
REVIEW

Long noncoding RNA functionality in
imprinted domain regulation

William A. MacDonald1,2, Mellissa R. W. MannID
3,4*

1 Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United
States of America, 2 Rangos Research Center, UPMCChildren’s Hospital of Pittsburgh, Pittsburgh,

Pennsylvania, United States of America, 3 Department of Obstetrics, Gynaecology and Reproductive
Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America,

4 Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America

* mannmr@mwri.magee.edu

Abstract

Genomic imprinting is a parent-of-origin dependent phenomenon that restricts transcription

to predominantly one parental allele. Since the discovery of the first long noncoding RNA

(lncRNA), which notably was an imprinted lncRNA, a body of knowledge has demonstrated

pivotal roles for imprinted lncRNAs in regulating parental-specific expression of neighboring

imprinted genes. In this Review, we will discuss the multiple functionalities attributed to

lncRNAs and how they regulate imprinted gene expression. We also raise unresolved ques-

tions about imprinted lncRNA function, which may lead to new avenues of investigation.

This Review is dedicated to the memory of Denise Barlow, a giant in the field of genomic

imprinting and functional lncRNAs. With her passion for understanding the inner workings of

science, her indominable spirit and her consummate curiosity, Denise blazed a path of sci-

entific investigation that made many seminal contributions to genomic imprinting and the

wider field of epigenetic regulation, in addition to inspiring future generations of scientists.

Introduction

TheH19 RNA was the first long noncoding RNA (lncRNA) within the mammalian genome to

be discovered, followed shortly by the X-inactive-specific transcript (Xist) lncRNA [1,2]. Fol-

lowing pioneering work by Denise Barlow’s as well as other laboratories, imprinted lncRNAs

were found to play pivotal roles in regulating parental-specific expression of neighboring

imprinted genes (see references marked in bold for Denise Barlow’s contributions to the field).

Importantly, identification of imprinted lncRNAs genes and their role in epigenetic regulation

has ignited the field of research into lncRNAs. Saliently, thousands of lncRNAs have been

found in mammals, with robust research efforts aimed at understanding their functionality

and mechanism of action [3–8], including in X-inactivation (see recent review on Xist

lncRNA function [9]). In this Review, we will describe the state of knowledge about imprinted

lncRNAs, their function, and, in the spirit of Denise Barlow, address as well as pose the many

fascinating and outstanding questions remaining to be answered.
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Genomic imprinting

Genomic imprinting is an epigenetic mechanism whereby gene regulation depends on the sex

of the transmitting parent [10]. Imprinted genes, which are governed by this mechanism,

exhibit transcriptional silencing when inherited by one parent and active transcription when

transmitted by the other parent. Often, imprinted genes reside together in clusters or

imprinted domains (2 to 20 genes). Since expressed and repressed alleles of imprinted genes

reside in the same nucleus, they must be governed by cis-regulatory mechanisms. One of the

seminal discoveries in genomic imprinting was the identification of genetic elements called

gametic differentially methylated regions (gDMRs) that harbor the “imprinting mark”

acquired in oocytes and sperm [10]. These marks are subsequently inherited by embryos and

offspring, directing parental-specific allelic expression. Deletions of various gDMRs, experi-

mentally or naturally, have validated the gDMR as a master switch, which coordinately regu-

lates the repressed or active state of multiple imprinted genes within an imprinted domain

[11–16], thus, earning the name of imprinting center, imprinting control element, or imprint-

ing control region (ICR). Saliently, within an imprinted domain, ICRs possess the “imprinting

mark”, rather than genes per se [10]. As a result, Denise Barlow refined terminology in the

field, classifying allelic expression as “maternally or paternally expressed or repressed” and not

as “maternally or paternally imprinted.” Importantly, while less than 1% of genes in the mam-

malian genome are regulated by genomic imprinting [17,18], deletion or loss of imprinting at

these genes can lead to lethality or cause a broad spectrum of effects, including growth, devel-

opmental, metabolic, and neurological phenotypes [See reviews 19, 20]. As such, genomic

imprinting has become a central paradigm for understanding how epigenetic mechanisms

control expression and repression of genes, gene clusters, and gene pathways involved in

development, health, and disease.

Imprinted lncRNAs

Another seminal discovery in genomic imprinting was the identification of lncRNAs within

most imprinted domains. As their name implies, lncRNAs are not known to code for proteins.

In comparison to small noncoding RNAs, lncRNAs are distinguished by their long length

(greater than 200 bp). Imprinted lncRNAs range in length from approximately 1.9 kb to

approximately 1,000 kb, leading Barlow and colleagues to classify the very long imprinted

lncRNAs as macro noncoding RNAs (ncRNAs) due to their extraordinary length [21].

Imprinted lncRNAs also differ from mRNAs in their capacity to be spliced. Long ncRNAs are

spliced transcripts with a low intron to exon ratio that are present in the cytoplasm and/or are

present predominantly as unspliced transcripts that are retained in the nucleus [4]. As a result,

imprinted lncRNAs have short half-lives compared to mRNAs [22–28]. Another important

aspect of imprinted lncRNAs is their intimate relationship to ICRs, with promoters either

embedded within or closely positioned to the ICR. Generally, ICR-embedded promoters are

maternally methylated, reflecting oocyte-specific acquisition of DNA methylation following

transcription elongation and histone H3 lysine 36 trimethylation (H3K36me3) disposition

[29–31], while lncRNA promoters near ICRs are paternally methylated, acquiring DNAmeth-

ylation at intergenic sequences during spermatogenesis (Fig 1). Importantly, imprinted

lncRNA expression is dependent on the ICR being in an unmethylated state. Another particu-

lar fascinating feature of nuclear lncRNAs is their accumulation as a large volume or “cloud” at

the parental domain from which they are expressed. Here, imprinted lncRNAs generally func-

tion through cis-acting, long-range effects, silencing alleles of multiple neighboring genes,

often bidirectionally, at megabase distances [32]. However, it is still uncertain whether tran-

scription per se is a key feature of lncRNA function, with accumulation reflecting the lncRNAs
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Fig 1. Imprinted domains and their long noncoding RNAs. (A) Airn imprinted domain. (B) Kcnq1ot1 imprinted domain. (C) Nespas
imprinted domain. (D) Snhg14 imprinted domain. (E)H19 imprinted domain. (F) Gtl2 imprinted domain. Note: The domain sizes
indicated likely represent minimum lengths of the domains [10]. Imprinted protein-coding genes, which are expressed from one
parental allele while the other copy is silent, reside in clusters or imprinted domains. Maternally expressed genes are represented by a
red arrow and text, while paternally expressed genes are represented by a blue arrow and text. Nonimprinted genes, where both alleles
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unusual length and processing, or whether lncRNA accumulation is indicative of a physical

role for lncRNAs in directing the silencing of neighboring imprinted genes [4,33]. Whichever

the case, the mechanisms of repressive function are not yet completely understood. Below, we

examine proposed mechanism for lncRNA function, focusing primarily on mouse models of

the better-studied imprinted domains. For consistency, we have designated these domains

according to the associated lncRNA gene: Airn (antisense of Igfr2; Fig 1A), Kcnq1ot1 (Kcnq1

opposite transcript 1; Fig 1B), Nespas (Nesp antisense; Fig 1C), Snhg14 (Small nucleolar RNA

host gene 14, also known as Snrpnlt, Lncat, IC-Snurf-Snrpn, Snrpn-Ube3a,U-Ube3aast,

Ube3aast and Ube3a-as; Fig 1D),H19 (Fig 1E), and Gtl2 (also known asMeg3; Fig 1F).

Functional output linked to lncRNA transcription

Imprinted lncRNA gene transcription runs interference

How lncRNAs regulate parent-specific expression of multiple neighboring imprinted genes

within imprinted domains is of major research interest. The simple act of transcription of a

lncRNA is itself proposed to be a mechanism of action called transcriptional interference [34],

where transcription of one gene directly suppresses transcription of a second gene in cis [35].

Transcriptional interference has been proposed for the Airn lncRNA gene in silencing Igf2r

[36]. The Airn lncRNA gene is 108 to 118 kb in length with variable 3’ length [37], which origi-

nates from the Airn ICR within intron 2 of the Igf2r gene [38] (Fig 1A). This sets up a situation

of convergent transcription of the paternal Airn lncRNA in an antisense direction across the

paternal Igf2r promoter. Premature terminations of the Airn lncRNA before but not after the

Igf2r promoter result in paternal Igf2r reactivation, suggesting that transcription through the

promoter is the primary mechanism of paternal Igf2r silencing [36,39]. Furthermore, in

embryonic stem cells (ESCs), inducible Airn transcription is both necessary and sufficient to

silence paternal Igf2r expression [40]. Collectively, these findings established a clear role for

transcriptional interference as a mechanism for silencing overlapping genes.

Several models have been proposed for this suppressive mechanism [35]. The first model

involves promoter competition, where the stronger promoter, such as Airn, enables better

recruitment of the transcription initiation complex than the weaker promoter, such as Igf2r

(Fig 2A). Second is the promoter occlusion model, where one transcript, such as the Airn

lncRNA, is more robustly and continuously expressed, causing the elongation complex to

block the overlapping Igf2r promoter from recruiting the transcription initiation machinery

(Fig 2B). The third model proposes dislodgement, where one transcript is faster at engaging

the elongation complex, such as the Airn lncRNA, leading to dislocation of the transcription

complex at the slower Igf2r promoter (Fig 2C). In addition to transcriptional interference

between the paternal Airn and Igf2r alleles, a transcription interference mechanism has been

proposed where transcription of the paternal Airn lncRNA would interfere with activators or

enhancers within the Airn gene body, thereby preventing initiation and/or up-regulation of

paternal, nonoverlapping upstream Slc22a2 and Slc22a3 alleles [32,41]. However, upon

deletion of the entire Airn gene, no regulatory elements have been identified that lead to up-

regulation of paternal Slc22a2 and Slc22a3 alleles [41]. This indicates that a transcription

are expressed, also localize to imprinted domains (black text). At least one lncRNA (wavy line) is present with a domain (dashed wavy
line represents potential extension of a lncRNA transcript). Regulation of imprinting across an imprinted domain is through a cis-acting
mechanism that is controlled by an ICR (large circles) and its associated lncRNA gene. Note: Some imprinted genes in these domain
exhibit tissue-specific imprinted expression. The DNAmethylated state of ICRs is depicted by large black circles, while an unmethylated
ICR is denoted by white circles. Smaller circles represent methylation at secondary, somatic DMRs. Small ncRNAs housed within
lncRNAs are depicted as diamonds for endogenous small interfering RNAs, arrowheads for microRNAs, and rhomboids for snoRNAs.

https://doi.org/10.1371/journal.pgen.1008930.g001
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Fig 2. Function of long noncoding RNA genes. (A-D) Expression of lncRNAs run transcription interference by directly suppressing
transcription of a second gene in cis through multiple modes of action. (A) Promoter competition involves a strong promoter
suppressing recruitment of the transcription initiation complex at a weaker promoter. (B) Promoter occlusion arises when transcription
of a lncRNA blocks recruitment of the transcription initiation machinery at an overlapping promoter. (C) Dislodgement results when a
lncRNA engages the elongation complex faster, leading to dislocation of the transcription complex at another transcript. (D) Collision
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interference mechanism is not involved in long-range silencing of the Airn domain in cis,

where transcription is nonoverlapping.

Another form of transcriptional interference is transcriptional collision, which by defini-

tion is limited to convergently transcribed genes. The collision model proposes the crash of

two converging elongation complexes, leading to premature termination of one complex (Fig

2D) [35]. This mechanism has been proposed as a silencing mechanism within the Snhg14

imprinted domain [42] (Fig 1D). The Snhg14 lncRNA likely originates from exons upstream

of the Snurf-Snrpn gene and extends approximately 1,000 kb through to the Ube3a gene

[43,44]. In mouse neurons, the Snhg14 lncRNA gene is paternally expressed, while the Ube3a

gene is maternally expressed. Deletions of the Snhg14 promoter or truncation of the paternal

Snhg14 lncRNA between Snord115 and Ube3a result in reactivation of the paternally silenced

Ube3a allele [42,45,46]. Since both parental Ube3a promoters engage the transcription initia-

tion complex, transcriptional interference via promoter competition, promoter occlusion, and

dislodgement are eliminated as mechanisms. Furthermore, the paternally expressed Snhg14

lncRNA extends as far as the intronic region of Ube3a between exons 4 and 5, coinciding with

the position of paternal Ube3a termination [42]. Thus, transcriptional collision of RNA poly-

merases on the paternal allele could account for paternal Ube3a transcription stalling, incom-

plete elongation, and subsequent degradation of the paternal Ube3a transcript [42]. In support

of a collision model, treatment with topoisomerase inhibitors, which block unwinding of DNA

during transcription, leads to reactivation of paternal Ube3a, where it is proposed that stalling

of elongation complexes prevents Snhg14 lncRNA transcription from extending through to

Ube3a [47].

Another imprinted domain, Kcnq1ot1, may also function though a transcription interfer-

ence mechanism (Fig 1B). Deletion or conditional deletion of the Kcnq1ot1 ICR (also known

as KvDMR1); deletion of the Kcnq1ot1 promoter; and premature truncations of the paternal

Kcnq1ot1 lncRNA to less than 3 kb all result in loss of paternal Kcnq1ot1 lncRNA expression

and reactivation of paternally silent, protein-coding genes across the domain [48,49]. To dif-

ferentiate between Kcnq1ot1 ncRNA transcription interference and Kcnq1ot1 lncRNA silenc-

ing function, posttranscriptional depletion of the Kcnq1ot1 lncRNA via RNA interference was

carried out in embryonic and extraembryonic stem cells. No effect was observed on paternal

allelic silencing of protein-coding genes in the domain [50]. As RNA interference acts post-

transcriptionally, this strengthens a function through transcriptional interference. However,

data are conflicting regarding the length of the Kcnq1ot1 lncRNA gene, extending from 83

[37], 91 [51], 121 [32,52], and 471 kb in length [50], suggesting that the Kcnq1ot1 lncRNA is at

least 83 kb with a variable 3’ end (Fig 1B) and that transcriptional length of the Kcnq1ot1

lncRNA could reflect differences between cell types and developmental stages. As the Kcnq1ot1

lncRNA originates from the ICR within intron 11 of the Kcnq1 gene [53], a Kcnq1ot1 lncRNA

transcript of 90 to 121 kb would not overlap the convergent Kcnq1 promoter, limiting tran-

scriptional interference to a collision model that prematurely terminates the paternal Kcnq1

transcript but not other downstream paternally silenced genes (Fig 2D). On the other hand,

longer transcription of the Kcnq1ot1 lncRNA gene up to 471 kb would extend through five

involves the crash of two convergent elongation complexes between the lncRNA transcript and a second transcript, leading to premature
termination of the latter. (E-H) Long RNAs themselves also have direct functions in gene regulation. (E) Long ncRNAs serve as a host
for small ncRNAs which are excised from the lncRNA transcript. (F) Scaffold function refers to lncRNAs acting as the framework for
RNA-binding proteins and modifier complexes interactions with DNA and chromatin to carry out their function. (G) lncRNAs can
function as guides by aligning with specific DNA sequences though lncRNA and DNA pairing, attracting chromatin modifiers and
directing chromatin modification to target sequences. (H) Decoy function involves lncRNAs acting as a sink or sponge to sequester
proteins away from a target site.

https://doi.org/10.1371/journal.pgen.1008930.g002
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paternally repressed alleles, Kcnq1, Tssc4, Cd81, Ascl2, and Th [50]. All transcriptional interfer-

ence mechanisms by the Kcnq1ot1 lncRNAmay apply to the four convergently transcribed

genes, while transcription dislodgement or occlusion would be possible mechanisms in pater-

nal Th silencing (Fig 2A–2D). Finally, a posttranscriptional mechanism involving the RNA

inference pathway has been ruled out for Kcnq1ot1 domain regulation following Dicer deletion

[51].

Nespas is another imprinted domain that may operate though transcriptional interference

(Fig 1C). The Nespas lncRNA gene is approximately 30 kb in length [28] (Fig 1C). The Nespas

promoter is embedded within the Nespas ICR (also known as Nespas-Gnasxl gDMR), and

when unmethylated on the paternal allele, Nespas is expressed [12]. Nesp and Nespas are con-

vergently transcribed and overlapping sense-antisense genes. Paternal truncation of Nespas to

12.6 kb, after the Nesp gene and the Nesp somatic DMR, elicits no change in allelic expression

or methylation of the paternal Nesp allele [28]. However, two additional paternal truncations,

prior to the Nesp promoter at less than 100 bp, and just short of Nesp exon 2 at 10 kb, produce

a loss of secondary methylation at the paternal NespDMR and a gain in H3K4me3 [28,54,55].

This indicates that Nespas lncRNA transcription across the Nesp promoter and DMR is

required for a gain of de novo paternal methylation at the Nesp somatic DMR, likely via

H3K36me3 deposition [54]. However, only the very premature Nespas truncation at 100 bp

reactivated the silent paternal Nesp allele, supporting a mechanism of Nespas lncRNA collision

of Nesp transcription between the promoter and exon 2 of the Nesp gene (Fig 2D). Both Nespas

truncations also reduced expression of the paternal Gnasxl allele, likely through loss of Nesp

DMRmethylation [28,54,55]. Finally, only the very premature truncation leads to paternal

silencing of Exon1A and paternal reactivation of the Gnas promoters, connecting paternal

Nesp silencing with paternal-specific regulation of these genes.

Going forward, comprehensive studies are required to determine the exact mechanisms of

specific transcriptional interference models at imprinted domains. How is transcriptional

interference specifically mediated at the DNA sequence level? R-loops regulating the elonga-

tion complex have been proposed as one mechanism [47]. Do other structures such a G-quad-

raplexes play a role? Adding a twist (pun intended), how do these models function in the

context of chromatin structure, since current models are mostly based on chromatin as a linear

array?

Functional output of posttranscriptional lncRNAs

Imprinted lncRNAs as hosts

One function imprinted lncRNAs serve is as precursor transcripts for small regulatory RNAs

(Fig 2E). Intriguingly, imprinted domains present a higher frequency of small ncRNAs com-

pared to rest of the genome [56]. For example, within an intron of the mouse- and rat-specific,

paternally expressed Sfmbt2 gene alone, there is a large cluster of approximately 65 to 72

microRNAs (interspersed with B1 retrotransposons and microsatellite repeats) [57,58].

Imprinted lncRNAs themselves also host multiple small ncRNAs, and in some cases, they hold

all the small ncRNAs within an imprinted domain [56]. Within the Airn lncRNA resides the

retro-Rangap1 (Au76) pseudogene, which harbors hairpin-loop structures that are processed

into endogenous small interfering RNAs (485 sequences [59]; Fig 1A). Within the Snhg14

lncRNA lie two large C/D type small nucleolar RNA (snoRNA) clusters, Snord115 (approxi-

mately 71 copies) and Snord116 (approximately 136 copies) plus 3 additional snoRNAs (Fig

1D) [60]. Situated within the Nespas andH19 lncRNAs are 2 and 1 microRNAs, respectively

[61,62] (Fig 1C and 1E). The approximately 220 kb-continuous, polycistronic Gtl2lt lncRNA

(Meg3-Rian-Mirg), which includes the lncRNA-encoding sequences Rtl1as (microRNAs),
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Rian (C/D snoRNAs), andMirg (microRNAs), contains one of the largest collections of small

ncRNA clusters (approximately 40–50 microRNAs) within the genome (Fig 1F), followed by

the Snhg14 lncRNA [63–66]. Strikingly, an imprinted gene on human chromosome 19 is com-

posed entirely of 46 microRNAs interspersed with Alu sequences, which are encoded by a sin-

gle (or few) paternally expressed transcript [67]. While these small RNAs may have roles in

regulating expression of multiple transcript targets [68], their action is through trans-acting

function [69]. For example, the maternally expressed, Rtl1as ncRNA gene within the Glt2

domain, which harbors two maternally expressed microRNAs (miR-127 and miR-136), regu-

lates the dosage of the paternally expressed Rtl1 gene [63,69–71], while miR-329 within the

maternally expressed miR-379/miR-544 cluster (plus 6 other predicted miRs) regulates the

paternally expressed Dlk1 gene [65,72]. To date, no role has been identified for cis-regulated

function in silencing alleles of neighboring imprinted genes [56]. That being said, it has been

proposed that the repetitive nature of imprinted small ncRNA clusters may play a role in gene

silencing [56]. Future studies will need to address whether the repetitive and 3D structural

nature of small ncRNAs embedded within imprinted lncRNAs contribute to allelic silencing of

adjacent imprinted genes.

Imprinted lncRNAs as scaffolds

Transcriptional interference can account for suppressive function by lncRNA transcription for

overlapping downstream genes. However, how lncRNAs silence upstream genes is still an out-

standing question. A common feature of many imprinted lncRNAs is that transcripts localize

as foci or “clouds” [4,73]. Given the short half-lives of imprinted lncRNAs [25–27], this would

require a mechanism that is spatially driven. Thus, an alternative mechanism proposed for

lncRNA function is as a scaffold for recruitment of chromatin modifiers to target promoters

for allelic silencing [32,74]. In this capacity, lncRNAs act as a backbone onto which proteins

are loaded to carry out their function [75,76] (Fig 2F). Within the paternal Airn domain, the

Airn lncRNA accumulates and forms a RNA cloud on the paternal allele, spreading from the

site of transcription to cover the upstream region containing the paternal silent Slc22a2 and

Slc22a3 genes [77]. In trophoblast stem cells (TSCs), the paternal Airn lncRNA cloud associates

with Polycomb repressive complex 1 (PRC1) and repressive modifications [H3K27me3,

H4K20me1, H2AK119 monoubiquitination (u1)] [27]. In ESCs, PRC2 interacts with the Airn

lncRNA [78]. Thus, it has been suggested that the Airn lncRNA recruits PRC2 and PRC1 to

paternal alleles of imprinted genes within the domain, forming a repressive compartment

[27,41]. In TSCs and visceral yolk sac endoderm, broad segments of parental-specific

H3K27me3 and H2AK119u1 (20 kb sliding windows) stretch across a region that harbors the

paternal Slc22a3 and Slc22a2 alleles [22,41]. Intriguingly, H3K27me3 levels at these broad seg-

ments appear to be dependent on Airn lncRNA levels, with overexpression increasing and

reduced expression decreasing H3K27me3 levels in cis [22]. This points to a direct correlation

between Airn lncRNA levels, H3K27me3 enrichment, and, potentially, PRC2 occupancy. In

the placenta, the paternal Airn lncRNAmay also acts as a scaffold with histone H3K9 methyl-

transferase, EHMT2 (also known as G9a) at the upstream paternal Slc22a3 promoter region,

thereby contributing to paternal Slc22a3 silencing [77]. Premature truncation of the Airn

lncRNA results in a loss of Airn lncRNA association with the Slc22a3 promoter, EHMT2 is not

recruited, and the paternal Slc22a3 allele is reactivated [77]. Interestingly, the Airn lncRNA is

not observed to recruit EHMT2 to the Igf2r promoter, reinforcing distinct mechanisms of

action for the Airn lncRNA in paternal allelic silencing of imprinted genes within the domain

[36,77]. Finally, HNRNPK (heterogeneous nuclear ribonucleoprotein K), an RNA-binding

protein, may facilitate Airn lncRNA scaffold function. HNRNPK interacts with the Airn

PLOS GENETICS

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008930 August 6, 2020 8 / 22

https://doi.org/10.1371/journal.pgen.1008930


lncRNA, with its deletion reducing H3K27me3 across the paternal Slc22a3 and Slc22a2 alleles

in TSCs [22]. As a model, HNRNPK may bind the Airn lncRNA and then interact with PRC2

through protein to protein interactions. DNA and/or histone binding domains in PRC2 pro-

teins would mediate H3K27me3 modification across the paternal Slc22a3 and Slc22a2 alleles.

The paternal Kcnq1ot1 lncRNA is also accredited with long-range repressive function of

nine imprinted genes within the domain via scaffold functions (Fig 1B) [15,48,49,79]. As part

of a lncRNA repressive function, the Kcnq1ot1 lncRNA accumulates on or “coats” the paternal

domain [27,50,51,80,81]. During early development, the paternal Kcnq1ot1 imprinted domain

harbors a contracted volume marked by PRC2 and PRC1 enrichment and repressive histone

modifications (H2AK119u1, H3K9me3, and/or H4H20me1) [27]. In early embryos, stem cells

and placentas, this is accompanied by repressive modifications (H3K27me3, H3K9me2/3,

and/or H2AK119u1) at paternal alleles of upstream and downstream imprinted gene promot-

ers [23,27,82–85] as well as broad segments of paternal-specific H3K27me3 and H2AK119u1

[22,41]. The Kcnq1ot1 lncRNA also interacts with PRC2 and EHMT2 in placentas [52,86].

These findings have led to the claim that the paternal Kcnq1ot1 lncRNA acts as a scaffold to

recruit chromatin modifiers to target upstream and downstream gene promoters in cis, induc-

ing their silencing by PRC2 and PRC1. An additional scaffold function for the Kcnq1ot1

lncRNA has been postulated in postimplantation embryos, where the Kcnq1ot1 lncRNA inter-

acts with DNMT1 at the paternal Cdkn1c and Slc22a18 loci, catalyzing DNAmethylation at

the paternal secondary Cdkn1c/Slc22a18DMRs [85]. Finally, the Kcnq1ot1 lncRNA is bound

by HNRNPK in TSCs and its deletion reduces H3K27me3 across the paternal Kcnq1ot1

imprinted domain [22]. Thus, Kcnq1ot1 lncRNA scaffold function may facilitate HNRNPK:

PRC2:DNA/chromatin interactions, eliciting H3K27me3 bidirectionally across the paternal

Kcnq1ot1 imprinted domain.

At the Nespas imprinted domain, it is still unclear whether the Nespas lncRNA could play a

role in domain regulation outside of transcription interference mechanisms (Fig 1C). How-

ever, two observation support Nespas scaffold function. Firstly, PRC2 has been found to inter-

act with the Nespas lncRNA [78]. Secondly, premature termination of the Nespas lncRNA to

less than 100 bp fails to repress the paternal Nesp allele, while truncation of the Nespas lncRNA

at 10 kb retains paternal Nesp silencing [28,54,55]. These findings suggest that any scaffold

function enabling repressive function of the Nespas lncRNA is contained within the first 10 kb

of the Nespas lncRNA. Indeed, a major binding site for the PRC2 complex lies within 10 kb of

the Nespas transcription start site [78]. Together, these data suggest a silencing role for the

Nespas lncRNA through a scaffold function with PRC2.

Another imprinted domain for which a lncRNAmay function as a scaffold is at the Gtl2

imprinted domain (Fig 1F). The Gtl2 lncRNA accumulates at the site of transcription, the

maternal Glt2 ICR (called IG-DMR) and the maternally silent Dlk1 allele [24,87]. In ESCs,

Dlk1 is very lowly expressed from both the maternal and paternal alleles [24,87], with both

showing EZH2 and H2K27me3 enrichment. The Gtl2 lncRNA directly interacts with PRC2

and JARID2 [78,88]. Upon differentiation into embryoid bodies, cortical neurons or neuronal

progenitor cells, Dlk1 attains paternal-specific expression while the maternal allele remains

repressed [24,87]. Deletions of the Gtl2 promoter or gene body, as well as Gtl2 depletion fail to

repress the maternal Dlk1 allele with reduced EZH2 and H3K27me3 enrichment [24,87].

Finally, Ezh2 deletion also leads to lack of maternal Dlk1 repression, albeit without a change in

Gtl2 lncRNA expression [87], suggesting that only scaffold functions of the Gtl2 lncRNA is

perturbed by Ezh2 deletion.

Many fascinating questions emerge from the above data. With respect to lncRNA coating

of an imprinted domain, is the entire domain coated or only specific regions? If varying

lncRNA levels lead to different levels of histone modifications, what are the mechanisms
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controlling lncRNA levels? Does lncRNAs scaffold function lead to lncRNA tethering to

chromatin? Alternatively, is tethering an integral component of scaffold function and does it

enable spreading of repression across the imprinted domain? Does the lncRNA form multiple

scaffolds for numerous independent chromatin modifiers or does the scaffold exist as one

large multimeric, macromolecular complex, executing multiple silencing mechanisms

simultaneously?

Imprinted lncRNAs as guides

As a guide, lncRNAs target specific DNA sequences though lncRNA and DNA pairing, attract-

ing chromatin modifiers that directly modify target sequences (Fig 2G) [75,76,89]. As stated

above, imprinted lncRNAs interact with neighboring imprinted genes in cis; the Airn lncRNA

with the upstream paternal Slc22a3 promoter; the Kcnq1ot1 lncRNA with paternal promoters

of at least six imprinted genes in the domain [52,85]; and the Gtl2 lncRNA with the maternal

Dlk1 allele (Fig 1A, 1B and 1F) [24,87]. One mechanism for molecular guide function is

through the lncRNAmaking contact with specific target genes in triplex lncRNA-DNA–DNA

formation. In silico predictions in the human have revealed numerous triplex-forming DNA-

binding sites within imprinted lncRNAs and target sites at promoters of imprinted genes,

including the AIRN lncRNA to the IGF2R, SLC22A2, and SLC22A3 promoters; theH19

lncRNA to multiple IGF2 promoters; and the KCNQ1OT1 lncRNA to eight imprinted gene

promoters in the domain [90]. In the mouse, multiple DNA-binding sites within the Nespas

lncRNA have predicted triplex formation at matched target sites at the Nesp, Gnasxl, and Gnas

promoters [90]. For the human GTL2 imprinted domain, the secondary structure of in vitro-

and ex vivo-produced GTL2 lncRNA (approximately 1,600 nt) has been mapped for guide

function [91]. The highly structured, GTL2 lncRNA possesses at least five RNA structural ele-

ments including triplex-forming DNA-binding sites in structural motif I and two PRC2 bind-

ing sites for EZH2 and SUZ12 in structural motif III [91]. 3D modeling of the DNA–RNA

triplex in motif I and PRC2 and lncRNA in motif III place them in close proximity, suggesting

that they act in concert to execute H3K27me3 modification of chromatin. However, as best we

can tell, imprinted genes within the Gtl2 imprinted domain have not been assessed for triplex

target sites.

The function of lncRNAs serving as guides leaves open many outstanding questions. Are

there lncRNA specific sequences or 2D and/or 3D structural requirements for generating tri-

plex formation and for modifier complex interactions? Four PRC2 proteins (EZH2, EED,

SUZ12, and AEBP2) have known RNA-binding capacities [92–95] with high specificity to G-

quadruplexes [96]. To anchor the RNA to chromatin and then target PRC2 to specific target

regions, is RNA–DNA triplex formation required in conjunction with PRC2 binding to RNA?

Do other chromatin modifying complexes also bind lncRNAs in a similar fashion? As multiple

binding sites within a lncRNA align with different target sites within an imprinted domain,

does this necessitate multiple copies of the imprinted lncRNA to target imprinted gene pro-

moters or does the 3D structure of the lncRNA and of chromatin enable a single lncRNA to

align with and silence multiple promoters simultaneously? In either case, does loss or interfer-

ence with one target sequence simultaneously impact the alignment and silencing of other tar-

get sites?

Imprinted lncRNAs as decoys

Another function attributed to lncRNAs is that of a molecular decoy. Decoy function is

described by lncRNAs acting as a sink or sponge to sequester proteins away from a target site

(Fig 2H). This could include transcription factors, signaling proteins, splicing factors, and
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chromatin modifying proteins or complexes [75,76]. At the Gtl2 imprinted domain, the Gtl2

lncRNAmay function as a decoy (Fig 1F). In ES cells, blastocysts and neuronal cells, the mater-

nal Gtl2 ICR harbors an enhancer signature and produces bidirectional enhancer transcripts

as well as binds AFF3 (AF4/FMR2 family member 3). AFF3 is a core component of the supere-

longation complex that facilitates an active chromatin state and promotes transcription of the

polycistronic Gtl2lt transcript [24,97]. The Gtl2 lncRNA, in turn, may act as a decoy for the

Gtl2 ICR, maintaining its active chromatin state [97,98]. This is supported by PRC2 and

JARID2 interactions with the Gtl2 lncRNA (which contrasts with weak binding by EZH2 and

JARID2 and the lack of SUZ12 and H3K27me3 enrichment at the maternal Gtl2 ICR) [88,99].

Upon maternal Gtl2 promoter deletion, Gtl2 lncRNA expression is abolished, leading to

increased EZH2 binding at the Gtl2 ICR [87]. Furthermore, following Ezh2, Eed, and Jarid2

deletion, the maternal Gtl2 ICR is occupied by DNMT3A and DNMT3L and becomes de novo

methylated [97,98]. Together, the data suggest that the Gtl2 lncRNA interacts with JARID2

and PRC2 to mitigate EZH2 methyltransferase activity and DNMT3A/3L recruitment at the

maternal Gtl2 ICR.

There are many outstanding questions about lncRNA decoy function. As a molecular

decoy, lncRNAs may maintain the ICR in an active state and at the same time, the active ICR

directs lncRNA expression. What controls this apparent feedback loop? How susceptible is the

active ICR to fluctuations in lncRNA levels? Is decoy function mediated via RNA-binding pro-

teins? What is the relationship between weak and strong chromatin modifier interactions with

chromatin and lncRNAs? If lncRNAs act as decoys to titrate away positive and negative regula-

tory proteins, what mechanisms are in place to balance decoy versus other lncRNA function

such as scaffold function?

Imprinted lncRNAs as transregulators

In addition to imprinted lncRNAs operating in cis to regulate expression of imprinted genes

within their respective domains, imprinted lncRNAs also regulate other genes or domains in

trans [100]. Loss and gain ofH19 lncRNA function alter expression of imprinted genes in the

Kcnq1ot1, Airn, Nespas, and Gtl2 domains [101], while loss and overexpression of the human

IPW lncRNA (from the SNHG14 lncRNA) lead to changes in GTL2 lncRNA, microRNA, and

snoRNAs in the GTL2 domain [102]. One factor that may contribute to lncRNAs trans func-

tion is that imprinted domains can colocalize to the same 3D nuclear space [103,104], generat-

ing imprinted gene networks [105], where expression of an imprinted gene in one domain

influences expression of imprinted genes in other domains. While upstream or downstream

regulatory pathways could indirectly account for these linked expression patterns [105],

imprinted lncRNAs are likely to be directly associated with interactions between imprinted

domains. With respect to nonimprinted genes, both Gtl2 andH19 lncRNAs are involved in

the regulation of the signaling transforming growth factor β (TGF-β) pathway [106,107], the
cell fate Wnt/β-catenin pathway [108,109], and the tumor suppressor p53 response pathway

[110,111]. Overall, the trans-actions of these lncRNAs point to either lncRNA scaffold or guide

function. As a scaffold function, theH19 lncRNA interacts with the epigenetic modifier

methyl-CpG-binding domain protein 1 (MBD1) and targets MBD1 to imprinted genes in

trans, modulating repression through H3K9me3 [112]. In a similar fashion, IPW interacts

with EHMT2, conferring H3K9me3 to the Gtl2 ICR [102]. The Gtl2 lncRNA interacts with

JARID2 and PRC2, directing H3K27me3 to gene targets outside of the Gtl2 domain [88]. As

lncRNA guide function, bioinformatic predictions ofH19 lncRNA–DNA triplex binding sites

in humans and mice identified promoter target sites at multiple imprinted genes, including

Igf2r, Gnas, Dlk1, Peg1, and Cdkn1c [113], while the human GTL2 lncRNA has DNA triplex
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binding sites that map to multiple genome-wide target sites in both human and mouse cell

lines [107,114]. While the mechanisms ofH19 lncRNA regulation of gene targets in trans

remain to be fully elucidated, the Gtl2 lncRNA–DNA triplex structures may act together with

its PRC2-binding motifs to modulate gene targets in trans [107].

As stated above, many outstanding questions regarding lncRNA scaffold and guide func-

tion remain to be resolved. More specifically for lncRNA trans function, what mechanisms

operate for imprinted lncRNAs to find their targets? Is lncRNA trans function at imprinting

gene networks and other potential chromosomal interactions left to random associations or

are there active mechanisms to target imprinted lncRNAs to single gene promoters or to chro-

mosomal networks?

Emerging functions of posttranscriptional lncRNAs

Imprinted lncRNAs as higher-order structures

lncRNAs are able to fold into secondary and tertiary higher-order 3D structures, confining

them to the nucleus and influencing their regulatory function [115]. While the dynamics of

RNA folding is an important component of human GTL2 lncRNA function [111], the recently

identified tertiary structure of the GTL2 lncRNA has shed new light on the importance of

higher-order tertiary structures [116]. Here, highly conserved motifs within the GTL2 lncRNA

interact to generate pseudoknot structures, with specific loops imparting a stable 3D structure

(“kissing loops”) [116]. Surprisingly, point mutations to the conserved motifs disrupt forma-

tion of the pseudoknot and compromise GTL2 lncRNA function in trans, which is indepen-

dent of the ability of the GTL2 lncRNA to recruit proteins, such as PRC2. To the best of our

knowledge, imprinted genes within the Gtl2 imprinted domain have not been assessed for the

effects of altered Gtl2 secondary and tertiary structure on their expression. Specific conserved

motifs within Kcnq1ot1 lncRNA also contribute to folding and secondary stem-loop structure

of the lncRNA [80]. Mutations in this motif region perturbs the structure of Kcnq1ot1 lncRNA

and leads to a relaxation of paternal allelic silencing of imprinted genes within the domain

[80]. Whether the Kcnq1ot1 lncRNA forms tertiary structures to carry out its function remains

to be determined.

The mechanism of how lncRNA higher-order structure contributes to its ability to regulate

expression remains unknown. It has been postulated that spatial organization of lncRNA pilots

their function by directing protein positioning and localizing lncRNAs to target sites [80,116].

Thus, is the tertiary-folded lncRNA involved in contributing to scaffold or guide function? If

structural motifs with lncRNAs must be in close proximity to function, what would be the con-

sequence of inserting a wedge between these structural motifs? Do all imprinted lncRNAs

attain a higher-order, 3D structure?

Imprinted lncRNAs as architectural components

Even with the above lncRNA functions, the question still remains as to how lncRNAs navigate

upstream of the lncRNA gene to ultimately carry out long-range silencing. The answers to this

question usually involve explanations of chromatin interaction generating active and repressed

chromatin loops. Emerging evidence suggests that lncRNAs may play a role by facilitating

chromatin interactions. The classic model of chromatin looping at imprinted domains is the

H19 imprinted domain. CCCTC-binding factor (CTCF) and the cohesin complex generate

insulator activity and chromatin looping between the maternalH19 ICR and downstream

enhancer, which leads to upstream maternal Igf2 silencing (Fig 1E) [117–119]. A recent analy-

sis of topological-associated domains (TADs) at theH19 and Gtl2 domains revealed that while

both parental domains possess the same CTCF-associated TAD organization, at the subTAD
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level, a maternal-specific CTCF site within the unmethylatedH19 ICR and Gtl2 promoter

bisected the TAD into two smaller subTADs [120]. This physically isolates the active maternal

H19 and Gtl2 alleles from the silent maternal Igf2, and Rtl1 and Dio3 alleles, respectively. How-

ever, the maternal subTAD that encloses the Gtl2 ICR and promoter, also includes the

upstream, silent Dlk1 allele. Thus, the simple scenario of active alleles in one chromosomal

loop/subTAD and repressed alleles in another loop/subTAD is unsubstantiated at this domain,

requiring additional mechanisms for allelic silencing for the upstream Dlk1 allele. Since the

Gtl2 lncRNA prevents activation of the maternal Dlk1 allele, it was proposed that the Gtl2

lncRNA recruits CTCF to the maternal Gtl2 promoter DMR though CTCF’s ability to bind

RNA [121,122], focusing Gtl2 lncRNA repressive function within the subTAD to the upstream

Dlk1 allele [120].

At the paternal Kcnq1ot1 domain, the Kcnq1ot1 lncRNA may function as an architectural

component in chromatin looping. On the paternal allele, the Kcnq1ot1 lncRNA interacts

with and coordinates chromatin looping between the paternal Kcnq1ot1 ICR and the Kcnq1

promoter. Loss of Kcnq1ot1 lncRNA through artificial methylation of the paternal Kcnq1ot1

ICR, Kcnq1ot1 promoter deletion, premature termination of the Kcnq1ot1 lncRNA, or post-

transcriptional depletion of Kcnq1ot1 lncRNA disrupts chromatin interactions at the pater-

nal Kcnq1ot1 ICR and Kcnq1 promoter in mouse embryonic fibroblasts (MEFs) and

neonatal heart [123,124]. In MEFs, this results in paternal allelic reactivation of the down-

stream Kcnq1 and upstream Cdkn1c genes [123]. These data point to a role for the Kcnq1ot1

lncRNA in directing chromatin interactions that may generate an active loop for the

Kcnq1ot1 lncRNA gene while exclusion of paternal upstream and downstream alleles may

lead to their repression. This role may be developmentally dependent, as posttranscriptional

depletion of Kcnq1ot1 lncRNA did not impact paternal allelic silencing of imprinted genes in

ESCs and TSCs [50], and CTCF had little to no interaction with the Kcnq1ot1 lncRNAs in

TSCs [22].

At the Airn domain, chromatin-chromatin interactions are observed at the maternal Airn

domain between the Airn gene body and the Slc22a3 promoter in visceral yolk sac endoderm

[41]. At the paternal domain, the Airn lncRNA disrupts these chromatin interactions, as dem-

onstrated by premature truncation of the Airn lncRNA. Since cohesin complex and CTCF

binding had little enrichment at the paternal domain, and CTCF had little to no interaction

with the Airn lncRNA in TSCs [22], it is suggested that the paternal domain lacks paternal-spe-

cific chromatin loops, and that the Airn lncRNA lacks a role as an architectural component.

Many unresolved questions remain for lncRNAs as architectural components. Does CTCF

bind (a subset) of imprinted lncRNAs? If so, do lncRNAs play a role in recruiting or biasing

CTCF binding to lncRNA promoters and ICRs? Is there also a role for lncRNAs in inducing

chromatin looping? What other lncRNA-protein or lncRNA-chromatin interactions could be

involved in chromatin looping? Do imprinted lncRNA have chromatin-templating roles on

which chromatin-chromatin interactions are mediated?

Discussion

Since the discovery of the first imprinted lncRNA, significant progress has been made in

understanding the functional roles of imprinted lncRNAs in imprinted domain regulation.

Compelling evidence described above supports multiple functions for how lncRNAs regulate

long-range repressive function. Perhaps the most remarkable feature is that these regulatory

mechanisms are not mutually exclusive, with a single lncRNA and its transcription regulating

different genes within an imprinted domain. For example, the paternal Airn lncRNA gene and

its transcript act through transcriptional interference to silence the paternal Igf2r allele, as a
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Fig 3. Multiplicity of function for lncRNA genes and their transcripts at (A) the paternal Airn imprinted domain and (B) the maternalGtl2
imprinted domain.Note that some lncRNA functions may be part of the same mechanism, for example, scaffold and guide function, incorporating
higher-order lncRNA structure as well.

https://doi.org/10.1371/journal.pgen.1008930.g003
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host for small interfering RNAs, in long-range silencing of upstream paternal alleles through a

lncRNA scaffold, and possibly as a guide to direct triplex formation (Fig 3A). By comparison,

the maternal Gtl2 lncRNA functions as a scaffold, a decoy, and a host for microRNAs and

snoRNAs. It may also act through higher-order structure and as an architectural component

upstream in cis, and as a guide in trans (Fig 3B). However, it is also possible that there is less

multiplicity of lncRNA functions than the above findings indicate. For example, multiple

mechanisms, such as lncRNA scaffold and guide function, may be different sides of the same

coin, just investigated from different experimental paradigms. Alternatively, more recent,

sophisticated, and detailed analyses may be a better reflection of lncRNA functionalities than

earlier studies, requiring future experiments to retest past interpretations.

Moving forward, more in-depth, comprehensive studies are required to understand the

properties of imprinted lncRNAs as well as to delve deeper into the actual mechanisms per-

taining to imprinted lncRNA function and their mode of action. Case in point, to establish the

plausibility of posttranscriptional lncRNA functions, it is essential to determine how imprinted

lncRNAs are specifically localized to their cis and trans targets as well as the stoichiometric

relationships between lncRNAs, protein partners, and their target sites [125,126]. With regard

to emerging imprinted lncRNAs functions, it remains to be seen how broadly applicable they

are across imprinted domains. At the very least, these emerging functions emphasize the com-

plexity of imprinted lncRNA regulation and stress the need for continued research into poten-

tially novel lncRNA functions. Furthermore, important questions remain regarding lncRNA

regulation of imprinted domains in the context of developmental stage-specific and cell-type

specific regulation. Saliently, imprinted lncRNAs and their long-range regulation of imprinted

domains will continue to be a rich model for bettering our understanding of the mechanisms

of lncRNA functionality and increasing our knowledge of lncRNA-associated pathophysiolo-

gies in human disease, which ultimately, may lead to medical advances in RNA therapeutics

that target long noncoding RNAs.
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