left and the median of d converges to zero as the sample size grows.

When both p,, and p,, are near unity, the estimated density tends to shift to the right. These
observations are consistent with our theory as discussed before. When p,, and p,, arecloseto

unity and when T isrelatively small, the regime does not change with positive probability and, asa
result, the estimated densities appear bimodal.

Finally, we contrast our results for the Markov switching model with those of Rydén,
Terasvirta and Asbrink (1998), who find that the Markov-Switching model does a poor job of

mimicking long memory, which would seem to conflict with both our theoretical and Monte Carlo
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results. However, our theory requires that all diagonal elements of the transition probability
matrix be near unity. In contrast, nine of the ten Markov Switching models estimated by Rydén,
Terésvirtaand Asbrink have at least one diagonal element well away from unity. Only their
estimated model H satisfies our condition, and its autocorrelation function doesin fact decay very
dowly. Hence the results are entirely consistent.
5. Concluding Remarks

We have argued that structural change in general, and stochastic regime switching in
particular, are intimately related and easily confused, so long as only a small amount of regime
switching occurs. Simulations support the relevance of the theory in finite samples and make
clear that the confusion is not merely atheoretical curiosity, but rather islikely to be relevant in
routine empirical economic and financia applications.

We close by sketching the relationship of our work to two close cousins by Granger and
his coauthors. First, Granger and Terasvirta (1999) consider the following ssmple nonlinear

process,

Y, = sonly, ) + &,

iid
where g, ~ N(O, 0?). This process behaves like a regime-switching process and, theoretically, the

autocorrelations should decline exponentially. They show, however, that as the tail probability of
e, decreases (presumably by decreasing the value of 0?) so that there are fewer regime switches
for any fixed sample size, long memory seems to appear, and the implied d estimates begin to
grow. The Granger-Terasvirta results, however, are based on single realizations (not Monte

Carlo anaysis), and no theoretical explanation is provided.
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Second, in contemporaneous and independent work, Granger and Hyung (1999) develop a
theory closely related to ours. They consider a mean plus noise process and its Markov switching
version, and they show that, if p=O(1/T), the autocorrelations of the mean plus noise process
decay very dowly. Their result isaspecia case of ours, with d=0.5. Importantly, moreover, we
show that p=O(1/T) is not necessary to obtain long memory, and we provide alink between the
convergence rate of p and the long memory parameter d. We aso provide related results for
STOPBREAK models and Markov-Switching models, as well as an extensive Monte Carlo
analysis of finite-sample effects. On the other hand, Granger and Hyung consider some
interesting topics which we have not considered in the present paper, such as common breaksin
multivariate time series. Hence the two papers are complements rather than substitutes.

Finally, we note that our results are in line with those of Mikosch and Starica (1999), who
find structural change in asset return dynamics and argue that it could be responsible for evidence
of long memory. We believe, however, that the temptation to jump to conclusions of “structural
change producing spurious inferences of long memory” should be resisted, as such conclusions
are potentially naive. Evenif the “truth” is structural change, long memory may be a convenient
shorthand description, which may remain very useful for tasks such as prediction.® Moreover, at
least in the sorts of circumstances studied in this paper, “structural change” and “long memory”
are effectively different labels for the same phenomenon, in which case attempts to label one as

“true” and the other as “ spurious’ are of dubious value.

19 1n a development that supports this conjecture, Clements and Krolzig (1998) show that
fixed-coefficient autoregressions often outperform Markov switching models for forecasting in
finite samples, even when the true data-generating process is Markov switching.
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Tablel
Mean Plus Noise M odel
Empirical Sizes of Nominal 5% Tests of d=0

p
T 0.0001 0.0005 0.001 0.005 0.01 005 0.1
100 0165 0169 0.180 0.268 0.355 0.733 0.866
200 0141 0167 0202 0412 0590 0941 0.979
300 0141 0186 0239 0554 0.749 0986 0.994
400 0128 0195 0276 0.670 0.867 0.996 0.998
500 0127 0210 0313 0.755 0922 0.999 1.000
1000 0146 0337 0519 0953 099 1.000 1.000
1500 0.177 0452 0674 0993 1000 1.000 1.000
2000 0207 0555 0.778 0.999 1000 1.000 1.000
2500 0234 0634 0.850 1.000 1.000 1.000 1.000
3000 0265 0.703 0.898 1.000 1.000 1.000 1.000
3500 0293 0.762 0.931 1.000 1.000 1.000 1.000
4000 0318 0.807 0.957 1.000 1.000 1.000 1.000
4500 0355 0.840 0972 1000 1.000 1.000 1.000
5000 0380 0.873 0.983 1.000 1.000 1.000 1.000

Notesto table: T denotes sample size, and p denotes the mixture
probability. We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=0, using a nominal 5% test based on /T periodogram ordinates.



Table 2
Mean Plus Noise M odel
Empirical Sizes of Nominal 5% Testsof d=1

p
T 0.0001 0.0005 0.001 0.005 0.01 005 0.1
100 0373 0376 0376 0.353 0343 0.290 0.277
200 0481 0475 0470 0424 0383 0.277 0.258
300 0516 0505 0.494 0419 0355 0.246 0.250
400 0523 0509 0488 0.390 0315 0.239 0.238
500 0568 0548 0526 0.399 0318 0.230 0.231
1000 0639 059 0542 0351 0.262 0.223 0.211
1500 0.681 0.617 0550 0.303 0235 0201 0.198
2000 0.705 0.616 0542 0.277 0216 0.200 0.197
2500 0.721 0.621 0526 0.255 0.211 0.195 0.194
3000 0.735 0.616 0520 0.247 0200 0.193 0.185
3500 0.751 0.624 0502 0.232 0208 0.182 0.185
4000 0.761 0.619 0497 0226 0.195 0.181 0.179
4500 0.767 0.615 0.49 0.223 0191 0.181 0.183
5000 0.763 0593 0.463 0.209 0.199 0.179 0.184

Notesto table: T denotes sample size, and p denotes the mixture
probability. We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=1, using a nominal 5% test based on /T periodogram ordinates.



Table3
Stochastic Permanent Break M odel
Empirical Sizes of Nominal 5% Tests of d=0

T

10°

10*

10°

10

Y
10 1

10

102 10®° 10°

100
200
300
400
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0.976 0.978 0.978 0.978 0.977

0.995 0.995 0.995 0.995 0.996 0.995 0.972

0.999
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.999
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.999
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.998 0.999
1.000 0.999
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000

0.993
0.998
0.999
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.971 0.844 0.195 0.167 0.166

0.292 0.134 0.134
0.444 0.123 0.121
0.587 0.120 0.119
0.697 0.115 0.114
0.951 0.118 0.101
0.995 0.158 0.091
0.999 0.213 0.090
1.000 0.266 0.082
1.000 0.341 0.084
1.000 0.415 0.078
1.000 0.486 0.084
1.000 0.554 0.081
1.000 0.615 0.080

Notes to table: T denotes sample size, and y denotes the STOPBREAK
parameter. We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=0, using a nominal 5% test based on /T periodogram ordinates.



Table4
Stochastic Permanent Break M odel
Empirical sizes of nominal 5% tests of d=1

Y

T 10° 10* 10° 10%? 10* 1 10 10> 10° 10°
100 0.176 0.174 0.175 0.176 0.175 0.176 0.379 0.729 0.742 0.742
200 0.133 0.133 0.133 0.133 0.134 0.141 0.318 0.833 0.842 0.843
300 0.121 0.121 0.122 0.123 0.121 0.124 0.250 0.838 0.848 0.849
400 0.122 0.122 0.121 0.119 0.123 0.119 0.206 0.841 0.859 0.859
500 0.116 0.116 0.116 0.117 0.116 0.114 0.196 0.861 0.872 0.873
1000 0.098 0.098 0.098 0.098 0.100 0.099 0.133 0.892 0.913 0.912
1500 0.091 0.091 0.092 0.092 0.096 0.095 0.110 0.904 0.922 0.923
2000 0.088 0.088 0.088 0.088 0.088 0.086 0.101 0.906 0.936 0.936
2500 0.084 0.084 0.084 0.085 0.080 0.079 0.087 0.910 0.945 0.946
3000 0.082 0.082 0.083 0.083 0.081 0.082 0.084 0.911 0.947 0.947
3500 0.082 0.082 0.083 0.081 0.079 0.081 0.082 0.910 0.953 0.954
4000 0.083 0.083 0.083 0.083 0.081 0.081 0.083 0.904 0.960 0.959
4500 0.079 0.079 0.079 0.079 0.077 0.078 0.083 0.904 0.961 0.961
5000 0.075 0.075 0.075 0.075 0.076 0.076 0.079 0.891 0.963 0.963

Notes to table: T denotes sample size, and y denotes the STOPBREAK
parameter. We report the fraction of 10000 trials in which inference based
on the Geweke-Porter-Hudak procedure led to rejection of the hypothesis
that d=1, using a nominal 5% test based on /T periodogram ordinates.



Table5

Markov Switching Model
Empirical Sizes of Nominal 5% Tests of d=0

Poo

095 0.95

T p,; 095 0.99

100
200
300
400
500
1000
1500
2000
2500
3000
3500
4000
4500

095 099 099 0.99 0.999 0.999 0.999
0.999 0.95

0.99

0.999 0.95

0.99

0.999

0.417 0.332
0.476 0.425
0.478 0.482
0.487 0.514
0.460 0.529
0.383 0.559
0.317 0.552
0.266 0.523
0.235 0.498
0.205 0.472
0.188 0.444
0.174 0.415
0.155 0.405
5000 0.143

0.186
0.180
0.187
0.185
0.188
0.214
0.210
0.213
0.213
0.211
0.211
0.203
0.200
0.367

0.329
0.420
0.482
0.522
0.541
0.561
0.547
0.522
0.506
0.462
0.458
0.432
0.399
0.195

0.375
0.618
0.761
0.858
0.907
0.981
0.991
0.995
0.996
0.997
0.997
0.997
0.998
0.375

0.208
0.257
0.313
0.350
0.392
0.549
0.643
0.716
0.772
0.813
0.847
0.869
0.887
0.997

0.186
0.179
0.189
0.190
0.191
0.212
0.216
0.215
0.217
0.208
0.207
0.206
0.201
0.902

0.213
0.262
0.313
0.353
0.393
0.554
0.644
0.716
0.775
0.810
0.849
0.865
0.888
0.190

0.196
0.232
0.290
0.344
0.398
0.628
0.758
0.849
0.903
0.941
0.963
0.975
0.984
0.903 0.990

Notes to table: T denotes sample size, and p,, and p,; denote the Markov

staying probabilities. We report the fraction of 10000 trialsin which

inference based on the Geweke-Porter-Hudak procedure led to rejection of
the hypothesis that d=0, using a nominal 5% test based on /T
periodogram ordinates.



Table6

Markov Switching Model
Empirical Sizes of Nominal 5% Testsof d=1

Po 095 095 095 099 099 099 0.999 0.999 0.999
T p,, 095 099 0999 095 0.99 0999 0.95 0.99 0.999
100 0.633 0.676 0.736 0.675 0.674 0.732 0.735 0.730 0.735
200 0.784 0.783 0.831 0.787 0.761 0.822 0.833 0.824 0.832
300 0.840 0.816 0.853 0.823 0.776 0.840 0.858 0.842 0.849
400 0.876 0.843 0.866 0.840 0.778 0.844 0.862 0.843 0.852
500 0912 0.875 0.886 0.877 0.814 0.870 0.885 0.867 0.875
1000 0.969 0.939 0.918 0.938 0.869 0.901 0.915 0.901 0.903
1500 0.983 0.959 0.927 0.959 0.902 0.909 0.927 0.907 0.903
2000 0.994 0.978 0.948 0980 0.935 0.931 0.944 0.931 0.927
2500 0.996 0.986 0.957 0.986 0.954 0.941 0.954 0.939 0.930
3000 0.998 0.988 0.960 0.991 0.969 0.948 0.959 0.945 0.934
3500 0.998 0.993 0.966 0.994 0.981 0.956 0.966 0.958 0.947
4000 0.999 0.994 0.971 0.995 0.984 0.962 0.970 0.961 0.948
4500 0.999 0996 0.975 0.997 0.990 0.966 0.974 0.966 0.951
5000 1.000 0.998 0.975 0.997 0.992 0.968 0.977 0.969 0.951

Notes to table: T denotes sample size, and p,, and p,; denote the Markov
staying probabilities. We report the fraction of 10000 trialsin which
inference based on the Geweke-Porter-Hudak procedure led to rejection of

the hypothesis that d=1, using a nominal 5% test based on /T
periodogram ordinates.
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Figure 6
STOPBREAK Mode
Distribution of Long-Memory Parameter Estimate
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Realization

Log Periodogram

Figure7
Markov Switching Realization

Log Frequency
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Figure9
Markov Switching Model
Distribution of Long-Memory Parameter Estimate
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