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Long non-coding RNAs (lncRNAs) are major components of cellular transcripts that are

arising as important players in various biological pathways. They have received extensive

attention in recent years, regarded to be involved in both developmental processes

and various diseases. Due to their specific expression and functional diversity in a

variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis

and therapy. Studies have shown that lncRNAs with high specificity and accuracy

have the potential to become biomarkers in cancers. LncRNAs can be noninvasively

extracted from body fluids, tissues and cells, and can be used as independent or auxiliary

biomarkers to improve the accuracy of diagnosis or prognosis. Currently, the most well-

recognized lncRNA is PCA3, which has been approved for use in the diagnosis of

prostate cancer. Moreover, the underlying mechanisms of lncRNAs were explored as

therapeutic targets, which have been investigated in clinical trials of several cancers.

In this review, we presented a compilation of recent publications, clinical trials and

patents, addressing the potential of lncRNAs that could be considered as biomarkers

or therapeutic targets, with the hopes of providing promised implications for future

cancer therapy.
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INTRODUCTION

Cancer is a life-threating disease with rising morbidity and mortality (1). Despite tremendous
progress made in recent years, there are still a number of issues in cancer treatment that need
improvements, such as delayed diagnosis and poor prognosis (2). Most tumor biomarkers or
therapeutic targets currently in clinical use are proteins. However, only 2% of human genome
is translated into proteins. Therefore, we may need to focus more on non-coding regions, where
more cancer mutations occur than in coding regions (2, 3). In recent years, long non-coding RNAs
(lncRNAs), which occupy the majority of non-coding RNAs (ncRNAs), are hotspots in cancer
research. Due to the large number of lncRNAs, with an estimate of 102,000, lncRNA-based research
holds great promise in cancer treatment (3, 4).

LncRNAs are non-coding transcripts with more than 200 nucleotides in length, and most of
them remain in the nucleus after transcription (5, 6). Due to their low expression levels, lncRNAs
were initially considered to be transcription noise. With better understanding, lncRNAs are found
to be involved in transcriptional and post-transcriptional regulation, through interactions with
DNA, RNA or proteins (6). LncRNAs promote or inhibit the formation of transcription loops,
and recruit or block regulators, regulating gene transcription (7–9). Besides, lncRNAs also regulate
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mRNA splicing and act as precursors to other ncRNAs, such
as microRNAs (miRNAs) (10). LncRNAs function as oncogenes
or tumor suppressors, taking part in various signaling pathways
(11). Of note, by analyzing the expression of lncRNAs in
peripheral blood, urine sediments or tissue samples, a series
of lncRNAs were identified with great promise as auxiliary or
independent biomarkers in cancer diagnosis and prognosis (12).

There are currently few biomarkers or therapeutic agents
targeting lncRNAs. Prostate cancer antigen 3 (PCA3), an early
diagnostic biomarker for prostate cancer (PCa), is the first and
only approved lncRNA for clinical use at this time (13). There
are also some lncRNAs undergoing clinical trials or having
been patented, which we will discuss in more details below.
Moreover, other research of lncRNA-based drug discoveries,
including UBE3A-ATS in Angelman syndrome, SCN1ANAT in
Dravet syndrome and SMN-AS1 in spinal muscular atrophy, also
illustrate the potential of lncRNAs (14–17).

In this review, we discuss the mechanisms by which lncRNAs
function. A thorough understanding of these mechanisms is
critical for the development of anti-tumor drugs. We next
summarize a collection of recent publications, clinical trials, and
patents and also discuss the potential of lncRNAs that could
be considered as biomarkers or therapeutic targets in cancer
diagnosis, prognosis and treatment.

MECHANISMS OF LncRNAs

Understanding how lncRNAs work is critical to know how
they cause diseases such as cancers, and therefore to their
potential applications in cancer treatment. Based on current
studies, lncRNAs are implicated in many intracellular molecular
interaction networks. The levels of their expression are regulated
by many factors, and they are also involved in complex networks
as regulatory factors. The myriad mechanisms behind these
complex regulations can be summarized in four ways, including
signal, scaffold, decoy, and guide (Figure 1) (5, 18, 19).

(i) Some lncRNAs are expressed at different levels in various
cell states. Thus, they can be turned into signals, serving
as indicators to reflect development or disease status (18,
20). For example, Xist, which is typically transcribed by
the inactive X chromosome, can be used to indicate X
chromosome inactivation (21, 22).

(ii) LncRNAs can bind proteins and act as scaffolds to assist
in the assembly of regulatory complexes (23). In this way,
HOTAIR interacts with polycomb repressive complex 2
(PRC2) to recruit EZH2 to promote H3K27 trimethylation
or LSD1 to demethylate H3K4me2 (23, 24).

(iii) As decoys, lncRNAs regulate gene expression by preventing
the binding of transcription regulators (19, 25). For

Abbreviations: LncRNA, Long Non-coding RNA; ncRNA, Non-coding RNA;

miRNA, MicroRNA; PCA3, Prostate Cancer Antigen 3; PCa, Prostate Cancer;

ceRNA, Competing Endogenous RNA; PSA, Prostate-specific Antigen; AUC,

Area Under the Curve; EGRF, Epidermal Growth Factor Receptor; GC, Gastric

Cancer; SNPs, Single Nucleotide Polymorphisms; CRC, Colorectal Cancer; OS,

Overall Survival; TCC, Bladder Transitional Cell Carcinoma; EMT, Epithelial to

Mesenchymal Transition; HCC, Hepatocellular Carcinoma.

example, p53-dependent PANDA inhibits proptosis by
directly sequestering of NF-YA (26). In addition, as
competing endogenous RNAs (ceRNAs), lncRNAs also
bind miRNAs and prevent RNA degradation (27). This is
common in cancers. H19 acts as ceRNAs both for miR-
17-5P in thyroid cancer and for miR-152 in breast cancer
(27, 28).

(iv) LncRNAs can also guide the transcription factors to specific
sites (29). In this way, MEG3 guides PRC2 and forms a
complex with DNA (30). It is noteworthy that each type is
not mutually exclusive, and an individual lncRNAmay have
one or more of these functions (20).

LncRNAs IN CANCER DIAGNOSIS

Some lncRNAs are highly tissue specific and abnormally
expressed in cancer, which can be extracted noninvasively from
the circulation (31, 32). These features render them potential
candidates for cancer diagnosis (Table 1). The one most well-
recognized is PCA3, a biomarker for early diagnosis of prostate
cancer (PCa) (67). As mentioned above, it has been approved
in clinical use (13). The diagnosis of PCa currently relies on the
elevation of serum prostate-specific antigen (PSA) (12). However,
its specificity in discriminating benign and malignant tumors
is low, which may lead to over-diagnosis in low-risk patients
(68). PSA is a good predictor when its level is above 10 ng/ml.
However, in the gray area of PSA, some auxiliary indicators are
still needed to improve diagnostic accuracy (12).

Urine PCA3 diagnosis is not only highly sensitive (58–82%)
but also has excellent specificity (59–76%) (33). PCA3 is up-
regulated 60 to 100-folds in more than 95% of PCa specimens
(18, 33). It is noteworthy that PCA3-based assays are still
effective when cancer cells make up <10% of the examined
sample (33). PCA3 silence leads to an increase in the expression
of E-cadherin, Claudin-3, and Keratin-18, while a decrease of
Vimentin. The association between PCA3 and these traditional
protein biomarkers provides more support for its application as
diagnostic marker (34).

MALAT1 can be used as an auxiliary biomarker to improve
the accuracy of early diagnosis, especially in the gray area of
PSA. Its diagnostic accuracy is higher than the previous index,
free/total PSA ratio (12, 69). In fact, one of the MALAT1 assay
has been patented in PCa diagnosis (CN104498495).

H19 is another lncRNA with high diagnostic sensitivity
and specificity. In breast cancer, patient plasma H19 levels
were elevated, with an sensitivity of 0.81 (AUC, area under
the curve), higher than traditional diagnostic biomarkers (42).
H19 is related to many important miRNAs in the network
of cancer-related functions (70). It is a precursor of miR-675
which has downstream targets like c-CbI, CbI-b and Igf1r
(71, 72). H19/miR-675 also causes the activation of EGRF
and c-Met, which leads to the sustained activation of Akt
and Erk (43). Besides, H19 acts as a ceRNA for Let-7 to
maintain the activation of breast cancer stem cells (73). The
potential of miRNAs like miR-675 and Let-7 as biomarkers
has been reported in cancers, which implicate the diagnostic
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FIGURE 1 | (a) Mechanism: (i) LncRNAs can serve as signals to reflect the activity of pathways or developmental status. (ii) LncRNAs act as scaffolds by recruiting

proteins to regulate gene expression. (iii) LncRNAs can be used as decoys to block activities of proteins and can also bind to microRNA (miRNA) to inhibit

miRNA-induced degradation. (iv) As guides, lncRNAs recruit transcription regulators to specific sites. (b) Diagnosis & Prognosis: As biomarkers for cancer diagnosis

and prognosis, lncRNAs can be extracted from tumor tissues, peripheral blood and urine samples of patients. In prognosis, they are correlated to patient’s proliferation,

metastasis, invasion or survival. (c) Therapy: BC-819, fused with H19 promotor and Diphtheria toxin gene, was used in phase 2 clinical trial. Gene editing such as

CRISPR/Cas9, small interfering RNA (siRNA) and antisense oligonucleotides (ASOs), were used to silence targeted lncRNAs. RISC RNA-induced silencing complex.

potential of H19 (74). In gastric cancer (GC), H19 had
a high diagnostic ability with an AUC of 0.838. A patent
has been filed for gastric cancer diagnosis with HOTAIR
and MALAT1 (CN105586399A), showing possible applications.
Notably, single nucleotide polymorphisms (SNPs) of H19 are
used to predict the risk of cancer, such as rs2839698 and
rs2107425 genotypes are found to be related to decreased risk of
bladder cancer (75).

LncRNAs are usually aberrantly expressed and can be
extracted noninvasively from the circulation (32). Although some
lncRNAs overlap in various cancer, ∼60% of these abnormally
expressed lncRNAs are cancer type-specific (31). Recently, the
diagnostic potential of some lncRNAs has been implicated by
clinical trials (76). One report have shown that UCA1 was
sensitive for bladder cancer, especially in patients with superficial
G2-G3 (77). Another clinical trial is underway to explore
the possible application of CCAT1 in CRC (NCT04269746).
Moreover, lncRNAs can not only be used as an independent

biomarkers, but also can be combined with other lncRNAs or
proteins to improve the sensitivity and accuracy of diagnosis (76).

LncRNAs IN CANCER PROGNOSIS

The expression of lncRNAs in cancer correlates with overall
survival (OS), metastasis, tumor stage or grade, thus can
potentially serve as markers for prognosis (Table 1).

HOTAIR is transcribed from HOXC locus located at
12q13.13 (78). It has been proved to be poor prognostic
indicators of various cancers. Bladder transitional cell
carcinoma (TCC) patients with high HOTAIR have lower
overall survival, and positively associated with histological
grade (41).

An analysis of a large cohort containing 300 samples showed
that the increased expression level of HOTAIR in GC tissues
was correlated with peritoneal diffusion (55). In addition, in
diffuse GC, tissues with a high HOTAIR level showed more
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TABLE 1 | LncRNAs as diagnostic or prognostic biomarkers.

Cancera LncRNAs Expression Applications Referencesb

Prostate PCA3 Up Diagnosis (33–35), Approved

MALAT1 Up Diagnosis (36), CN104498495

LincRNA-p21 Up Diagnosis (37)

Bladder PTENP1 Down Diagnosis (38)

UCA1 Up Diagnosis (39)

SPRY4-IT1 Up Diagnosis (40)

HOTAIR Up Prognosis (41)

Breast H19 Up Diagnosis (42, 43)

MALAT1 Up/Downc Prognosis (44, 45)

Colorectal CCAT1 Up Diagnosis (46), NCT04269746, US20110097271A1

CCAT2 Up Prognosis (47, 48)

MALAT1 Up Prognosis (49)

MEG3 Down Prognosis (50)

HOTAIR Up Prognosis (51, 52)

Gastric HOTAIR Up Diagnosis (53, 54), CN105586399A

HOTAIR Up Prognosis (55–57)

MALAT1 Up Diagnosis (58), CN105586399A

MALAT1 Up Prognosis (59)

Liver MALAT1 Up Prognosis (60–62)

H19 Up Diagnosis (42), CN105132559

Esophageal CCAT2 Up Prognosis (48)

PCAT1 Up Prognosis (63)

Glioma CASC2 Down Diagnosis (64), CN103993088A

CRNDE Up Prognosis (65), CN103966339A

Thyroid HOTAIR Up Diagnosis (66), NCT03469544

aThe cancer types to which the indicated tissue corresponds.
bThe accession numbers of clinical trials or patents were list as follows.
cThe expression of MALAT1 in breast cancer is still controversial as described in the text.

venous infiltration and poorer overall survival (56). Besides,
HOTAIR is involved in tumorigenicity in pancreatic cancer and
can also cause CRC proliferation and metastasis mediated by
PCR2 complex (51, 52).

MALAT1, located on chromosome 11q13.1, is dysregulated
in many cancers (49). A cohort analysis of 169 patients showed
that patients with high MALAT1 expression levels had a worse
prognosis than the normal group (79). Moreover, upregulated
MALAT1 is closely related to hepatocellular carcinoma (HCC)
progression, and can be an independent biomarker for
recurrence after liver transplantation (80). However, the roles
of MALAT1 in breast cancer are still controversial. In previous
reports, MALAT1 acts as a ceRNA for miR-1/CDC42 axis to
enhance cell migration and invasion (44). On the contrary, Kim
et al. reported that MALAT1 acted as a metastasis suppressor
by preventing the binding of transcription factor TEAD and
its co-activator YAP (45). In addition, MALAT1 knockout leads
to different phenotypes in various cell lines and models, and
there is no clear explanation for this variation. Therefore, further
investigation is required before MALAT1 could be use as a
potential prognositic biomarker (81, 82).

CCAT2 showed extensive effects during proliferation and
metastasis in a variety of cancers (47). In fact, patients with high

CCAT2 had a lower overall survival and almost twice the risk of
death (48).

LncRNAs IN CANCER THERAPY

The aberrant expression of lncRNAs and their involvement in
diverse cellular processes make them possible targets for cancer
therapy. Clinical studies have demonstrated the importance
of studying the mechanisms of lncRNA. BC-819, a plasmid
containing the promoter of H19 and coding sequence of
diphtheria toxin, has been applied in clinical trials of bladder,
pancreatic and ovarian cancer (83, 84). The H19 promoter
allows diphtheria toxin to be specifically expressed in tumor
tissues. Thus, BC-819 can effectively ablate tumors, reduce tumor
growth, prolong recurrence time, and has low local toxicity
(83–85). We can also learn about the prospect of lncRNAs
from patent applications (86). For example, an inhibitor of
LINC01212 is used to treat melanoma (US2016271163). What’s
more, lncMyoD, acts directly as functional element on IMP1
and IMP2 for sarcoma therapy (WO2015020960). Furthermore,
although lncRNAs are considered with no protein-coding ability,
some special lncRNAs can be translated into micropeptides (87).
In fact, some patents utilized these polypeptides for antibodie
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design in cancer diagnosis and treatment, such as lncRNA-6585
and its antibody in cervical cancers (CN109337903A).

LncRNAs and their loci can be targeted for the design and
synthesis of specific nucleic acid sequences in therapy, such
as CRISPR/Cas9 design, small interfering RNA (siRNA) and
antisense oligonucleotides (ASOs). However, unlikemRNA,most
lncRNAs are located in the nucleus and have high-level structure
(88, 89). Oligonucleotide drugs must enter cells and bind to their
target RNA to function, which raises challenges for drug delivery
and intrinsic affinity (90). To address these issues, a common
approach is to modify the sequence of oligonucleotides, and the
development of nanomedicine to improve drug delivery.

(i) CRISPR/Cas9 silencing of NEAT1 or MALAT1 was
reported to inhibit metastasis of cancer cells (91). A patent
used CRISPR/Cas9 to silence UCA1 inhibited the growth
of cancer cells (CN106399306B). However, due to the
overlap of loci, CRISPR/Cas9 cannot be applied to the
silencing of all lncRNAs. In a genome-wide study including
15,929 lncRNA loci, only 38% were successfully silenced as
expected, while the remaining had a severe negative impact
on the expression of neighboring genes (91).

(ii) Both of siRNA and ASOs can effectively and specifically
silence the expression of target genes, making them essential
tools for research and clinical uses. Despite some challenges,
the progress of siRNAs as therapy drugs has evolved
from pre-design to clinical trials (92). Recently, a siRNA
targeting DDX11-AS1 has been patented in liver cancer
(CN108546702A). Compare to siRNA, ASOs enter the
nucleus more efficiently and bind to precursor RNAs near
the intron and exon junction, affecting the alternative
splicing process (93).

(iii) Methods for affinity and delivery improvement: Affinity of
oligonucleotides can be improved by constructing aptamers
(94). They can also be modified to reduce nuclease
degradation and increase their internal affinity (95, 96). For
delivery, one effective approach is to construct drug carriers,
such as in the form of gold nanoparticles (97).

DISCUSSION

In recent years, many studies have been devoted to lncRNAs in
cancer progression and treatment. Due to their highly specific
expression and diverse functions, lncRNAs hold great promise
for cancer diagnosis, prognosis and therapy. To the best of our
knowledge, however, the sole lncRNA that has been approved in
clinical use is PCA3 in the diagnosis of PCa. Although multiple

lncRNAs have been extensively investigated in clinical trials or

have been patented, their applications still have a long way to go.

Here we review potential lncRNAs that could be considered as

biomarkers or therapeutic targets and discuss some of the issues

that deserve special consideration.
First, the actual mechanisms by which lncRNA act are not

fully understood. Indeed, the developing of oligonucleotide drug

Genasense can be served as an informative case. Due to the lack
of in-depth understanding of the mechanism, the development
of Genasense failed, revealing the importance of understanding
the mechanism in drug development (93). Second, the low
conservation of lncRNAs, some of which are expressed only in
primates, makes it difficult to establish universal experimental
models (98). For themajority of lncRNAs, we have yet to establish
a suitable animal model, which is essential for understanding the
functions better. Third, although some experiments have been
conducted on the applications of lncRNAs, they are not very
reliable due to the small sample size. Moreover, for therapeutic
targets, it is important to study whether the dysregulated
expression of lncRNAs is the cause or a result of cancer.

Although there aremany challenges, the prospects and clinical
significance of lncRNAs cannot be overlooked in the long run.
A distinctive feature of lncRNAs is their high specificity in
tumor tissues and cells, making it possible for them to be
specific and accurate biomarkers (99). In addition, abnormally
expressed lncRNAs can be extracted non-invasively, showing
great potential to be more economical and less harmful.
Compared to protein-based anti-tumor drugs, lncRNA are more
refined and less toxic, and the low expression of lncRNA means
that only a small amount of inhibitors are needed to make a
difference (16). Besides, bioinformatics and computational tools
provide new opportunities for lncRNA biomarker development
(100). However, due to the lack of experimental evidence
and no further clinical validation, we do not discuss it here.
Although there are currently no lncRNA-based oncology drugs,
drugs targeting lncRNAs in other diseases will provide useful
clinical insights.

In conclusion, the intensive study of lncRNAs has brought
new hope for the diagnosis and treatment of cancer. Although
limitations exist, such as mechanisms, conservative, and
animal models, the successful application of PCA3 is a
great source of inspiration and impetus for clinical research
on lncRNAs. A comprehensive understanding of lncRNA’s
expression, structure, and mechanisms will help to open up a
new intervention, identifying novel and sensitive biomarkers and
therapeutic targets.
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