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Abstract

We report the results of applying semi-parametric long-memory estimators to the

historical monthly series of U.S. inflation, and analyze their empirical forecasting per-

formance over 1, 6, 12, and 24 months using in-sample and out-of-sample procedures.

For comparison purposes, we also apply two parametric estimators, the naive AR(1)

and the ARFIMA(1, d, 1) models. We evaluate the forecasting accuracy of the com-

peting methods using the mean square error (MSE) and mean absolute error (MAE)

criteria. We evaluate the statistical significance of forecasting accuracy of compet-

ing forecasts using the Diebold-Mariano (1995) test. Overall, our results preforms

slightly better than the Lahiani and Scaillet (2009) threshold estimator based on the

MSE and MAE criteria. This improvement in performance does not prove significant

enough to cause a rejection of the null hypothesis of equality of predictive accu-

racy. The Boubaker (2017) estimator, on the other hand, significantly outperforms

the time-invariant estimators over longer horizons. Over shorter horizons, however,

the Boubaker (2017) estimator does not exhibit a significantly better predictive per-

formance than the time-invariant long-memory estimators with the exception of the

naive AR(1) model.
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1 Introduction

This paper provides the first attempt to conduct a comparative analysis of alternative long-

memory estimators applied to the historical series of U.S. inflation. A large literature

estimates the statistical properties of inflation, in particular, the property of persistence,

generally defined as the speed at which an inflation shock dissipates. As frequently noted

in the monetary literature, this notion plays an important role in the design of monetary

policy, since it determines if the effect of a shock is transitory or permanent (Gerlach and

Tillmann, 2012; Fuhrer, 1995; Fuhrer and Moore, 1995).

One stylized fact of inflation is that it is a long-memory process. Inflation conforms

to a fractional differencing process of order d, that is, I(d) where d is a real number. A

long-memory process experiences shocks that possess long-lasting effects, but for which

the underlying process reverts to its mean. In other words, a long-memory process is

not the exclusive property of non-stationary processes. Stationary processes may exhibit

long memory as well. This most important feature distinguishes long-memory models

from unit-root models, where non-stationarity does not admit mean-reversion (Granger

and Joyeux, 1980).

Researchers document significant evidence of long memory in the inflation processes

of many countries over the last twenty years of empirical research. For example, see

Delgado and Robinson (1994), Hassler and Wolters (1995), Baillie (1996), Baillie et al.

(1996), Baum et al. (1999), Bos et al (1999, 2002), Gadea and Mayoral (2005), Kumar

and Okimoto (2007) Beechey and Osterholm (2009), Meller and Nautz (2012), Kouretas

and Wohar (2012), Canarella and Miller (2016, 2017), and Boubaker et al. (2017), among

many others.

The emergence of inflation targeting by nearly 70 central banks or governments around

the world by 2018 makes the persistence of the inflation rate an important issue in these

countries. 1 The more persistent the inflation rate is, the more difficulty the central bank or

government authorities will experience in achieving the target inflation rate. Moreover, a

more persistent inflation rate makes it more likely that the inflation rate will overshoot itself

as the authorities try to push the inflation rate toward its target. That is, more difficulty will

confront the authorities in easing their policy effort to move the inflation rate to their target.

The existing literature proposes many estimators of the long-memory parameter d.

Most semi-parametric procedures rely on the frequency domain and, more recently, the

wavelet domain. While the frequency estimation of long-memory processes is well-known

(see, e.g., Hosking, 1981, 1984; Geweke and Porter-Hudak, 1983), the wavelet methodol-

ogy is relatively new. One most useful property of wavelet analysis is it’s the time-scale

1See Central Bank News, http://www.centralbanknews.info/p/inflation-targets.html.
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decomposition (Gencay et al., 2003; Boubaker et al., 2017), which is the ability to de-

compose any signal into its time-scale components and to isolate short-lived phenomena

from long-term trends in a signal. Wavelets can prove most useful when the signal shows

a different behavior in different time periods or when the signal is localized in time as

well as frequency. High-frequency components reflect short-term behavior, whereas low-

frequency components capture long-term dynamics. As it enables a more flexible approach

in time-series analysis, wavelet analysis is a refinement of Fourier analysis. 2 Boubaker

et al. (2017) estimate inflation persistence in a time-varying framework, implementing a

methodology based on the wavelet approach and the instantaneous least-squares estimator

(ILSE).

Within this framework, we discuss and evaluate the performance of the following al-

ternative estimators of inflation persistence using monthly United States data from January

1871 to April 2018: (1) Jensen (1999) wavelet version of OLS (WOLS1); (2) Veitch and

Abry (1999) wavelet version of OLS (WOLS2); (3) Geweke and Porter-Hudak (1983)

log periodogram estimator (GPH); (4) Lee (2005) wavelet version of the GPH estima-

tor (WGPL); (5) Shimotsu and Phillips (2005) exact local Whittle (ELW) estimator; (6)

Boubaker and Peguin-Feissolle (2013) wavelet version of the exact local Whittle (WELW).

These estimators assume that the parameter d measuring inflation persistence is constant

in the sample. In empirical applications, treating the long-memory parameter d as a con-

stant implies that the long-range dependence structure of inflation persists over time. This

assumption seems too restrictive when dealing with historical series such as ours, due to

the potential presence of problems of structural breaks and policy shifts. Our data span

the evolution of the modern monetary history of the United States and include signif-

icant monetary policy and volatility shifts, such as the classical gold standard era, the

Bretton Woods system, and the post-Bretton Woods system, and, thus, provide a unique

opportunity to document that U.S. inflation may exhibit different degrees of long mem-

ory over time and to appraise how inflation persistence may vary across different mone-

tary regimes and institutions. In view of these considerations, we generalize the standard

long-memory modeling incorporated by the nine estimators listed above by assuming that

the long-memory parameter d is time-varying, and consider two additional long-memory

estimators: (10) Boubaker (2017) instantaneous least squares (ILSE) estimator, which ac-

counts for long-memory and smooth-transition regimes (STR); and, (8) The Lahiani and

Scaillet (2009) estimator, which simultaneously accounts for long-memory and threshold

effects.

2The well-known Fourier transform involves the projection of a series onto an orthonormal set of trigono-

metric components. In particular, Fourier series do not fade away (have infinite energy) and do not change

over time (have finite power). In contrast, wavelets grow and decay in a limited time period (have finite

energy and compact support).
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The rest of paper is organized as follows. The next section describes the ARFIMA

model and frequency and wavelet approaches to estimation of inflation persistence under

the assumption that inflation persistence is constant over the sample, that is, estimators

(1) through (6). Section 3 relaxes this assumption and presents a discussion of estimators

(7) and (8). Section 4 presents and discusses the empirical results from the application of

the eight alternative estimators. For comparison, we also report results from estimators

(7) to (9), although we do not discuss the estimators in any detail. Section 5 outlines a

comparative analysis of their respective predictive performance, and Section 6 concludes.
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2 The time-invariant long-memory model

2.1 ARFIMA model

Let X (t) , t = 1, . . . ,T denote a time-series process. Following Granger and Joyeux (1980),

the usual ARFIMA(p, d, q) process is expressed as

Φ (B) (1 − B)d (X (t) − u) = Θ (B) ε (t) , (1)

where B is the backshift operator such that BiX (t) = X(t− i), Φ (B) = I + φ1B+ · · ·+ φpBp

and Θ (B) = I+θ1B+ · · ·+θqBq are polynomials in B involving autoregressive and moving

average coefficients of orders p and q respectively with their roots strictly outside the unit

circle and no common factors, d is the fractional integration parameter, u is the mean of

the process, and ε (t) ∼ i.i.d. N(0, σ2
ε).

Following Granger and Joyeux (1980) and Hosking (1981), the fractional differencing

lag operator for non-integer values of d can be defined by the binomial expansion

(1 − L)d =

+∞∑

i=0

[
d

i

]
(−B)i = 1 − dB − 1

2
d(1 − d)B2 − 1

6
d(1 − d)(2 − d)B3 − . . . , (2)

we can rewrite this expression as

(I − B)d
=

+∞∑

i=0

Γ(i − d)Bi

Γ(−d)Γ(i + 1)
, (3)

where Γ (.) denotes the gamma function.

The parameters found in Φ (B) and Θ (B) constitute the short-memory parameters and

affect only the short-run dynamics of the process, whilst the fractional integration param-

eter d captures the long-memory behavior of the process. Various cases can occur: If

−0.5 < d < 0, the process exhibits anti-persistence. If 0 < d < 0.5, the process is station-

ary long-memory and possesses shocks that disappear hyperbolically.3 If 0.5 ≤ d < 1, the

process is non-stationary, but mean-reverting, with finite impulse response weights. When

d = 0, the process reduces to the standard ARMA and when d = 1, the process becomes

ARIMA and implies infinite persistence of the mean to a shock in the returns.4

3In this paper, we will concentrate on fractionally-integrated stationary processes.
4See Beran (1994) for more details on long-memory processes.
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2.2 Wavelet Analysis

Wavelet theory requires the orthonormal bases obtained by dyadically dilating and trans-

lating a pair of specially constructed functions ϕ and ψ, which are called father wavelets

and mother wavelets, respectively, such that

∫
ϕ (t) dt = 1, and

∫
ψ (t) dt = 0. (4)

The smooth and the low-frequency parts of the series captures the father wavelet while

the detail and the high-frequency components captures the mother wavelet. The obtained

wavelet basis can be given, respectively, by the pair of functions

ϕ j,k (t) = 2 j/2ϕ
(
2 jt − k

)
, and ψ j,k (t) = 2 j/2ψ

(
2 jt − k

)
, (5)

where j = 1, . . . , J indexes the scale and k = 1, . . . , 2 j indexes the translation. The pa-

rameter j dilates the waves’ functions. This parameter j adjusts the support of ψ j,k (t) to

locally capture the characteristics of high or low frequencies. The parameter k relocates

the wavelets in the temporal scale. The maximum number of scales that can be considered

in the analysis limits the number of observations (T ≥ 2J).

One special property of the wavelet expansion incorporates the localization property,

where the coefficient of ψ j,k (t) reveals the information content of the function at approx-

imate location k2− j and frequency 2 j. Using wavelets, any function in L2 (R) can be ex-

panded over the wavelet basis, uniquely, as a linear combination at arbitrary level J0 ∈ N
across different scales of the type

X (t) =
∑

k

sJ0,kϕJ0,k (t) +
∑

j>J0

∑

k

d j,kψ j,k (t) , (6)

where ϕJ0,k is a scaling function with the corresponding coarse and fine scale coefficients

sJ0,k and d j,k, respectively, by

sJ0,k =

∫
X (t)ϕJ0,k (t) dt, and d j,k =

∫
X (t)ψ j,k (t) dt. (7)

These coefficients measure the contribution of the corresponding wavelet to the function.

The expression (6) represents the decomposition of X (t) into orthogonal components at

different resolutions and constitutes the wavelet multiresolution analysis (MRA).

In practical applications, we invariably deal with sequences of values indexed by in-

tegers rather than functions defined over the entire real axis. Instead of actual wavelets,

we use short sequences of values referred to as wavelet filters. The number of values
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in the sequence equals the width of the wavelet filter. Thus, the wavelet analysis con-

sidered from a filtering perspective is then well-suited for time-series analysis. For the

discrete wavelet transform, the wavelet coefficients can be calculated from the MRA

scheme. The recursive MRA scheme.5, which is implemented by a two-channel filter

bank (i.e, a high-pass wavelet filter {hl, l = 0, . . . , L − 1}6 and its associated low-pass

scaling filter {gl, l = 0, . . . , L − 1}7 satisfying the quadrature mirror relationship given by

gl = (−1)l+1hL−1−l for l = 0, . . . , L − 1, where L ∈ N is the length of the filter) representa-

tion of the wavelet transform, is divided into decomposition and reconstruction schemes

according to the forward and inverse wavelet transform.

Daubechies (1992) defined a useful class of wavelet filters. Daubechies compactly

supported wavelet filters of width L possessing the smallest support for a given number

of vanishing moments8 and distinguishes between two choices - the extremal phase filters

D(L) and the least asymmetric filters LA(L). A modified version of the Discrete Wavelet

Transform (DWT)9 is the non-decimated or Maximal Overlap Discrete Wavelet Transform

(MODWT) (Percival and Walden (2000)). The MODWT algorithm carries out the same

filtering steps as the standard DWT, but does not subsample (decimate by 2); therefore,

the number of scaling and wavelet coefficients at each level of the transform equals the

number of sample observations (see Percival and Walden (2000) and Gençay et al. (2002)

for more details).

2.3 Jensen (1999) estimator

The Wavelet Ordinary Least Square (WOLS) estimate of the fractional differencing param-

eter was introduced by Jensen (1999). He proved that the wavelet coefficients, d j,k, associ-

ated with a mean zero ARFIMA(0, d, 0) model with |d| < 0.5 are distributedN
(
0, σ22−2 jd

)
,

where σ2 is a finite constant.10 The wavelet coefficient’s variance at a scale j is defined by

Var(d j,k) = R( j) = σ22−2 jd. (8)

5A robust theoretical framework for critically sampled wavelet transformation is Mallat’s Multiresolution

Analysis (for more details, see Mallat (1989))
6The wavelet function (filter) of support L proceeds as a special filter possessing specific properties, such

that (i) it integrates to zero, i.e,
∑L−1

l=0 hl = 0, (ii) has unit energy, i.e,
∑L−1

l=0 h2
l
= 1 and (iii) is orthogonal to its

even shifts, i.e,
∑L−1

l=0 hlhl+2n =
∑∞

l=−∞ hlhl+2n = 0, ∀ n ∈ N∗.
7The scaling filter of support L satisfies the following properties, (i)

∑L−1
l=0 gl =

√
2, (ii)

∑L−1
l=0 g2

l
= 1 and

(iii)
∑L−1

l=0 glgl+2n =
∑∞

l=−∞ glgl+2n = 0, ∀ n ∈ N∗.
8For Daubechies wavelets, the number of vanishing moments is half the filter length.
9In practice, the DWT is implemented via a pyramid algorithm (see Mallat (1989)), which is a design

method underlying the conception of the DWT and the construction of the wavelet bases.
10See Jensen (1999) for more details about the estimation method.
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By taking the logarithms on both sides of equation (8), we have

log {R( j)} = log
{
σ2

}
− d log

{
22 j

}
. (9)

The estimate of the fractional differencing parameter d comes from ordinary least-

squares estimation of equation (9). Following Jensen (1999), the wavelet ordinary least-

squares estimate of d is given by

d̂WOLS 1
=

∑J−1
j=0 y j log

{
R̄( j)

}

∑J−1
j=0 y2

j

, (10)

where y j = log
{
2−2 j

}
− 1

J

∑J−1
j=0 log(2−2 j) and R̄( j) = 1

2 j

∑2 j−1
k=0 d2

j,k
. Consequently, if d >

−1/4, Var(R̄( j))→ 0 as j→ ∞ and we get R̄( j) will tend in probability to R( j) as j→ ∞.

Using the Taylor expansion of log
{
R̄( j)

}
around log {R( j)} , we find

log
{
R̄( j)

}
= log {R( j)} + on (1) , (11)

Thus, we obtain

log
{
R̄( j)

}
= log

{
σ2

}
− d log

{
22 j

}
+ on (1) , (12)

Jensen shows that the d̂WOLS 1
consistently estimates the fractional-integration parameter d

when. j→ ∞.
On the other hand, to compute the variance of d̂WOLS 1

Jensen demonstrates that

d̂WOLS 1
− d = θ1/22− j/2Z + on

(
2− j/2

)
, (13)

where θ = θ
(
1, 2−1, . . . , 21−n

)
is a constant and Z is a random variable with unit variance

(see Jensen (1999) for a formal proof).

2.4 Veitch and Abry (1999) estimator

The Veitch and Abry (1999) is based on the DWT coefficients d j,k defined in equation (10)

of X(t), t = 1, 2, . . . ,T , where X(t) is an ARFIMA(0, d, 0). Following Veitch and Abry

(1999), we have

µ̂ j =
1

υ j

υ j∑

k=1

d2
j,k, (14)

9



where υ j is the number of the wavelet coefficients at octave j available for computation.

As shown by Veitch and Abry (1999),

µ̂ j ∼
z j

υ j

χ2
υ j
, (15)

where z j = c22d j, c > 0, and χ2
υ j

is Chi-squared random variable with υ j degrees of

freedom. By taking the logarithms on both sides of equation (15), we have

log(µ̂ j) ∼ 2d j + log2(c) +
log(χ2

υ j
)

log 2
− log2(υ j), (16)

The expected value and the variance of the variable log(χ2
υ) are given by

E
{
log(χ2

υ)
}
= ξ(

υ

2
) + log 2, (17)

Var
{
log(χ2

υ)
}
= ζ(2,

υ

2
). (18)

where ξ(h) = ∂h/∂h log {Γ(h)}, and ζ(2, υ
2
) is the Hurwitz zeta function,11 defined by the

formula

ζ(r, s) =

+∞∑

n=0

1

(n + s)r , (19)

Equation (16) can be written as follows:

ϑ j = α + βw j + ε j, (20)

where ϑ j = log2(µ̂ j) − g j, α = log2(c), β = 2d, w j = log2(2 j) ≃ j, ε j = log2

{
log(χ2

υ j
)
}
−

log2(υ j) − g j, g j = ξ(υ j/2) − log(υ j/2). ε j satisfies

E(ε j) ≃ 0, and (21)

Var(ε j) =
ζ(2,

υ j

2
)

[
log 2

]2
≃

{
2υ j log2 2

}−1
. (22)

The WOLS2 estimate of Veitch and Abry (1999) is given by

d̂WOLS 2
=
β̂

2
, (23)

where β̂ is the ordinary least-squares estimate obtained from equation (20). Veitch and

Abry (1999) shows that under some regularity conditions, d̂WOLS 2
is efficient and consis-

tent.

11The Hurwitz zeta function is a generalization of the Riemann zeta function, defined by ζ(r) =
1
Γ(r)

∫ +∞
0

ur−1

exp(u)−1
du = 1

1−21−r

∑+∞
n=1

(−1)n−1

nr .
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2.5 Geweke and Porter-Hudak estimator (1983)

The Geweke and Porter-Hudak (1983) method is based on the behavior of the spectral den-

sity of an ARFIMA process when the frequencies tend towards zero. As previously, this

method estimates only the long-memory parameter d. The GPH estimator presents a bias

related to the periodogram estimator.12 Let I(λn,T ) be the periodogram evaluated at the

Fourier frequencies λn,T = 2πn/T , n = 1, 2, . . . ,m, where m is the number of frequencies

used in the regression; we have for j = 1, . . . ,m

log {I(λn)} = log { fε(0)}−d log

[{
4sin2(

λn

2
)

}]
+log { fε(λn)/ fǫ(0)}+log {I(λn)/ f (λn)} . (24)

where f (λ) is the spectral density of X(t) and fε(λ) is the spectral density of εt = (1 −
B)dXt, assumed to be a finite and continuous function on the interval [−π, π]. Under these

two assumptions: log { fε(λn)/ fε(0)} is negligible for sufficiently low frequencies and the

random variables log {I(λn)/ f (λn)}n=1,2,...,m, are asymptotically i.i.d.We can write the linear

regression following GPH (1983) based on a fractional time series X(t) with length T as

log {IX(λn)} = α + d log

[{
2sin(

λn

2
)

}−2
]
+ ǫn. (25)

The estimated slope coefficient of equation (??) estimates the fractional differencing pa-

rameter d, denoted by d̂GPH. Here, IX(λn) is the periodogram that is normalized by 2π at

the n-th Fourier frequency λn, where λn = 2πn/T and ǫ ∼ i.i.d.N(−c, π
2

6
) with c as Euler’s

constant.13

2.6 Wavelet GPH estimator

Lee (2005) proposed the idea of the wavelet GPH estimate using the discrete wavelet

transform of X(t), as

d j,k =
∑

k

X(t)ψ j,k(t). (26)

The spectral density of the wavelet transform at the scale j around zero frequency for

d ∈ (0, 1.5) is as follows;

f j(λ) = C j |λ|−2d |Λ(λ)|2 as λ→ 0 = C j |λ|−2(d−1) g2(λ) as λ→ 0, (27)

12Hurvich and Beltrao (1993) and Robinson (1994a, 1995a) proposed a modified version of the GPH

estimator by using a smoothed periodogram or by discarding the first frequencies to reduce this bias.
13See Geweke and Porter-Hudak (1983) for more details.
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where C j = c j/2π < ∞ is a constant term, and |Λ| = λνg(λ) for all integer ν, with

g(tλ)/g(λ) = 1 for all t as λ→ 0 and 0 < g(0) < ∞.

For a fixed-scale j, the periodogram of f j(λ) is

I( j) =
1

2πT

2 j−1∑

k=0

∣∣∣d j,k exp(iλnk)
∣∣∣2 , n = 1, 2, . . . ,m, (28)

where λn = 2πn/T , m is the number of frequencies that are restricted such that m → ∞
and m/T → 0 as T → ∞.

The wavelet-based GPH estimate denoted as dWGPH, comes from a log-transformation

of equation (28). More precisely, we regress the transformed log-periodogram, log
{
I

( j)
n

}
,

on the regressors −2 log(λn) for n = 1, 2, . . . ,m, then add one to the estimate.

For d ∈ (0, 1.5), Lee (2005) shows that d̂WGPH is consistent and asymptotically normal

if m = o(T 4/5). That is,

√
m

(
d̂WGPH − d

)
→ N

(
0,
π2

24

)
as T → ∞, (29)

where m = T 4/5 is the optimal rate for the number of frequencies in terms of the mean

squared error (see Hurvich et al. (1998) and Andrews and Guggenberger (2003)).

2.7 Exact Local Whittle estimator

Let X(t), t = 1, . . . ,T be a time series generated by the following fractional model

(1 − L)d X(t) = ǫ(t)1 {t ≥ 1} , (30)

where ǫ(t) is stationary with zero mean and power transfer function fǫ (λ) satisfying fǫ(λ) ∼
G as λ → 0. We define the discrete Fourier transform and the periodogram of a generic

time series evaluated at the fundamental frequencies as

̥X(λn) =
1
√

2πT

T∑

t=1

X(t) exp(itλn), t = 0, 1, . . . ,T. (31)

IX(λn) = |̥X(λn)|2 , (32)

where λn = 2πn/T, and n = 1, . . . ,T.

Shimotsu and Phillips (2005) proposed to estimate (d,G) by minimizing the objective

function

Qm (d,G) =
1

m

m∑

n=1

[
log

(
Gλ−2d

n

)
+

1

G
Iǫ(λn)

]
, (33)
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where m is some integer less than T such as m = Tα, 0 < α < 1.

Thus, we have (
d̂, Ĝ

)
= arg min

G∈(0,∞), d∈[△1,△2]

Qm (d,G) , (34)

where −∞ < △1 < △2 < +∞ are the lower and upper bounds of the admissible values of d

and m is the bandwidth parameter determines the number of periodogram ordinates used

in the estimation.

Concentrating Qm (d,G) with respect to G, Shimotsu and Phillips (2005) defined the

Exact Local Whittle (ELW) estimate as

d̂ELW = arg min
d∈[△1,△2]

R(d), (35)

where R(d) = log
{
Ĝ(d)

}
− 2d 1

m

∑m
n=1 log λn and Ĝ(d) = 1

m

∑m
n=1 Iǫ(λn).

Shimotsu and Phillips (2005) found that the ELW is consistent14 for d ∈ (△1,△2), and

asymptotically normal

√
m

(
d̂ELW − d

)
→ N

(
0,

1

4

)
as T → ∞, (36)

provided that ∆2 − ∆1 ≤ 9
2
.

2.8 Wavelet Exact Local Whittle estimator

The wavelet Exact Local Whittle estimate (WELW), as defined by Boubaker and Péguin-

Feissolle (2013), is based on the discrete wavelet transform of X(t) in equation (27). This

method minimizes the objective function Qm

(
G j, d j

)
representing the likelihood function

of Whittle for each scale j.

We define the objective function, at fixed-scale j, by

Qm

(
d j,G j

)
=

1

m

m∑

n=1

[
log

(
G jλ

−2d j

n

)
+

1

G j

I
( j)

ǫ j
(λn)

]
. (37)

where I
( j)

ǫ j
is the periodogram of the wavelet at scale j of ∆

d j
Xt = (1 − L)d j Xt as defined by

equation (29) for n = 1, 2, . . . ,m, j = 1, . . . , J and T = 2J.

The estimated values
(
d̂ j, Ĝ j

)
are given by

(
d̂ j, Ĝ j

)
= arg min

G j∈(0,∞), d j∈[∆1 j,∆2 j]
Qm

(
d j,G j

)
, (38)

14See Shimotsu and Phillips (2005) for more details about the consistency of the estimate.
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where ∆1 j and ∆2 j are the lower and upper bounds of the admissible values of d j at fixed-

scale j such that −∞ < d1 j < d2 j < +∞.

Concentrating Qm

(
d j,G j

)
with respect to G j, we define the WELW estimator at fixed-

scale j as

d̂ j(WELW) = arg min
d j∈[∆1 j,∆2 j]

RWELW

(
d j

)
, (39)

with RWELW

(
d j

)
= log

{
Ĝ j(d j)

}
− 2d j

1
m

∑m
n=1 log λn and Ĝ(d) = 1

m

∑m
n=1 I

( j)

ǫ j
(λn).

Boubaker and Péguin-Feissolle (2013) demonstrate that the WELW estimator is con-

sistent and asymptotically normal for any d j ∈
(
∆1 j,∆2 j

)
if ∆2 j − ∆1 j ≤ 9

2
and under fairly

mild assumptions on m and the stationary component ǫ(t). They conclude that the statisti-

cal properties of the WELW estimator are the same those of the ELW estimator.

3 The time-varying long-memory model

It seems too restrictive to assume that the fractional-integration parameter d is constant

over time, which implies that the long-range dependence structure of the underlying phe-

nomenon persists over time with a constant degree. That is, structural changes in the

fractional-integration parameter, will have long-range dependence to evolve in time. Thus,

the long-memory parameter is likely a time-varying dt. That is, the degree of persistence

to shocks varies over time and some type of non-stationarity exists.

3.1 Time-varying ARFIMA model

If we suppose that d varies over time, i.e., dt, we obtain the time-varying ARFIMA(p, d, q)

model or TV-ARFIMA(p, dt, q). Let X (t) , t = 0, . . . ,T − 1 be a stochastic process defined

by

Φ (B) (X (t) − u) = Θ (B) (1 − B)−dt ε (t) , (40)

where dt < 0.5 is the time-varying fractional-integration parameter, Φ (B) and Θ (B) are

stable polynomials with roots strictly outside the unit circle, u is the mean of the process,

and ε (t) is a white noise process with zero mean and variance σ2
ε. For simplicity, we

suppose that we observe dt on a finer grid, i.e., making dt rescaled on [0, 1] so that we

can denote it by d (t/T ) . We can also model the short-memory parameters found in Φ (B)

and Θ (B) as functions of t, i.e., Φt (B) and Θt (B). In the following and for purpose of

simplicity, we consider that the short-memory parameters are constant in time by setting

Φt (B) = Φ (B) and Θt (B) = Θ (B) for all t.
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This long-memory model (??) is a member of non-stationary class of processes known

as locally-stationary processes in the sense of Dahlhaus (1996) and Whitcher and Jensen

(2000), where the spectral representation of stochastic process X (t), with realizations of

length T , is given by

X (t) =

∫ π

−π
exp (itλ) A0

t (λ) dξ (λ) , (41)

where ξ (λ) is a stochastic process on [−π, π] as defined in Dahlhaus (1996) with ξ(λ) =

ξ (−λ) and A0
t (λ) is the transfer function given by

A0
t (λ) ≡ σε

2π

Θ
(
exp (−iλ)

)

Φ
(
exp (−iλ)

) (
1 − exp (−iλ)

)−dt . (42)

Let X0, . . . , XT−1 be realizations of a locally-stationary process with transfer function

A0
t (λ) ≡ A (n, λ), n = t/T will represent a time point in the rescaled time domain [0, 1],

where A (n, λ) is an even and 2π-periodic function that is uniformly Lipschitz continuous

in n ∈ [0, 1] and λ. The time-varying spectral density function is defined as follows

sd f (n, λ) ≡ |A (n, λ)|2 . (43)

For a locally-stationary long-memory process X (t), the time-varying spectral density

function can be represented as

sd f (n, λ) ∼ λ−2d(n) as λ→ 0+. (44)

Thus, if d (n) > 0, sd f (n, λ) is smooth for frequencies close to zero, but is unbounded

when λ = 0. In other words, the energy of X (t) is concentrated over those frequencies

associated with long-term cycles. If d (n) < 0, then sd f (n, λ) = 0 and X (t) is a locally-

stationary series that is anti-persistent. As a result of the time-varying long-memory pa-

rameter, Xt will be smoother with less variation in its amplitude during time periods when

d (n) > 0, and will have large fluctuations in its values when d (n) < 0.

Denote by covX (n, g − h) the local auto-covariance function for a locally-stationary

long-memory process X (t) at time n, we have

covX (n, g − h) =

∫ π

−π
exp (i (g − h) λ) sd f (n, λ) dλ. (45)

By substituting the spectral density function of a locally stationary long-memory model

into equation (??) and using the property of gamma function, the local auto-covariance

function can be simplified as
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covX (n, g − h) ∼ |g − h|2d(n)−1 as |g − h| → ∞. (46)

As indicated, the slow hyperbolic decay of covX (n, g − h) is the feature most often noted

when discussing the dynamics of a long-memory process.

Nevertheless, to specify the evolution of d , many studies assume that the time-varying

fractional-integration parameter dt follows several regime-switching models.

3.2 Boubaker (2017) estimator

Following Boutahar et al. (2008), Aloy et al. (2013) and Boubaker (2017), we can assume

that dt evolves according to STR model advanced by Teräsvirta (1994, 1998):

dt = d1

[
1 − F (st; γ, c)

]
+ d2F (st; γ, c) . (47)

where d1 and d2 are the values of the fractional-integration parameter in the first and second

regime, respectively. F (st; γ, c) is the continuous and bounded transition function between

0 to 1 with st denoting the transition variable which can be one of the lagged endogenous

variable st = dt−i, ∀t > i, t = 0, . . . ,T −1 or an exogenous variable st = X (t − i), ∀t > i, t =

0, . . . ,T−1 or the trend st = t, t = 0, . . . ,T−1.15 The slope parameter γ measures the speed

of the transition between the two extreme regimes (associated with the extreme values 0

and 1 of the transition function) that can be either positive or negative depending upon

whether the logistic curve is increasing or not. The parameter c represents the threshold

for the transition variable st, which defines the underlying regimes: st ≤ c ( st > c) means

that the underlying regime is the first ( the second) one. We find in the literature two types

of transition function, the logistic function STR model and the exponential function STR

model, respectively, expressed as follows:

F(st; γ, c) =
(
1 + exp (−γ(st − c))

)−1
, and (48)

F(st; γ, c) = 1 − exp
(
−γ(st − c)2

)
. (49)

To simplify the exposition, we assume that Φ (B) = Θ (B) = 1, i.e., the simpler model

with no short-term components. Let (Ω, F,P) be the probability triple, and assume that

X (t) and dt are defined on the set of all possible outcomes Ω and given respectively by

(??) and (??). The stochastic fractional filter (1 − B)−dt can be defined as follows

∀w ∈ Ω, (1 − B)−d(n,w)
=

∞∑

i=0

Γ (i + d (n,w))

Γ (i + 1)Γ (d (n,w))
Bi, (50)

15For more details about STR models and transition variables, see van Dijk et al. (2002).
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where d (n,w) := dt (w) and Γ is the gamma function.

Substituting equation (??) into (??), equation (??) can be written as an infinite moving

average process in terms of ε (t − i)

X (t) = (1 − B)−dt
Θ (B)

Φ (B)
ε (t) ≡

∞∑

i=0

Γ (i + dt)

Γ (i + 1)Γ (dt)
πiε (t − i) . (51)

The expression (??) can be re-expressed as

X (t) ≡
∞∑

i=0

ait (st) πiεε (t − i) , (52)

with



a0t (·) = 1

a1t (·) = D (·)
a2t (·) = a1t−1 +

D(·)[1−D(·)]
2!

a3t (·) = D (·) a2t−1 +
D(·)[1−D(·)]

2!
a1t−2 +

D(·)[1−D(·)][2−D(·)]
3!

a4t (·) = D (·) a3t−1 +
D(·)[1−D(·)]

2!
a2t−2 +

D(·)[1−D(·)][2−D(·)]
3!

a1t−3 +
D(·)[1−D(·)][2−D(·)][3−D(·)]

4!
...

16,

where πi is the solution to Θ
(z)

Φ(z)
=

∑
i πiz

i, and D (·) = d1

[
1 − F(·; γ, c)

]
+ d2F(·; γ, c).17

The instantaneous least-squares estimator uses a single wavelet coefficient from each

scale of resolution. That is, we only use d2
j,t j

to estimate V2
X

(
τ j

)
, where t j is the time index

of the jth level MODWT coefficient associated with time t in X (t), t = 0, . . . ,T − 1. The

time index t j can be meaningfully determined only if we use a linear phase wavelet filter.

In particular, let X0, . . . , XT−1 be a time series of interest, which is the realization of a

stationary process with variance σ2
X. If V2

X

(
τ j

)
designates the wavelet variance for scale

τ j ≡ 2 j−1, then we have

σ2
X ≡

J∑

j=1

V2
X

(
τ j

)
. (53)

The wavelet variance is estimated using the MODWT coefficients through

V2
X

(
τ j

)
≡ 1

T − L j + 1

T−1∑

t=L j−1

d2
j,t, (54)

16We note that a time-varying d generates an infinite dimensional memory parameter. For that reason,

we use a classes of time-varying linear filters (see Surgailis (2008) and Philippe et al. (2008) for a robust

theoretical framework).
17D (·) = d1 + (d2 − d1)

[
1 + exp (−γ(· − c))

]−1
if the transition function is logistic and D (·) = d1 +

(d2 − d1)
[
1 − exp

(
−γ(· − c)2

)]
if the transition function is exponential

17



where d j,t is the MODWT wavelet coefficient of Xt at scale τ j and L j ≡
(
2 j − 1

)
(L − 1)+1

is the width of the scale τ j wavelet filter.

Formally, let the vector of dimension containing the wavelet coefficients be obtained

by the MODWT transform. The instantaneous least squares estimator d̂ILS E,t is given by

d̂ILS E,t =

∆J

J∑
j=J0

ln
(
τ j

)
Yt

(
τ j

)
−

J∑
j=J0

ln
(
τ j

) J∑
j=J0

Yt

(
τ j

)

2

∆J

J∑
j=J0

ln2
(
τ j

)
−

(
J∑

j=J0

ln
(
τ j

))2
+

1

2
, (55)

where ∆J = J − J0 + 1 and Yt

(
τ j

)
≡ ln

(
d2

j,t j

)
− psi (1/2) − ln (2), with psi as the digamma

function (see, also, a MODWT-based weighted least-squares estimator developed by Per-

cival and Walden (2000)). To decrease the variability of the estimates, ∆J should ideally

be set as large as feasible. This estimator, however, is independent of the entire time series

and utilizes only certain coefficients that are co-located in time.

In this paper, we use an iterative procedure by performing multi-step estimation given

by Boubaker (2017) to efficiently estimate a time-varying long-memory model defined,

respectively, by equations (??) and (??).

3.3 Lahiani and Scaillet (2009) estimator

This method introduces a new class of threshold ARFIMA models to account simultane-

ously for long-memory and regime switching. The threshold effect appears in the autore-

gressive and/or the fractional-integration parameters which we can test for using LM tests.

Let X (t), t = 0, . . . ,T−1 be a stochastic process defined by equation (??) the long-memory

threshold ARFIMA(p, d, q) model. The ARFIMA(p, d−, d+, q) can be defined as follows:

Φ (B) (1 − B)d− X (t)− + Φ (B) (1 − B)d+ X (t)+ = Θ (B) ε (t) , (56)

where
(
X (t)− , X (t)+

)
= ((X (t) − u−)1 {zt ≤ δ} , (X (t) − u+)1 {zt > δ}), the threshold pa-

rameter is δ, and zt−1 = z (ε (t − 1) , · · · , ε (t − p)) is a known function of the noise terms.

The fractional integration parameters are d− when zt−1 ≤ δ and d+ when zt−1 > δ. The er-

rors ε (t), however, are assumed to be i.i.d. N(0, σ2
ε). Lahiani and Scaillet (2009) introduce

a more general model for jointly modeling the threshold affects the long and short memory

of the ARFIMA model to capture the two properties of long memory and nonlinearities in

parameters of long and short memory. To test for a threshold effect in the parameters of

the ARFIMA models, we can apply an LM test under the null hypothesis of no threshold

effects. A threshold ARFIMA model reduces to a symmetric ARFIMA model. The pa-

rameter vector β decomposes into β =
(
β′

1
, β′

2

)
, where β1 = (d−, u−) and β2 = (d+, u+). The
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null hypothesis is H0 : β1 = β2, while the alternative hypothesis is H0 : β1 , β2. Under

the null hypothesis, the parameter is not identified, and has to be treated as a nuisance

parameter.

In this case, we use the reparameterization β = β1 − β2, which amounts to a test for

β = 0. Then, we can use the SupLM-statistic or the ExpLM-statistic under a local-to-null

approach.

4 Empirical results

This section contains an empirical application of ARFIMA(p, d, q) and TV-ARFIMA(0, dt, 0)

models to modeling the dynamics of CPI time series. First, we describe the data, then we

present the empirical results.

4.1 Data description

The data consist of monthly observations on the seasonally adjusted U.S. Consumer Price

Index (CPI) and are obtained from the data segment on the R.J. Shiller website

(http://www.econ.yale.edu/ shiller/data.htm), covering 1871:01 to 2018:04 and correspond-

ing to 1768 observations. We define the inflation rate as the annualized monthly change in

the log of CPI.

Table 1 reports the key descriptive statistics of the inflation series for the full sample

and four subsamples, corresponding to the classical gold standard period (1870-1914), the

interwar period (1915-1944), the Bretton Woods period (1945-1971) and the post-Bretton

Woods period (1972 to present). Over the entire sample, inflation averages, on an annual

basis, approximately 2 percent. But, compared over the different monetary regimes, av-

erage inflation shows some interesting characteristics. For example, during the period of

the classical gold standard, average inflation, on an annual basis, is -0.4788 percent, al-

though the period was characterized by two decades of secular deflation, followed by two

decades of secular inflation (Bordo and Redish, 2003), with a maximum of 81 percent and

a minimum of -81 percent. This is, however, the only period when inflation, on average,

is negative. In the interwar period, inflation averages 1.88 percent, while during the Bret-

ton Woods era, inflation averages about 3 percent. The post-Bretton Woods period, on

the other hand, witnesses an average inflation of about 4 percent, with a maximum and

minimum of 21 and -23 percent, respectively.

The minimum and maximum values indicate that the inflation series varied consider-

ably over the four sub-periods. Inflation exhibits greater variability during the classical

gold standard. The remaining statistics provide evidence of fat tails and non-normality.

Inflation displays a strong asymmetric distribution characterized by positive skewness,
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mainly during the interwar and the Bretton Woods periods. The kurtosis statistics indicate

that inflation in all sub-periods and the entire period exhibits fat tails. The Jarque-Bera test

statistic rejects normality for the entire sample and the four sab-samples. This result is not

surprising and is frequently found in the empirical literature on inflation persistence. 18

Table 1: Summary statistics of the U.S. monthly inflation series (in percent)

1870-2018 1870-1914 1915-1944 1945-1971 1972-present

Mean 2.0352 -0.4788 1.8888 3.0984 3.8952

Median 1.6632 0.0000 0.0000 3.1452 3.5424

Maximum 81.6636 81.6636 58.548 68.5896 21.4764

Minimum -81.6636 -81.6636 -38.5056 -10.1712 -23.2056

Std. Dev 12.5304 19.4304 11.5884 6.462 4.5312

Skewness -0.1401 0.0932 0.4298 3.8601 -0.0928

Kurtosis 9.6554 4.8247 4.9526 36.0543 6.0015

Jarque-Bera 3266.963 73.8764 68.2789 15554.59 209.52

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Obs. 1767 527 360 324 556

4.2 Time-invariant long-memory result

First, we estimate the fractional-integration parameter (d) over the whole sample period

to verify the presence of long-range dependence. For that, we consider several estimators

in both the time and wavelet domains. In the time domain, we consider the GPH (1983)

estimator that is theoretically valid for 0 < d < 0.5. If the estimate of the memory param-

eter is on the verge of stationarity, we need to consider an estimator that is consistent for

d > 0.5 as well as 0 < d < 0.5. Further, if the number of frequencies m included in the

regression is restricted such that m = O
(
T 4/5

)
, then we obtain the asymptotic normality

(see Hurvich et al. (1998)). In addition, we use the Exact Local Whittle estimator devel-

oped by Shimotsu and Phillips (2005). It is a semi-parametric estimator, generally giving

a good estimation method for the memory parameter in terms of consistency and limit dis-

tribution. This estimator is consistent and has an N
(
0, 1

4

)
limit distribution for all values of

d if the optimization covers an interval of width less than 9
2

and the mean of the process is

known. Whereas, in the wavelet domain, we apply some ordinary least-squares estimators

18In addition, we apply three tests to assess the stationarity of the inflation rate series. The ADF and

PP test statistics (with and without a constant) overwhelmingly reject the null hypothesis of unit root at the

1-percent level. The KPSS test (with and without a constant), on the other hand, confirms these results by

failing to reject the null hypothesis of stationarity at the 1-percent level. Detailed results are available on

request.

20



of the long-memory parameter from a fractionally-integrated process. The first estimator

is a semi-parametric wavelet based estimator for the Hurst parameter as proposed by Abry

and Veitch (1998). Under the general conditions and the Gaussian assumptions, this es-

timator is unbiased and efficient. The second estimator is developed by Jensen (1999b)

based on a log linear relationship between the variance of the wavelet coefficients from

the long-memory process and its scale equal to the long-memory parameter. This log-

linear relationship yields a consistent ordinary least-squares estimator. The third estimator

is the wavelet GPH estimate as proposed by Lee (2005) also known as the wavelet log-

periodogram regression method. The fourth estimation method is the Wavelet Exact Local

Whittle (WELW) estimator that constitutes an extension of the ELW estimator of Shimotsu

and Phillips (2005) defined by Boubaker and Péguin-Feissolle (2013). They use the local

Whittle method, but their likelihood function is based on the wavelet coefficients and their

estimator is deduced from the asymptotic consistency of these coefficients.

Table 2 summarizes the results of the six estimators. In addition, it reports the average

of the Boubaker (2017) time-varying estimates, i.e., d̂ILS E

Table 2: Estimation results of constant fractional integration parameter

rt d̂GPH d̂ELW d̂WOLS 1
d̂WOLS 2

d̂WGPH d̂WELW d̂ILS E

d̂ 0.2845∗∗∗ 0.2975∗∗∗ 0.2548∗∗∗ 0.2627∗∗∗ 0.2853∗∗∗ 0.2977∗∗∗ 0.2981∗∗∗

Note: d̂GPH is the GPH estimator of Geweke and Porter-Hudak (1983), d̂ELW is the Exact Local Whittle

estimator of Shimotsu and Phillips (2005), d̂WOLS 1
is the estimator of Abry and Veitch (1998), d̂WOLS 2

is the

estimator of Jensen (1999b), d̂WGPH is the wavelet GPH estimator of Lee (2005), d̂WELW is the wavelet ELW

estimator of Boubaker and Péguin-Feissolle (2013), and d̂ILS E is the mean of instantaneous least-squares

estimator given by d̂ILS E =
1
T

∑T
t=1 d̂ILS E,t, where d̂ILS E,t is the instantaneous least-squares estimator and T

is the number of observations. ∗∗∗indicate significance at the 1% significance.

We see that, for all estimation methods, strong empirical evidence exists of long-

memory behavior in the whole period since the fractional-integration parameter d̂ is posi-

tive and less than 0.5.

For comparison purposes, we present in Table 3 the estimation results of ARFIMA

(1,d,1) model

Table 3: Estimation results of ARFIMA(1, d, 1) model

φ̂1 θ̂1 d̂ û

rt 0.6268∗∗∗ -0.7083∗∗ 0.2782∗∗∗ 0.0015∗

Note: ∗∗∗indicate significances at the 1% significance,∗∗indicate significances at the 5% significance and
∗indicate significances at the 10% significance.
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The ARFIMA results, which allow for short-term dynamics, provide further empirical

evidence that inflation is reactionary and persistent. Finally, we note that the estimate

on the lagged inflation in the AR(1) model is 0.2827, significant at the 1% level. One

limitation of these estimators is their assumption that the fractional-integration parameter

is constant and that the effect of dependence persists over time. In practice, however, the

fractional-integration parameter and the persistence may vary over time. As announced

previously, we estimate first the time-varying fractional-integration parameter using both

approaches of Boubaker (2017) and Lahiani and Scaillet (2009).

Tables 4 and 5 report the empirical results. In Table 4, we report the time-varying

estimates of the fractional-integration parameters, using the Boubaker (2017) approach.

The estimates in the two regimes, d̂1 and d̂2, are positive and less than 0.5, which suggests

that inflation is a stationary, long memory, mean-reverting process in both regimes. The

estimate of the slope parameter γ̂ is positive and significant, indicating that the logistic

function is increasing. The estimate of the threshold parameter ĉ defines the transition

point from the first to the second regime. The likelihood ratio (LR) test statistic of 124.359

rejects the null hypothesis of equality of d̂1 and d̂2. We compute the test statistic as LM =

2(LA − L0), where LA is the log-likelihood under HA (that the true model is a time-varying

ARFIMA), and L0 is the log-likelihood under H0 (that the true model is a time invariant

ARFIMA). The test statistic is asymptotically chi-squared distributed with one degree of

freedom, equal to the number of restrictions in the test.

In Table 5, we report the time-varying estimates of the fractional-integration param-

eters using the Lahiani and Scaillet (2006) estimation method. The estimates in the two

regimes, d̂+ and d̂−, and positive and less than 0.5, also suggesting that inflation is a station-

ary, long memory, and mean reversing process in both regimes. The fractional integration

parameter in the second regime, d+, is significantly less than the fractional-integration

parameter in the first regime, d−.

The LR test (84.572) rejects the null hypothesis of equality of d+ and d−. In com-

parison, the 1% critical value of the chi-squared distribution with 1 degree of freedom is

6.643.

Table 4: Estimation results of time-varying fractional integration parameter Boubaker (2017)

rt d̂1 d̂2 γ̂ ĉ

d̂ILS E,t 0.2589∗∗∗ 0.2641∗∗∗ 0.1978∗∗∗ 0.2324∗∗∗

Note: d̂ILS E,t is the instantaneous least squares estimator of Boubaker (2017). ∗∗∗indicate significances

at the 1% significance.
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Table 5: Estimation results of time-varying fractional-integration parameter Lahiani and Scaillet (2009)

rt d̂− d̂+

d̂S 0.2252∗∗∗ 0.1463∗∗∗

Note: d̂S is the threshold estimator of Lahiani and Scaillet (2009). ∗∗∗indicate significances at the 1%

significance.

We observe, however, that we cannot compare the two models since they are not

nested. The only way to assess the superiority of one method over the other is in terms of

predictive performance. We undertake this task in the next section.

5 Predictive performance

The empirical results presented in the previous section raise an important issue, which any

empirical investigation cannot ignore. That is, does an estimator exist, among the ones

discussed in this paper, that exhibits a statistical superiority with respect to the others? In

this section, we present a comparative analysis of the forecast performance of our alter-

native estimators. Specifically, we evaluate the in-sample and out-of-sample forecasting

performance for different estimation techniques. Concerning the out-of-sample forecast-

ing performance, we estimate the models starting with the in-sample period from t0 to

t1 − 1 and forecast inflation for the periods t1 through ts. We then re-estimate the model

from t0 to t1 and forecast inflation for the period through t1 + 1 to ts + 1. This procedure

continues until all the data are exhausted. To evaluate the accuracy of the forecasts, we ap-

ply two evaluation criteria, namely the mean squared error (MSE) and the mean absolute

error (MAE), given respectively by

MS E =
1

T − t1

N∑

t=t1

(
rt+s − r̂t,t+s

)2
, (57)

MAE =
1

T − t1

N∑

t=t1

∣∣∣(rt+s − r̂t,t+s

)∣∣∣ . (58)

where T is the number of observations, T − t1 is the number of observations for predic-

tive performance, rt+s is the inflation series through period t + s, and r̂t+s is the predicted

inflation at horizon s at time t.

Additionally, we employ the Diebold-Mariano (1995) test to compare the predictive

accuracy of two competing forecasts. The Diebold-Mariano test uses a loss function asso-

ciated with the forecast error of each forecast and tests the null that the expected differential
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loss is zero, that is, E(dt) = 0, where the loss differential dt = h(e1t) − h(e2t). The two loss

functions are computed as follows:

h(e1t) = h(ŷ1t − yt), (59)

and

h(e2t) = h(ŷ2t − yt), (60)

where yt is the actual value of the series and ŷ1t and ŷ2t are two predictions for yt, t =

1, 2, ...T . In most cases, the loss function is a square-error loss function or an absolute-

error loss function. The hypotheses of interest are as follows:

H0 : E(h(e1,t+h) − h(e2,t+h)) = 0, (61)

and

HA : E(h(e1,t+h) − h(e2,t+h)) , 0, (62)

where h ≥ 1 is the forecast horizon. The relevant statistic of the test, denoted by DM, is

given by

S 1 =
d̄√
V̂(d̄)

→ N(0, 1), (63)

d̄ =

n∑
t=1

dt

n
, (64)

V̂(d̄) =

γ̂0 + 2
n−1∑
k=1

γ̂k

n
, and (65)

γ̂k =

n∑
t=k+1

(dt − d̄)(dt−k − d̄)

n
. (66)
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The DM test has a standard normal limiting distribution under the null hypothesis.

We evaluate the predictive performance of the alternative long memory models of in-

flation estimated in section 4 (Geweke and Porter-Hudak 1983; Shimotsu and Phillips

2005; Jensen 1999; Veitch and Abry 1999; Lee 2005; Boubaker and Peguin-Feissolle

2013; Boubaker 2017) with the addition of the naı̈ve AR(1) model and the ARFIMA (1,

d, 0). We take into consideration four time horizons, 1-month, 6-months, 12-months, and

24-months ahead forecasting horizons.

The DM test uses the ILSE,t (Boubaker 2017) estimator as a benchmark and tests

whether the superiority of the ILSE,t forecast is statistically significant or is simply due

to in-sample variability. The results of the in sample predictive performance for horizons

s = 1, 6, 12, and 24 months, where the model parameters are estimated once using the

entire sample and are reported in Table 6. The results of out-of-sample forecasting for

the same horizons are tabulated in Table 7. In this case, the first estimation sample period

covers approximately the first half of the total sample (i.e., from 1870:2 to 1945:12), and

the remaining 856 observations are used for forecast evaluation, where the models are

estimated recursively and forecasts are generated starting from 1946:1 up to 2017:4. We

generate, therefore, a sequence of 856 1-step ahead forecasts, 850 6-step ahead forecasts,

844 12-step ahead forecasts, and 832 24-step ahead forecasts.

Several comments about the findings are warranted. First, the results of the in-sample

as well as the out-of-sample forecasts suggest that all models perform in the short run

as well as the time-varying (Boubaker 2017) ILSE,t estimator. The only exception is

the AR(1) model, which is outperformed by the ILSE,t model at all four horizons. The

forecasts of the ILSE,t model, however, are preferred to the forecasts of the time invariant

models over longer horizons. The time varying ILSE,t outperforms the non-wavelet-based

estimators at s = 6, 12, and 24 in the case of the GPH, but only at s = 24 in the case of the

ELW model, and outperforms the wavelet-based estimators of Jensen (1999) and Veitch

and Abry (1999) at s = 6, 12, 24. On the other hand, the wavelet-based versions of the GPH

(Lee 2005) and ELW (Boubaker and Peguin-Feissolle 2013) do not exhibit a significant

improvement over their corresponding original estimators and are outperformed by the

ILSE,t estimator at the same forecasting horizons as their non-wavelet-based counterparts.

Second, the ILSE,t (Boubaker 2017) forecasting performance is as accurate as the

time-varying model of Lahiani and Scaillet (2009). The MSE and MAE values of the

Boubaker (2017) model are smaller than those of the Lahiani and Scaillet (2009) model,

but this reduction is not sufficient enough to reject the DM null hypothesis of equality of

predictive accuracy.

Third, for the in-sample and out-of-sample forecasting performance, predictability

does increase as we attempt to forecast further into the future. As the forecasting horizon

increases, long-memory models become more and more useful. This result may reflect the
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mean-reversion characteristics of inflation over longer time horizons, where a steady rise

of the forces of mean reversion is detectable in all models (Ca’ Zorzi, Kolasa and Rubaszek

2016). A statistical explanation is that persistence in the ARFIMA model dissipates in the

long run (Bondon 2005).
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Table 6: In-sample forecasts

Criteria s = 1 s = 6 s = 12 s = 24

d̂GPH MS E 0.0231 0.0143 0.0112 0.0106

MAE 0.1471 0.1228 0.0953 0.0921

DM 1.6784 1.9856 2.4384 2.6872

d̂ELW MS E 0.0229 0.0141 0.0108 0.0101

MAE 0.1398 0.1188 0.0912 0.0852

DM 1.1169 1.5364 1.7782 2.1582

d̂WOLS 1
MS E 0.0247 0.0176 0.0132 0.0111

MAE 0.1643 0.1345 0.1032 0.0978

DM 1.6686 1.9852 2.4241 2.6472

d̂WOLS 2
MS E 0.0252 0.0186 0.0146 0.0112

MAE 0.1637 0.1412 0.1213 0.1123

DM 1.7236 2.0232 2.5421 2.7381

d̂WGPH MS E 0.0228 0.0140 0.0111 0.0105

MAE 0.1465 0.1224 0.0950 0.0920

DM 1.7216 1.9581 2.6748 2.8130

d̂WELW MS E 0.0227 0.0137 0.0105 0.0100

MAE 0.1396 0.1185 0.0911 0.0851

DM 1.1165 1.5361 1.7778 2.1575

d̂ILS E MS E 0.0222 0.0134 0.0096 0.0089

MAE 0.1376 0.1182 0.0891 0.0805

DM 1.5148 1.7121 1.8654 2.1832

d̂S MS E 0.0221 0.0134 0.0095 0.0088

MAE 0.1375 0.1178 0.0912 0.0789

DM 1.0126 1.2571 1.3244 1.5772

ARFIMA(1, d, 0) MS E 0.0234 0.0145 0.0102 0.0097

MAE 0.1415 0.1254 0.1137 0.0108

DM 1.6543 1.8213 1.9869 2.1872

AR (1) MS E 0.0258 0.0185 0.0162 0.0135

MAE 0.1639 0.1446 0.1310 0.1274

DM 2.2783 2.8564 3.2576 3.7983

d̂ILS E,t MS E 0.0218 0.0131 0.0092 0.0084

MAE 0.1371 0.1176 0.0889 0.0786
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Table 7: Out-of-sample forecasts

Criteria s = 1 s = 6 s = 12 s = 24

d̂GPH MS E 0.0242 0.0166 0.0124 0.0106

MAE 0.1563 0.1257 0.0974 0.0943

DM 1.7352 2.2145 2.6735 2.8462

d̂ELW MS E 0.0237 0.0158 0.0120 0.0101

MAE 0.1476 0.1195 0.0927 0.0874

DM 1.2157 1.5893 1.9145 2.2675

d̂WOLS 1
MS E 0.0256 0.0182 0.0137 0.0113

MAE 0.1668 0.1378 0.1047 0.0098

DM 1.8351 2.1245 2.7782 2.8589

d̂WOLS 2
MS E 0.0258 0.0177 0.0135 0.0110

MAE 0.1665 0.1374 0.1049 0.0964

DM 1.8762 2.2574 2.8574 2.9862

d̂WGPH MS E 0.0240 0.0163 0.0121 0.0108

MAE 0.1558 0.1221 0.0952 0.0924

DM 1.8271 1.9893 2.7352 2.8544

d̂WELW MS E 0.0236 0.0155 0.0118 0.0099

MAE 0.1472 0.1191 0.0914 0.0821

DM 1.2183 1.5985 1.8769 2.2542

d̂ILS E MS E 0.0231 0.0151 0.0098 0.0092

MAE 0.1437 0.1186 0.0895 0.0812

DM 1.5851 1.7874 1.8982 2.2145

d̂S MS E 0.0239 0.0161 0.0119 0.0109

MAE 0.1481 0.1226 0.0918 0.0921

DM 1.0134 1.3852 1.4986 1.6980

ARFIMA(1, d, 0) MS E 0.0245 0.0167 0.0119 0.0098

MAE 0.1534 0.1275 0.0092 0.0092

DM 1.4765 1.6572 1.8531 2.1437

AR (1) MS E 0.0267 0.0187 0.0165 0.0137

MAE 0.1642 0.1452 0.1315 0.1276

DM 2.2953 2.9845 3.3741 3.9856

d̂ILS E,t MS E 0.0227 0.0148 0.0097 0.0090

MAE 0.1415 0.1182 0.0893 0.0803
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6 Conclusion

The last few decades of macroeconomic research have resulted in a vast array of important

contributions in the area of long-memory modeling and forecasting of inflation. We obtain

estimates of inflation persistence in the United States using monthly data from 1870:02 to

2018:04 from several different estimators. The estimators include the following: (1) the

Jensen (1999) wavelet version of OLS (WOLS1); (2) the Veitch and Abry (1999) wavelet

version of OLS (WOLS2); (3) the Geweke and Porter-Hudak (1983) log periodogram es-

timator (GPH); (4) the Lee (2005) wavelet version of the GPH estimator (WGPH); (5) the

Shimotsu and Phillips (2005) exact local Whittle (ELW) estimator; (6) the Boubaker and

Peguin-Feissolle (2013) wavelet version of the exact local Whittle (WELW) estimator; (7)

the average estimator of Boubaker (2017); (8) the ARFIMA(1,d,1). One drawback of these

methods is their assumption that the parameter d measures inflation persistence as a con-

stant in the sample. In empirical applications, especially when dealing with historical se-

ries like ours, this assumption may be too restrictive, since we cannot exclude the potential

presence of problems of structural breaks and policy shifts. Consequently, we introduce

two long memory estimators that assume the long memory parameter d is time-varying:

(10) the Boubaker (2017) instantaneous least squares (ILSE) estimator, which accounts for

long memory and smooth transition regimes (STR); and, the Lahiani and Scaillet (2009)

estimator that simultaneously accounts for long-memory and threshold effects. For all es-

timation methods, we find strong evidence that United States inflation is a stationary, but

persistent, process, defined by a fractional process with integration parameter positive and

less than 0.5. To evaluate the forecasting performance of the alternative estimators, we

generate in-sample and out-of-sample forecasts that indicate that, for longer horizons, the

time-varying estimators proposed by Boubaker (2017) and Lahiani and Scaillet (2009) pro-

vide an appreciable improvement in predictive performance relative to non-time-varying

long-memory forecasts. For shorter horizons, however, the forecasting improvements are

not statistically significant with the exception of the AR(1) estimator. This evidence is

encouraging and suggestive of the potential usefulness of nonlinear fractional modeling

and forecasting of inflation.
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