Review

Long Non-Coding RNAs Regulating Immunity
in Insects

Valluri Satyavathi '*, Rupam Ghosh 2 and Srividya Subramanian !

1 Centre of Excellence for Genetics and Genomics of Silkmoths, Centre for DNA Fingerprinting and

Diagnostics, Hyderabad 500 001, India; srividyas@cdfd.org.in (S.S.)
Indian Institute of Science Education and Research, Bhopal 462023, India; rupam@jiiserb.ac.in (R.G.)
*  Correspondence:vsatya@cdfd.org.in; Tel.: +91-04024749346; Fax: +91-4024749343

2

Academic Editor: George Calin
Received: 6 November 2016; Accepted: 7 March 2017; Published: 16 March 2017

Abstract: Recent advances in modern technology have led to the understanding that not all genetic
information is coded into protein and that the genomes of each and every organism including insects
produce non-coding RNAs that can control different biological processes. Among RNAs identified
in the last decade, long non-coding RNAs (IncRNAs) represent a repertoire of a hidden layer of
internal signals that can regulate gene expression in physiological, pathological, and immunological
processes. Evidence shows the importance of IncRNAs in the regulation of host—pathogen interactions.
In this review, an attempt has been made to view the role of IncRNAs regulating immune responses
in insects.
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1. Introduction

The success of insects in adverse environments indicates the advanced defense mechanisms
employed by these organisms. With the passage of time, some insect species became resistant to
most pathogens, and some remained susceptible to various infections. Insects exhibit both humoral
and cellular immune responses against pathogens. The lack of an adaptive immune system has
forced insects to choose immediate non-specific responses that include the production of antimicrobial
peptides, phenoloxidase, apoptosis, phagocytosis, encapsulation, and nodulation. With the advent of
molecular biology techniques, a large amount oftranscriptome data has been published and reviewed
on the model organism Drosophila melanogaster, while other insect species have been investigated to a
lesser extent. Transcriptome sequencing provides information on all transcripts occurring in different
cells and tissues [1,2], while RNA sequencing provides data on multiple classes of non-coding RNAs
(ncRNAs) [3-6].

Non-coding RNA represents a portion of RNA that does not code a protein, but contains
information and remains functionally active by regulating other genes. Although 70% of the
mammalian genome is transcribed, only a portion is used to produce proteins, and the rest produces
non-coding RNA as final functional product. The non-coding RNAs derived from introns may be
short (microRNAs) or long non-coding RNAs (IncRNA). The function of IncRNAs is assessed based on
their low coding potential [5]. Although in vitro translation experiments with IncRNAs detected no
formation of polypeptides, ribosome sequence analysis studies revealed that some annotated IncRNAs
are involved in translation by elongating ribosomes. It was estimated that the coding potential of
IncRNAs is low compared to that of coding RNAs. The evidence explains that many of the complex
genetic interactions and variations between species are due to the regulatory role of non-coding RNAs,
which seems to control gene expression during splicing, transcription, and/or translation.
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Although there are a number of excellent reviews describing IncRNAs in various genomes [6-10],
information on IncRNAs in insects is rather scattered. In insects, IncRNAs have been reported in
D. melanogaster [11], Anopheles gambiae [12], Apismellifera [13,14], and Bombyx mori [15]. The present
review is focused on the IncRNAs that are involved in immunity.

2. Identification and Classification of IncRNAs

The amount of noncoding genes varies among species, and only a small percentage of the
genome represents protein coding genes. The ratio of non-coding to coding genes increases as
the complexity of the organism increases. Earlier reports marked these “junk”regions as sponges
for mutation and maintenance of the genetic material in both structural and regulatory manners.
Recent findings suggest that ncRNAsdo contain information and regulate various levels of gene
expression. The regulation of genes coding for proteins by non-coding genes mostly takes place at the
transcriptional level (like enhancer sequences, alternative promoter sequences). However,even some
of the non-coding genes may be transcribed efficiently but not translated (e.g. ribosomal RNA(rRNA),
transfer RNA(tRNA). Though the importance of rRNA or tRNA has been known for ages, many other
non-coding RNAs have been discovered, whose functions are still largely unknown.

This is because IncRNAs are mostly unconserved from species to species, and are expressed
only in a space- and time-specific manner (e.g., expressed only in particular tissues or at particular
developmental time points). IncRNAs are mostly classified based on their position relative
to protein coding mRNAs like long intergenic IncRNAs, intronicIncRNAs, antisense IncRNAs,
transcribed pseudogene IncRNAs, and enhancer IncRNAs [16]. The IncRNAs can have either DNA
binding sites, protein binding sites, or both, and can participate in variety of cascades. The databases
dedicated to IncRNAs include LNCipedia and IncRNome [17,18], which describe their functions
based on literature. NonCode [19] contains ncRNA sequences on a dozen model organisms,
including D. melanogaster. It registers about 3193 IncRNAs from fruit fly predicted from RNASeq data,
and does not provide any information on functional aspects. RNA Central repository [20] also has a
IncRNA data base of a few insect models like fruit fly and honeybee.

In D. melanogaster, among various IncRNAs, the hsww- transcript was reported to form
perinuclear omega-speckles in the nuclei in response to heat shock [21], roXTandr0X2 found in the
male-specific lethal (MSL) protein complex affected dosage compensation [22], yellow-achaete intergenic
RNA(yar) IncRNA influenced circadian rhythms [23], CASK regulatory gene CRG IncRNA regulated
Ca?* /calmodulin-dependent protein kinase (CASK) transcription [24], and Sphinx IncRNA influenced
courtship behavior [25].

In Anopheles gambiae, 2949 IncRNAs have been reported from multiple life stages using
deep RNA-seq technology [12]. Jayakodi et al. identified 1514 intergenic IncRNAs (lincRNAs)
inApismelliferaand 2470 lincRNAs inApiscerana, and investigated their response to viral infection [13].
InA. mellifera, only six IncRNAs have been experimentally validated;four (Nb-1,Ks-1,AncR-1, andkakuser)
of them were related to behavior [26-28], and the other two (Incovlandlncov2) were associated with
ovary size [29].

3. IncRNAs in Mammalian Immune Response

Recent evidence indicates that IncRNAs have an important regulatory role in immunity and
host-pathogen interactions. Zhang andCao [30] reviewed the role of IncRNAs in development and
immune responses through different mechanisms, such as dosage compensation, imprinting, enhancer
function, transcriptional regulation, and post-transcriptional regulation. Although this review’s main
focus is on insects, due to the existence of few reports on IncRNAs in insects, a couple of mammalian
examples wherein IncRNAs are reported in the regulation of immune responses arediscussed.

The Guttman [31] group was the first to report a role for IncRNAs in innate immunity.
Using information from RNA-seq analysis, the group reported differential expression of IncRNAs
upon the activation of monocytes, macrophages, dendritic cells, and fibroblasts in mammals.
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Most of the IncRNAs—e.g.,THRIL (TNFx and hnRNPL related immunoregulatory lincRNA),
PACER (p50 associated COX-2 extragenic RNA), Inc-IL7R, and IL1(3-RBT46 [8,9,32-34] —were reported
to regulate immune responses in cis, while many other IncRNAs function in trans. Examples where
IncRNAs can target immune responses are receptors and the transcription factors nuclear factor kappa
B (NFkB) andSTAT3,whichregulate Toll, IMD, and JAK STAT signaling pathways.

In case of mice, Severe Acute Respiratory Syndrome (SARS) coronavirus infection of the lungs
resulted in differential expression of IncRNAs [35]. Additionally, IncRNAs were reported to express
following lipopolysaccharide (LPS) stimulation in mouse macrophages [10]. Following Pam3CSK
stimulation, an IncRNA named lincRNA-COX2 was reported to regulate about 1500 genes in mouse
macrophages [36].

Lethe isa pseudogene IncRNA activated by tumor necrosis factor (TNF) and interleukinl beta
(IL1B) was reported to negatively regulate nuclear factor kappa B, and is linked directly to the
control of inflammatory response [37]. Toll-like receptor signaling, which targets a variety of
immune related genes, also induces lincRNA-COX2, which interacts with heterogeneous nuclear
ribonucleoproteins [38].

NEAT1 expression is induced after Poly (IC) or influenza stimulation in HeLa cells,
which triggers the redistribution of SFPQ and increased CXCLS8 expression [39]. Ptprj-as1, IL13-RBT46,
and IL-13-enhancer RNA (eRNA) have been shown to regulate IL13 and CXCLS8 expression when
stimulated with LPS [12,40]. Long non-coding dendritic cell (IncDC) was reported to be essential for
the differentiation of monocytes into dendritic cells and triggering STAT3 [41]. In mice, infection due to
Theiler’s Virus and Salmonella was controlled by IncRNA NeST by epigenetic regulation of interferon
gamma IFNYy locus [42,43].
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Figure 1. Schematic representation of long non-coding RNA (IncRNA) regulation of immune response
pathway. It is hypothesized that IncRNAs can act as a decoy and titrates away dimerization of Toll on
the plasma membrane, resulting in dysregulation of the Toll signaling pathway. TIR-Toll/II-1 receptor
domain, SPE - spitzle processing enzyme, ANK- ankyrin repeat domain, AMP- antimicrobial peptides,
Dif-nuclear factor-kB like protein.
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4. IncRNAs in Insect Immunity

In case of insects, IncRNAs have been characterized only in few species like Drosophila,
Apismellifera, and Bombyx mori. Table 1 provides a list of IncRNAs identified in insects. The IncRNAs are
usually classified as those involved in development, behavior, or neural expression. Although IncRNAs
are reported in insects like Aedesgambiae, Anopheles gambiae, Danausplexippus, or Heliconiusmelpomene,
no in-depth functional analysis is available. In Triboliumcastaneum, numerous IncRNAs were reported
to express on the antisense strand of protein-coding genes localized in the Hox cluster [44]. In the case
of Nasoniavitripennis, a vast study on the transcriptome of testis tissue revealed the presence of four
putative ncRNAs [45]. In silkworm, deep transcriptome sequencing of 18 different tissues combined
with public RNA-seq datasets of three silkworm tissues revealed IncRNAs with low expression levels,
high spatial specificity, and low sequence conservation [46]. A proportion of IncRNAs were reported
to be involved in the biosynthesis, translocation, and secretion of silk proteins. Only one IncRNA
Fben-1 was reported from transcriptome sequencing of brain tissues of female moth collected from
fifth instar silkworm larvae [46,47]. Li et al. observed that some IncRNAs are transcribed from the silk
gland of B. mori, and reported their involvement in the repression of transcription by the epigenetic
modification of histones [48].

Table 1. IncRNAs reported in insects.

Species Gene Function Reference
Anopheles gambiae RNAseq

Apis mellifera AncR-1 Neural expression [27]
Kakusei RNA metabolism [14]
Ks-1 Neural expression [28]
Lnccov1/2 Autophagic cell death of ovarioles [29]
Nb-1 Putative role in polyethism [49]

Bombyx mori Fben-1 Biosynthesis, translocation, and secretion of silk proteins [46,47]
Drosophila melanogaster bithora Development of abdominal segments [50]
hsr-w Heat shock stress [21]
r0X1/2 Dosage compensation [22]
sphinx Regulates sensory circuits [25]
yar Regulator of yellow and achaete transcription [23]
Plutella xylostella lincRNA Detoxification and toxin related metabolism [51]
Plasmodium falciparum IncRNA-TARE Plays a role intranscriptional regulation [52]
Var Regulates var gene activation [53]
PAN Facilitates switch from latent to lytic infection [54]
Spodoptera frugiperda LNCR Formation of heterochromatin [55]

Several IncRNAs were found to be selectively expressed in the domesticated silkworm B. mori
upon Bombyx mori Nucleopolyhedrovirus (BmNPV) infection, but little is known about their functional
role. We have identified 1173 putative IncRNAsfrom a total of 11,160 full-length cDNAs (KAIKObase)
based on the criteria that the sequences had no exonic overlap in sense with reported protein coding
genes. About 37 such sequences were tested for their protein coding potential. Based on coding
potential and differential expression pattern in thecomplementary DNA(cDNA) library derived from
midgut and fat body tissues of BmNPV infected fifth instar larvae of resistant (SBNP1) and susceptible
(CSR?2) silkworm strains, four putative IncRNA were selected for further investigation. Time course
analysis revealed differential expression of IncRNAs in the midgut and fat body tissues in the resistant
and susceptible strains of B. mori.Out of four IncRNAs, IncRNA4 (scaffold nscaf2674 and sequence
length 1,473,305-1,473,715) with a difference in FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) as 4 and —1.33 coding potential was identified to express differentially (410 bp) only in
the susceptible CSR2 strain [56]. IncRNA 4 showed high expression at 48 and 96 h post infection both
in the fat body and midgut tissues of the infected B. mori larvae.
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5. Mode of Action

The mode of action of the IncRNAs in immunity has so far not been elucidated in any insect.
IncRNAs have been reported to regulate biological processes during development or following a stress
by means of epigenetic control of chromatin (re)organization or RNA sequestration in a nuclear
compartment and/or neighboring cis-regulation of specific mRNA genes.In the case of B. mori,
we identified IncRNA4, whichshowed involvement in Tollsignaling. The comparative studies on
the expression of levels of IncRNAs and immune genes (Tolls) revealed that IncRNA4 followed a
similar expression pattern comparable to that of Toll4. We speculate that IncRNA4 might be acting
as a decoy and titrates away the dimerization of Toll on the membrane, preventing activation of Toll.
Figure 1 depicts regulation of immune response pathway by IncRNA. In general, dimerization of Toll
is required for phosphorylation of Cactus and transport of rel factors Dorsal and Dif to the nucleus to
produce antimicrobial peptides.

The knowledge in the field of IncRNAs, and their mode of action and function can provide deep
insight into the evolution and function of genomes during host—pathogen interactions.

6. Conclusions

Studies in the host-pathogen interaction have mostly been restricted to the protein coding genes.
Although huge in size, thenon-coding regions of the genome are not investigated. Recent studies are
opening a new layer of regulation of cellular processes, including immune response by non-coding
RNAs. Current studies indicate that the present knowledge is only the tip of the iceberg, and much
research is needed in this field to solve the non-coding enigma. The identification of IncRNAs continues
to pose a challenge due to a lack of evolutionary conservation as well as lack of protein product,
which hinders the development of a good algorithm for its annotation. Despite these limitations,
many IncRNAs have been studied and a mode of regulation has been proposed which awaits
early attention from researchers. Proper understanding of host—pathogen interaction is essential to
decode the intricacies of the immune mechanisms employed by organisms against various pathogens,
especially viruses. Delving into the depth of mechanisms will allow us to provide a simple model
system to understand the antiviral mechanism of higher eukaryotes.
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