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Abstract 

Background: Improving functional annotation of the chicken genome is a key challenge in bridging the gap 

between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major 

component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly 

improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome 

in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in 

various economical traits for which energy storage and mobilization play key roles and also because of their high cell 

homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with 

respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify 

the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we 

probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies 

with a larger set of tissues but less sampling.

Results: We predicted 2193 lncRNA genes, among which 1670 were robustly expressed across replicates in the liver 

and/or adipose tissue and which were classified into 1493 intergenic and 177 intragenic lncRNAs located between 

and within protein-coding genes, respectively. We observed similar structural features between chickens and mam-

mals, with strong synteny conservation but without sequence conservation. As previously reported, we confirm that 

lncRNAs have a lower and more tissue-specific expression than mRNAs. Finally, we showed that adjacent lncRNA-

mRNA genes in divergent orientation have a higher co-expression level when separated by less than 1 kb compared 

to more distant divergent pairs. Among these, we highlighted for the first time a novel lncRNA candidate involved 

in lipid metabolism, lnc_DHCR24, which is highly correlated with the DHCR24 gene that encodes a key enzyme of 

cholesterol biosynthesis.

Conclusions: We provide a comprehensive lncRNA repertoire in the chicken liver and adipose tissue, which shows 

interesting patterns of co-expression between mRNAs and lncRNAs. It contributes to improving the structural and 

functional annotation of the chicken genome and provides a basis for further studies on energy storage and mobiliza-

tion traits in the chicken.
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Background
Long noncoding RNAs (lncRNAs) are commonly defined 

as non protein-coding transcripts that are often spliced, 

capped and polyadenylated but have little or no protein-

coding potential. Genome-wide transcriptional stud-

ies carried out by ENCODE (Encyclopedia of DNA 

Elements) and other large international consortia [1] have 

revealed that more than 60% of mammalian genomes are 

transcribed and that a large fraction of the transcripts 

is represented by lncRNAs [1–5]. Among these studies, 

the GENCODE consortium has collated a comprehen-

sive set of human lncRNAs and analyzed their genomic 
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organization, modifications, cellular locations and tissue 

expression profiles in different human cell lines [6].

Since 2012, the number of lncRNAs identified by RNA-

Seq in tumor biopsy samples, normal tissues, and cell lines 

has shown a continuous and steep increase, with 15,941 

lncRNA genes (28,031 transcripts) referenced in GEN-

CODE (version 24 [7]), in comparison to 19,815 protein-

coding genes, and more than 50,000 lncRNA genes reported 

by Iyer et al. [8]. �ese lncRNAs are associated with multiple 

biological processes such as development, cell differentia-

tion or pathologies [9–11]. However, reliable and compre-

hensive genomic annotations of lncRNAs are not available 

for many species, such as livestock or crop species.

In this context, it is important to annotate this major 

fraction of the transcriptome in livestock species, for 

which several loci involved in complex and economically 

relevant traits [i.e. quantitative trait loci (QTL)] have been 

described but with limited success regarding the identifi-

cation of the underlying causative mutation(s). Given that 

approximately 80% of the variants associated with human 

complex traits map outside of protein-coding exons of 

which 40% are in intergenic regions [12, 13], identifying 

the lncRNA repertoire is crucial to better understand the 

“genotype to phenotype” relationships in livestock [14, 

15]. To date, few lncRNA studies have been reported for 

livestock species, apart from lncRNA studies in bovine 

[16] and trout [17], and the construction of multi-species 

databases such as NONCODE [18, 19] and the domes-

tic-animal lncRNA database (ALDB) [20, 21]. Research 

programs are in progress on several farm species, e.g., in 

projects conducted within the framework of the Func-

tional Annotation of Animal Genomes initiative [14, 15].

Different methodologies have been described to dis-

cover and model lncRNAs. �is generates some vari-

ability in the number of putative lncRNAs reported and 

stresses the importance of precisely defining the tools 

and thresholds for each analysis step. Regarding lncRNA 

modeling, the FEELnc program (FlExible Extraction of 

Long noncoding RNAs), developed by Wucher et al. [22, 

23], distinguishes lncRNAs from mRNAs based on a 

machine-learning method that estimates a protein-cod-

ing score according to different criteria such as the RNA 

size, ORF coverage and multi k-mer usage. One main 

advantage of the FEELnc program is its ability to derive 

an automatically computed cut-off that maximizes the 

lncRNA prediction sensitivity and specificity. In addition, 

and contrary to other tools such as CPC [24] or CPAT 

[25], FEELnc provides a lncRNA classification based on 

their genomic position with respect to a pre-defined set 

of reference genes (usually protein-coding genes), which 

allows to distinguish intergenic from intragenic lncR-

NAs and to sub-classify them according to their ori-

entation with respect to a reference set of genes. Such 

a classification can be useful to formulate hypotheses 

about co-expression patterns observed between lncRNAs 

and their closest protein-coding genes.

In this context, our aim was to describe the chicken 

lncRNA repertoire. We focused on the liver and abdomi-

nal adipose tissues because of their importance in various 

economical traits for which energy storage and mobiliza-

tion play key roles. �e liver is a key organ for energy and 

lipid metabolism and homeostasis, and the adipose tissue 

plays a key role in lipid storage and mobilization when the 

organism is stressed or in transition phases. �ese two 

organs, through the regulation of the lipid metabolism 

(synthesis, storage and catabolism), are important for the 

bird’s adaptation to environmental changes [26–28]. Fur-

thermore, both tissues are relatively homogeneous in cell 

composition. Both tissues were deeply sequenced (with 

an average of 100 million stranded paired-end reads per 

sample, totaling 1.65 billion per tissue) to capture weakly 

expressed lncRNAs and across a large number of biologi-

cal replicates (16 birds per tissue) to obtain sufficient sta-

tistical power to assess correlations of expression levels 

between lncRNAs and their closest protein-coding RNAs.

In coordination with the FAANG initiative (FAANG 

Bioinformatics and Data Analysis subcommittee), we 

used a pipeline based on STAR, Cufflinks and FEELnc to 

describe and characterize a catalogue of expressed puta-

tive lncRNAs. We used two protein-coding score cut-

offs (including a stringent one for lncRNAs) to partition 

our transcript set into lncRNAs, protein-coding RNAs 

and ambiguous RNAs (i.e., with intermediate protein-

coding scores). We found approximately 2193 lncRNA 

genes (2979 transcripts), from which we extracted a reli-

able subset of 1670 genes (2412 transcripts) that were 

characterized by reproducible expression across the 16 

replicates. We then compared their structure and expres-

sion levels to those of mouse and human lncRNAs. Using 

the FEELnc classification, we found interesting cases of 

co-expression between lncRNAs and their closest cod-

ing mRNAs, especially for pairs in divergent or antisense 

orientations. Overall, we provide a powerful and deeply 

characterized resource for investigating lncRNA rele-

vance in the chicken liver and adipose tissue.

Results and discussion
Chicken lncRNAs predicted by FEELnc and their structure 

and expression features

For the liver and adipose tissue samples (16 replicates 

per tissue), we obtained on average 100 million stranded, 

paired-end reads. We compared the efficiencies of the 

recently published Stringtie and the classical Cufflinks 

programs to predict transcripts from our sequencing 

data, providing the Ensembl annotation as a guide and 

starting from the same BAM files generated by STAR. 
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�e Cufflinks/Cuffmerge pipeline processed our dataset 

of 32 samples in approximately 79 h and generated 39,504 

transcripts for 22,413 genes. Stringtie took less than 3 h 

but produced approximately 4 times more predictions 

(150,659 transcripts for 108,098 genes), which included 

a majority of mono-exonic models (68 vs. 11% for Cuf-

flinks). �e number and the structure of the transcript 

models found with Stringtie in our data were considerably 

larger than expected based on data from the literature [6]. 

�us, for this study, we used the more realistic models 

from Cufflinks/Cuffmerge. Finally, the STAR/Cufflinks/

Cuffmerge pipeline applied to our 32 samples resulted in 

a more than two-fold increase in number of transcripts 

compared to that reported in the Ensembl V84.4 anno-

tation on the reference GalGal4 genome, with 39,504 

transcripts for 22,413 genes compared to the 17,954 tran-

scripts for 15,508 genes in the Ensembl annotation.

To date, no lncRNA has been annotated in the V84.4 

Ensembl chicken gene dataset. �ese 39,504 newly mod-

eled transcripts were then submitted to the “FlExible 

Extraction of Long noncoding RNAs” (FEELnc) pipeline 

to identify putative lncRNAs (see the “Methods” sec-

tion). Fixing a specificity cut-off at 0.97 and using the 

NONCODEV5 database as the noncoding transcript 

training set (see the “Methods” section), we identified 

2979 putative lncRNA transcripts (for 2193 genes), 376 

new mRNAs (for 279 genes), and 179 ambiguous RNAs 

(Fig. 1a). When the training set of intergenic regions was 

used as the noncoding transcript training set (see the 

“Methods” section), we found 2588 lncRNA transcripts, 

with most of them (2539 lncRNAs) being common to 

the two final sets. Such a result shows the usefulness of 

FEELnc to predict lncRNAs in a species for which no 

lncRNA repertoire is available for training. We then com-

pared our lncRNA set with the chicken lncRNAs availa-

ble in the NONCODE and ALDB multispecies databases. 

We found that 14 and 25% of our chicken set was in com-

mon with the chicken NONCODE and ALDB datasets, 

respectively, using stringent criteria and 16 and 27% 

using more relaxed criteria (see “Methods” section). Note 

that the ALDB dataset shares 25% of the chicken lncR-

NAs with NONCODEV5 under the relaxed criteria. Such 

results highlight that lncRNA annotation strongly relies 

on the bioinformatics pipelines used for the gene mod-

eling and lncRNA prediction but also on the RNA-Seq 

samples used in terms of sequencing depth, tissue ana-

lyzed and probably physiological status of the animals.

To evaluate the relevance of our chicken lncRNA set, 

we analyzed the gene expression profiles of the three 

classes “putative lncRNA transcripts”, “new mRNAs” 

and “ambiguous RNAs” and also compared the struc-

tural features of our lncRNAs with those of the mouse 

and human lncRNAs. As expected, the 2193 putative 

lncRNA genes are on average tenfold less expressed than 

the known or new protein-coding genes, and the ambigu-

ous RNAs have an intermediate expression (Fig.  1b). 

�is is in accordance with previous findings in mam-

mals that showed that lncRNAs are far less expressed 

than protein-coding genes [6, 29–31]. �en, we charac-

terized the structural features of these chicken putative 

lncRNA transcripts in comparison to the human and 

mouse lncRNAs available in Ensembl and compared 

them with the protein-coding RNAs available in Ensembl 

for these three species. Overall, the features observed for 

the chicken lncRNAs are consistent with those observed 

in mammals in the human and mouse ENCODE pro-

jects [6] (Fig.  1c). First, regardless of the species ana-

lyzed, lncRNAs are spliced but with fewer exons than 

the protein-coding RNAs, with medians of 3 and at least 

5, respectively. Second, the median exon length is simi-

lar for lncRNAs and protein-coding RNAs in chickens 

(127 ± 1 nt). �is is similar to what was found in humans 

and mouse, even if the chicken lncRNA exons are slightly 

longer than the protein-coding exons (for example, medi-

ans of 155 nt vs. 126 nt in humans, Wilcoxon–Mann–

Whitney test, p value <2.2 ×  10−16). �ird, the lncRNA 

transcripts are shorter than the protein-coding tran-

scripts in the chicken, as in humans and mouse, because 

of the observed smaller number of exons. In the chicken, 

the median transcript length is 529 nt for lncRNAs, com-

pared to 2067 nt for protein-coding RNAs (Wilcoxon–

Mann–Whitney test,  p value <2.2  ×  10−16). Finally, we 

observed a smaller number of isoforms per lncRNA gene 

in the three species compared to that of the protein-cod-

ing RNA genes, which was expected given that lncRNAs 

have a smaller number of exons [6].

In terms of the expression measured at the locus level 

(see the “Methods” section), the 2193 chicken lncRNA 

genes are characterized by at least one read in at least one 

replicate of one tissue (with 1958 in the liver and 2056 

in the adipose tissue). To obtain a more reliable set of 

expressed lncRNAs, we took advantage of the large num-

ber of replicates to remove genes with low signals. Rau 

et  al. [32] developed an R package (HTSfilter) for RNA-

Seq data analysis to correctly filter out lowly-expressed 

genes and thereby increase the power of detection in the 

context of the differential expression of protein-coding 

genes. Unfortunately, this data-driven method (based on 

the Jaccard similarity index to calculate a filtering thresh-

old) is not appropriate for lncRNAs because of their low 

expression level (see Additional file 1: Fig. S1). �erefore, 

we analyzed the reproducibility of the expression level 

across the 16 replicates of each tissue using the standard 

0.1 FPKM-UQ threshold (see the “Methods” section). 

Figure  1d provides the numbers of long noncoding and 

protein-coding genes expressed according to the number 
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Fig. 1 Predicted lncRNA features. a LncRNA prediction with a user-defined lncRNA specificity/sensitivity cut-off according to the two ROC curve 

graph provided by FEELnc. b Expression distribution within the three classes (new lncRNAs, ambiguous RNAs and new mRNAs) compared to that of 

known protein-coding genes from Ensembl. c Structural features for lncRNAs and Ensembl protein-coding RNAs in three species (G = Gallus gallus, 

M = Mus musculus, H = Homo sapiens). For the chicken lncRNAs, the data were generated in this study, while for the human and mouse lncRNAs, 

the data are taken from Ensembl V83. d Number of genes considered as expressed (FPKM-UQ ≥ 0.1) (y-axis) according to the number of biological 

replicates (x-axis) in the liver (left) and adipose tissue (right) for lncRNAs and Ensembl protein-coding genes. On each plot are indicated the number 

of genes for which at least 10 samples have a FPKM-UQ ≥ 0.1 (right number) and the number of genes for which a maximum of four samples have a 

FPKM-UQ ≥ 0.1 (left number). e Classification by FEELnc of the 1670 reliable lncRNA genes for 2412 transcripts



Page 5 of 17Muret et al. Genet Sel Evol  (2017) 49:6 

of biological replicates for each tissue. Long noncod-

ing genes show quite good reproducibility of expression 

across samples, with 1249 of them having an FPKM-UQ 

higher than 0.1 in at least 10 of the 16 samples in the liver, 

i.e., 64% of all hepatic lncRNA genes with one read in one 

sample (Fig. 1d, left). Note that 459 of the long noncod-

ing genes (23%) have a poorly reproducible expression, 

with no more than four samples with an expression level 

higher than the threshold in the liver. Similar results were 

obtained for the adipose tissue (Fig. 1d, right), with 1215 

lncRNA genes having an FPKM-UQ higher than 0.1 in 

at least 10 of the 16 samples. Combining these two sets 

of expressed lncRNAs results in 1670 genes. Finally, the 

further analyses were performed with these 1670 reli-

able long noncoding genes (for 2412 transcripts) that 

were robustly expressed in the liver and/or adipose tis-

sue. �ese numbers of long noncoding genes are consist-

ent with other studies that focus on a single tissue, even 

if the number of replicates, the sequencing depth and 

the criteria used to consider that a long noncoding gene 

is expressed, differ between studies. For example, Wang 

et  al. [33] reported 2805 lncRNA transcripts in the pig 

endometrium (using 12 porcine samples and 85–105 mil-

lion reads per sample), and Billerey et  al. [34] reported 

approximately 1300 lncRNA transcripts in bovine muscle 

(using nine samples with 15 million to 45 million reads 

per sample). In contrast, multi-tissue studies reported 

a larger number of lncRNA transcripts, generally above 

10,000, with a wide variation depending on the sequenced 

tissues and the tools used for the lncRNA detection (9778 

lncRNA transcripts reported by Koufariotis et  al. [16] 

in 18 bovine tissues (using 1.87 million 120-bp stranded 

paired-end reads and CPC/CNCI tools for lncRNA pre-

diction [24, 35]), and 20,163 lncRNA transcripts reported 

by Li et al. [36] in 13 maize tissues (using 1.17 million 35- 

to 110-bp unstranded paired- and single-end reads and 

the CPC tool for lncRNA prediction [24]).

Using the FEELnc classifier module, we then analyzed 

the class distribution of the 1670 reliable FEELnc lncRNA 

genes compared to annotated protein-coding genes from 

Ensembl (Fig.  1e). We found 1493 intergenic lncRNA 

genes (89%), which was the largest class as reported in 

humans by Derrien et al. [6], compared to 177 intragenic 

lncRNA genes (11%). �ese 1670 lncRNA genes, which 

are characterized by a good reproducibility of expression 

level in at least one of the two tissues and corresponding 

to 2412 transcripts, were analyzed more deeply and are 

reported in Additional file 2: Table S1.

Distribution of LncRNAs across chicken macro- 

and micro-chromosomes

Because the chicken genome, similar to most avian 

genomes, has chromosomes of markedly different lengths 

(termed macro- and micro-chromosomes), the genomic 

distribution of putative lncRNA transcripts was investi-

gated. �is analysis was restricted to chromosomes with 

nearly complete sequence coverage, which excluded 

chromosomes Gallus gallus GGA16 and 25 [37]. For 

lncRNAs, we found a negative correlation between gene 

density and chromosome length, as previously reported 

for protein-coding genes [37] (Fig.  2a, b). Both macro- 

and micro-chromosomes are known to have properties 

such as a high G+C content, recombination rate and 

gene density [37]. Moreover, in [37] a strong correlation 

was observed between the length of a gene and the size 

of the chromosome, mostly due to variations in intron 

size. �erefore, we analyzed the intron and exon lengths 

between macro- and micro-chromosomes for lncRNA 

and protein-coding genes (Fig.  2c). Although exon 

lengths do not vary significantly between both chromo-

some types, intron lengths are greater for macro-chro-

mosomes than for micro-chromosomes, which explains 

the higher gene density on micro-chromosomes; these 

observations were similar for protein-coding and long 

noncoding RNAs.

Conservation of lncRNAs between chicken and human 

genomes

We evaluated the degree of sequence similarity between 

chicken and human lncRNA transcripts by perform-

ing all pairwise sequence comparisons. Even by using 

relaxed criteria (see the “Methods” section), we found 

no match for our lncRNA set except for two transcripts 

XLOC_006973 (360nt) and XLOC_014262 (445 nt), for 

which more than 60% of the chicken lncRNA sequences 

matched with 26% of the two associated human lncRNA 

sequences, RP11-20B24.2 (895 nt with 72% identity) and 

RP11-386B13.3 (1192 nt with 94% identity), respectively. 

�ese results are consistent with previous studies that 

reported that the number of lncRNAs with sequence 

conservation decreases as the phylogenetic distance 

increases [6, 31, 38]. Note that the second lncRNA, 

XLOC_014262, which has a conserved sequence with the 

human RP11-386B13.3 lncRNA, also displays synteny 

conservation between the chicken and human genomes 

(see Fig.  3a). Such sequence and synteny conservations 

between these two species that diverged approximately 

300 Myr ago suggest an important functional role of this 

lncRNA. Moreover, XLOC_014262 is highly expressed 

in the liver (FPKM-UQ  =  0.43 on average), in contrast 

to the adipose tissue (FPKM-UQ  =  0.06 on average), 

and is located at 21  kb from the neighboring protein-

coding gene SLC25A4 (that encodes a protein involved 

in the exchange of cytoplasmic ADP with mitochondrial 

ATP across the mitochondrial inner membrane). Inter-

estingly, XLOC_014262 and SLC25A4 are significantly 
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and positively co-expressed in the liver (r  =  0.64, p 

value  =  0.013). Taken together, these results suggest a 

regulatory role of this lncRNA in the liver metabolism, 

and maybe in energy metabolism. Complementary to 

this first analysis, we further analyzed synteny conser-

vation of lncRNAs between the chicken and human 

genomes. In our approach (see Fig. 3b), we only consid-

ered long intergenic noncoding RNA genes (lincRNAs) 

that were surrounded by two protein-coding genes that 

had a 1-to-1 orthologous relationship with the human 

genome (Ensembl v.83). For these 882 lncRNA genes, 

we then considered that there was synteny conserva-

tion for a lncRNA gene if a human lncRNA gene was 

located between the two orthologous protein-coding 

genes, with the same configuration of the trio in terms 

of order and orientation. We found that 64% (569) of our 

lncRNA genes met this criterion. Two examples of lncR-

NAs with synteny conservation are provided in Fig.  3c 

for the SLC38A4-AMIGO2 locus and in Fig.  3d for the 

VPS18-DLL4 locus. Previous studies have shown similar 

results: Ulitsky et al. [39] reported intergenic lncRNAs in 

conserved positions in the zebrafish, human and mouse 

genomes without detectable sequence conservation. �e 

same team analyzed this phenomenon more deeply using 

various phylogenetically distant species [38] (mammals, 

chicken, lizard, coelacanth, sea urchin, etc.) and con-

firmed that a large fraction of the lncRNAs that displayed 

synteny conservation were highly divergent at the nucle-

otide level. �e same observation was recently reported 

in plants between Brassecaceae and Cleomaceae [40]. 

Regarding the proportion (36%) of lncRNA genes that did 

not display synteny conservation, different hypotheses 

can be drawn. First, this gene subset does not have spe-

cific properties in terms of expression level (Fig.  3e) or 

structural features (data not shown) compared to the 

gene subset that displays synteny conservation, which 

allows us to discard such features for explaining these 

two non-syntenic versus syntenic lncRNA subsets. Even 

if the human genome annotation is more advanced than 

that of the chicken genome, a first hypothesis is that the 

human genome annotation is not complete in terms 

of lncRNAs, as suggested by recent studies that have 

enriched the list of lncRNAs [8]. Another hypothesis is 

that lncRNAs are more species-specific than protein-

coding genes because of their major roles in the regula-

tion of gene expression. �is hypothesis is supported by 

a higher rate of synteny conservation for protein-cod-

ing genes than for lncRNA genes. Indeed, the “syntenic 

conservation” analysis performed for lncRNAs was also 

performed for the protein-coding genes found between 

two orthologous protein-coding genes, and we observed 

that only 10% of the protein-coding genes do not display 

synteny conservation between the chicken and human 

genomes, compared to 36% for lncRNA genes.

LncRNAs are less expressed and more tissue-speci�c 

than mRNAs in the liver and adipose tissues

�e patterns of expression of the lncRNA and mRNA 

genes clearly show that the lncRNAs are less expressed 

than the protein-coding genes in both tissues (Fig.  4a). 

�e median FPKM-UQ for lncRNAs (approximately 

1) is tenfold lower than that for protein-coding RNAs 

(approximately 10), and the third quartile of the lncRNA 

gene expression is close to the first quartile of the 

Fig. 2 Gene density and structural features for protein-coding genes and lncRNA genes across the chicken macro- and micro-chromosomes. a 

Gene density for all chromosomes (except for chromosomes 16, 25, and W that are not sufficiently well sequenced). b Correlation of gene densities 

between protein-coding genes (y-axis) and long noncoding genes (x-axis). c Exon size, exon number and intron size for macro-chromosomes 1–5 

and micro-chromosomes 20, 21, 23, 26, 27 and 28



Page 7 of 17Muret et al. Genet Sel Evol  (2017) 49:6 

protein-coding gene expression. �is lower expression 

level is consistent with previous studies in other organ-

isms [6, 29]. We analyzed the degree of tissue specificity 

for both gene types (Fig. 4b, c). Because the lncRNAs are 

weakly expressed with numerous genes having an FPKM-

UQ higher than 0.1 in only a few of the 16 samples of a 

tissue (see Fig. 1d), we defined a gene that was expressed 

in one tissue (i.e., with a FPKM-UQ higher than 0.1 for at 

least 10 of the 16 samples) as non-expressed in the sec-

ond tissue if its FPKM-UQ was lower than 0.1 in more 

than 12 samples (see the “Methods” section and Fig. 1d). 

Based on this definition, on average 24% of the lncRNAs 

are specifically expressed in one tissue, compared to only 

3.5% for protein-coding genes (on average a sevenfold dif-

ference, Fisher test, p value <2.2 × 10−16) (Fig. 4b). �ese 

differences between lncRNAs and protein-coding genes 

are not due to the lower expression levels of lncRNAs 

because we also found similar differences between lncR-

NAs and protein-coding genes that are expressed at simi-

lar levels (Fig.  4c). �ese differences remain significant 

and similar when we used either more stringent or more 

relaxed criteria across replicates to determine expression 

in one tissue or no expression in the second tissue. For 

example, we found a 9.5-fold difference with stringent 

criteria (16 of the 16 replicates with a FPKM-UQ higher 

than 0.1 in one tissue and no sample with a FPKM-UQ 

higher than 0.1 in the second tissue) and a 5.9-fold differ-

ence with more relaxed criteria (at least 8 of the 16 repli-

cates with a FPKM-UQ higher than 0.1 in one tissue and 

no more than 8 samples with a FPKM-UQ higher 0.1 in 

the second tissue). Although we analyzed tissue specific-

ity between only two tissues, these results are consistent 

with previous reports in other organisms that analyzed 

lncRNAs in several tissues, as in Cabili et al. [31] on 24 

tissues and cell types or in Derrien et al. [6] on 16 tissues.

To evaluate the relevance of these tissue-specificity 

gene sets, we performed a GO term enrichment analy-

sis for the protein-coding gene subsets with DAVID [41, 

42] (see Additional file  3: Table S2). As expected, for 

the liver-specific protein-coding gene subset, we found 

an enriched GO term cluster related to lipid metabo-

lism that was supported by well-known liver-specific 

genes such as those coding for hepatocyte nuclear fac-

tors (HNF1A, HNF4, NR1H4), apolipoproteins (APOB, 

APOA4) or enzymes involved in cholesterol catabolism 

and bile acid metabolism (CYP7a1, HSD3B7, SLCO1A2). 

Fig. 3 Chicken/human lncRNA conservation in terms of sequence (a) and syntenic position (b–e). a An example of chicken lncRNA (XLOC_014262) 

that has a conserved sequence with the human RP11-386B13.3 lncRNA and a similar syntenic position in both species. b Schematic picture illustrat-

ing our approach for identifying syntenic lncRNAs between the chicken and human genomes. c, d Schematic representations of the SLC38A4-

AMIGO2 (d) and VPS18-DLL4 loci. e Distributions of the expression of the two subsets of lncRNAs with conserved or not synteny
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For the adipose-specific protein-coding gene subset, an 

enriched GO term cluster related to development and 

morphogenesis was identified, which was supported 

in particular by several HOX genes involved in body fat 

mass control and obesity [43, 44]. �is cluster of genes 

is likely related to the capacity of white adipose tissue to 

expand and differentiate. �e four subsets of adipose- 

and liver-specific genes for long noncoding and protein-

coding genes are in Additional file 4: Table S3.

Co-expression of LncRNAs and their nearest 

protein-coding genes

Long noncoding RNAs are emerging as new players in 

multiple mechanisms of cell machinery, including regula-

tion of gene expression. Even if they can act over long dis-

tances to activate transcription at distal promoters [45], it 

has been demonstrated that they can also locally affect the 

gene expression of their neighboring protein-coding genes 

[11, 30, 46]. Concerning these “local” regulations leading 

to co-expression, we can distinguish genic lncRNAs that 

overlap protein-coding genes in an anti-sense orientation 

from intergenic lncRNAs in a divergent orientation with 

respect to their closest protein-coding genes. �ese lat-

ter lncRNAs may share a common bidirectional promoter 

with their closest protein-coding genes if the distance 

between them is less than a certain threshold, often fixed 

at 1 kb [47–49]. Hence, we evaluated the co-expression of 

each “lncRNA—nearest protein-coding RNA” pair across 

all the samples of each tissue according to two criteria: 

(1) the FEELnc classification, and (2) for the three inter-

genic lncRNA classes, a distance of less than 1 kb between 

the two genes considered. For some classes, we expected 

a larger number of significantly co-expressed pairs when 

the genes of a pair are closer together than when they are 

further apart, based on the hypothesis that a lncRNA is 

more likely to contribute to the regulation of a protein-

coding gene if it is close to it.

We observed that pairs of divergent lncRNA genes 

and close (≤1 kb) to protein-coding genes are more sig-

nificantly co-expressed than the more distant divergent 

pairs (22 vs. 13%, respectively, Fisher test, p value <0.05) 

(Table  1). Similar results were found for divergent pro-

tein-coding gene pairs (30 vs. 22%, Fisher test, p value 

<0.1) (Table  1). �ese results suggest that very close 

divergent pairs of lncRNAs and protein-coding genes are 

controlled by the same promoter. �e same observation 

was previously reported for lncRNA-coding RNA pairs 

that were referenced by Schmitz et  al. [11], as well as 

for protein-coding RNA pairs [47–49]. Interestingly, we 

showed that most of the correlated gene pairs are posi-

tively correlated: this occurs in more than 82% of cases, 

regardless of the type of gene pair (mRNA–mRNA or 

lncRNA-mRNA). Such a result is consistent with other 

studies conducted in mammals for mRNA–mRNA pairs 

[48] and supports the hypothesis that most bidirectional 

promoters positively regulate the co-expression of gene 

pairs, whereas a minority of bidirectional promoters 

induce the transcription of one gene while inhibiting the 

transcription in the other direction. �e detailed mecha-

nisms that underlie the co-expression of divergent RNA 

pairs can be multiple and involve cis- or trans-regulatory 

elements [11, 47, 50].

Regarding genic lncRNA-mRNA pairs, lncRNAs ori-

ented in the antisense direction with respect to an exon 

Fig. 4 Tissue expression of lncRNA and protein-coding RNA genes in liver and adipose tissue in chicken. a Expression levels in both tissues. b 

Tissue-specific expression for the whole lncRNAs and Ensembl protein-coding RNAs. c Tissue-specific expression for a subset of the lncRNAs and 

protein-coding RNAs with similar expression (between the extreme medians of the lncRNA and mRNA expression distributions represented by 

x = 0.76 and y = 9.94 FPKM-UQ, respectively). The read counts were normalized for library size and gene size, and the biological replicates per tissue 

were taken into account as explained in “Methods” section
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or intron of a protein-coding gene are significantly co-

expressed (22 and 13%, respectively) with the overlapping 

protein-coding gene (Table 1). Several cases of co-expres-

sion of genic lncRNA-mRNA pairs in an antisense ori-

entation have been reported, and the modes of action 

of such lncRNAs on the regulation of mRNA loci are 

multiple and complex [11, 51–54]. Strikingly, we found 

that the significant correlations between lncRNA and 

mRNA levels are positive. Derrien et al. [6] also reported 

a majority of positive co-expressions for lncRNA-mRNA 

pairs in an anti-sense orientation. �e mechanisms that 

underlie such positive co-expression seem to be complex 

and act at distinct regulatory levels including the transla-

tion, splicing and transcription levels [55–58].

In the same strand pair category, lncRNAs are more 

significantly correlated with their proximal protein-

coding neighbors (≤1  kb) than with distant RNAs (56 

vs. 24%, respectively) (Table  1). Most of these lncRNA 

genes probably have to be considered as an extension 

of the protein-coding gene, which implies that the Cuf-

flinks/Cuffmerge procedure could not model full-length 

lncRNAs. Indeed, such a difference is not observed for 

the protein-coding gene pairs, considered as better char-

acterized and used here as a control (28 and 22% for the 

two distance subsets) (Table 1).

Next, we focused on two lncRNA-mRNA pairs that 

were significantly correlated in the liver, i.e. one divergent 

pair and one exon antisense pair.

Speci�c cases of divergent and exonic antisense 

lncRNA-mRNA pairs that are signi�cantly correlated in liver

Our aim was to identify pairs with a protein-coding gene 

involved in lipid metabolism, to be able to hypothesize a 

regulatory role of the lncRNA on its neighboring coding 

gene [59]. �ree long noncoding genes were previously 

described in mammals as being involved in lipid homeo-

stasis: the liver-enriched lncLSTR, reported as a putative 

regulator of the plasma triglyceride level in mice [60]; 

the lncRNA HULC, which is abnormally expressed in 

hepatocellular carcinoma cells and has been shown to 

increase the triglyceride and cholesterol levels in these 

cells [61]; and the antisense lncRNA APOA1-AS, which 

was shown in humans and monkeys to negatively regu-

late APOA1 expression (a major component of high-den-

sity lipoprotein) [62]. Surprisingly, these long noncoding 

genes, absent from the Ensembl chicken V84 annotation, 

were not modeled with our RNA-Seq data, and a man-

ual inspection using the Integrative Genomics Viewer 

confirmed that no reads were mapped at the putative 

genomic locus, contrary to the neighboring protein-cod-

ing genes (see Additional file 5: Figure S2). �ese results 

suggest that these long noncoding genes are either absent 

in the chicken genome or not systematically expressed in 

the liver, regardless of the age, sex and physiological state 

of the individuals.

For the set of antisense lncRNA-mRNA pairs, no 

mRNA was found to be clearly involved in lipid metabo-

lism according to the literature. �erefore, we analyzed 

the co-expression of one pair related to the protein-cod-

ing gene, NPNT, which was recently shown to play a role 

in the liver [63]. For the set of divergent lncRNA-mRNA 

pairs, we focused on a lncRNA related to the DHCR24 

gene known to encode a key enzyme of the biosynthesis 

of cholesterol, which has not been reported so far.

Exonic antisense lncNPNT‑AS and NPNT protein‑coding gene

As shown in Fig.  5, the NPNT locus has the same gene 

organization in the chicken and human genomes, with 

Table 1 Signi�cant correlations between  expression for  lncRNA-mRNA and  mRNA–mRNA pairs considering FEELnc 

classes and distance between genes

The FEELnc classes are “same strand”, “divergent” and “convergent” for intergenic lncRNAs, and “antisense exon” and “antisense intron” for genic lncRNAs

For intergenic lncRNAs, co-expression was tested according to the physical distance (1 kb) between the two genes considered

The di�erence in correlated pairs between the “distance” sets was tested by a Fisher test (NS: non-signi�cant). Note that this co-expression table depends on the 

modeling of protein-coding genes obtained by Ensembl V84.4

Same strand Convergent Divergent Antisense exon Antisense intron

Genes 674 194 370 23 100

lncRNA-mRNA

 ≤1 kb 51/91 (56%) +49/−2 5/28 (18%) +3/−2 23/105 (22%) +19/−4 5/23 (22%) 13/100 (13%)

 >1 kb 139/583 (24%) +127/−12 13/166 (8%) +10/−3 34/265 (13%) +27/−7

 p value 2.37 × 10−9 NS (0.15) 3.7 × 10−2 NA

mRNA–mRNA

 ≤1 kb 28% 17% 30% 24%

 >1 kb 22% 19% 22%

 p value NS (0.19) NS (0.80) 0.09 NA
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a lncRNA (called RP11-710F7.3 in the human genome) 

that overlaps the NPNT protein-coding gene in an anti-

sense orientation (Fig. 5a). Nevertheless, the intron–exon 

structure of these two genes and the exonic region of the 

NPNT that overlaps the lncRNA differ in the two spe-

cies. �e highly significant correlation found by RNA-Seq 

between the two chicken lncNPNT-AS and NPNT genes 

in the liver (Fig. 5b, left) was fully validated by RT-qPCR 

experiments (Fig.  5c). We also found a positive correla-

tion between the hepatic expression of the two genes 

in other chickens with fed and fasted statuses (Fig.  5d). 

Conversely, no significant correlation was observed 

in the adipose tissue (Fig.  5b, right). �e NPNT gene 

encodes nephronectin, which is an extracellular matrix 

protein known to play a critical role in kidney develop-

ment. However, its physiological role in the liver remains 

unclear. A recent study showed that NPNT expression 

is up-regulated in mouse and human hepatitis [63]. Our 

results suggest a positive regulatory role of the antisense 

lncNPNT-AS on NPNT expression, but the regulatory 

mechanisms that underlie this positive co-expression and 

its functional impact in the liver remain to be elucidated.

DHCR24 and its divergent lncRNA

We found the same gene pair organization at the DHCR24 

locus in the human and chicken genomes, with a lncRNA 

gene (called RP11-67L3 in the human genome) that is 

transcribed in the opposite direction with respect to the 

DHCR24 protein-coding gene (Fig.  6a). �e significant 

correlation found by RNA-Seq between the two chicken 

lncRNA_DHCR24 and DHCR24 expression levels in the 

liver (Fig.  6b, left) was confirmed by RT-qPCR (Fig.  6b, 

Fig. 5 NPNT gene and its antisense lncRNA gene. a Gene models of the lncRNA/mRNA pair in the chicken and human genomes. b Expression of 

the lncRNA/mRNA pair analyzed with RNA-Seq data in liver (left) and adipose tissue (right). c Expression analysis with RT-qPCR data. d Expression of 

20 fed and fasted birds (analyzed by RT-qPCR). Correlation significance: ***p value <0.001
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right), with similar correlation coefficients. No significant 

correlation (r = 0.064, p value = 0.81) was observed for 

the adipose tissue, in which both genes are less expressed 

than in the liver (FPKM-UQ =  20.2 vs. 0.9, respectively, 

for lncRNA_DHCR24, and 112.7 vs. 17.6, respectively, for 

DHCR24). �ese two divergent gene pairs were positively 

co-expressed in various experimental designs, includ-

ing young and adult chickens with fed and fasted statuses 

(Fig. 6c). �e analysis of expression across 17 chicken tis-

sues also showed a co-expression of the two DHCR24 and 

lncRNA_DHCR24 genes, with the highest RNA levels in 

the liver, brain, testis and ovary (Fig. 6d).

�e tissue expression pattern is consistent with the 

physiological role of DHCR24 since it encodes the last 

enzyme necessary for cholesterol synthesis, with cho-

lesterol being the precursor of the biosynthesis of the 

steroid hormone. To our knowledge, such co-expres-

sion observed in different physiological conditions 

between DHCR24 and a divergent lncRNA has never 

been reported before; it suggests that the two members 

of this gene pair that are in a divergent orientation and 

at a small distance between the transcription start sites 

(202 bp) share an active bidirectional promoter. Further 

experiments are required to determine if this promoter 

can initiate transcription in both directions. �e strong 

co-expression that was observed in several experimen-

tal designs suggests a regulatory role of the lncRNA_

DHCR24 on DHCR24 expression and thereby on the 

biosynthesis of cholesterol. Similar to lncLSTR [60] or 

APOA1-AS [62], lncRNA_DHCR24 thus constitutes a 

novel candidate gene to be added to the list of lncRNAs 

involved in lipid metabolism regulation.

Conclusions
Our study aimed at establishing a first repertoire of 

the lncRNAs in the chicken liver and adipose tissue, 

two tissues that are known to be important for energy 

homeostasis and lipid metabolism. We characterized 

this repertoire in terms of structure, expression and 

co-expression with respect to protein-coding genes, 

based on 16 biological replicates per tissue. In terms of 

structure, we observed a large subset of lncRNAs that 

were conserved by position between the chicken and 

human genomes but that were highly divergent at the 

nucleotide level. Although this latter observation was 

also reported in other studies [6, 17, 38, 64–66], com-

plementary strategies could be considered for analyzing 

splice site sequence conservation [67]. Nevertheless, this 

reinforces the question regarding the functional mean-

ing of syntenic conservation in the absence of sequence 

conservation, which does not rule out the conservation 

of the secondary structures of lncRNA sequences. More 

specific to the chicken genome, lncRNAs have the same 

chromosomal distribution as protein-coding genes in 

terms of gene density and length, with more and shorter 

genes on the micro-chromosomes. In terms of expres-

sion, the chicken lncRNAs are less expressed and more 

tissue-specific than the protein-coding genes, as previ-

ously reported for human and murine lncRNAs, support-

ing the important role that is attributed to lncRNAs as 

regulatory elements involved in tissue-specific functions. 

In terms of co-expression, 22% of the antisense overlap-

ping lncRNA-mRNA pairs are significantly and positively 

co-expressed, thus providing new candidate genes to 

investigate the mechanisms that underlie such regula-

tions. We show that divergent lncRNA genes are more 

significantly co-expressed with their close (≤1  kb) pro-

tein-coding genes than with more distant genes, suggest-

ing the existence of active bidirectional promoters in the 

chicken. In particular, the DRCH24 gene and its divergent 

lncRNA are highly co-expressed in various conditions 

in the liver, revealing a new lncRNA that might have an 

important role in the regulation of cholesterol synthesis.

Methods
Sample collection, RNA isolation and RNA sequencing

�e liver and abdominal adipose tissue were extracted 

from 16 male chickens slaughtered at 9  weeks of age. 

Chickens were feed-deprived for 12  h and then fed 

again for 3  h before being euthanized by decapitation 

and bleeding. Immediately after slaughter, the liver and 

abdominal adipose tissue were removed, frozen in liquid 

nitrogen and then stored at −80 °C until the analyses.

Approximately 30  mg of liver and 100  mg of adi-

pose tissue were homogenized in TRIzol reagent (Inv-

itrogen, California, USA), and the total RNA was then 

extracted according to the manufacturer’s instructions, 

re-suspended in 50 µL of RNase-free water and stored at 

−80 °C. �e total RNA was quantified with a NanoDrop® 

ND-1000 spectrophotometer (�ermo Scientific, Illkirch, 

France). A260/280 and A260/230 ratios were greater than 

1.7 in all samples, ensuring the purity of the preparation. 

�e RNA quality was verified using an Agilent 2100 Bio-

analyzer (Agilent Technologies France, Massy, France). 

�e average RNA integrity numbers were 8.65  ±  0.47 

(mean ± SD) for the two tissues: 9.4 ±  0.5 for the liver 

and 8 ± 0.6 for the abdominal adipose tissue.

Sequencing was conducted on 24 samples (16 liv-

ers and eight abdominal adipose tissue samples) and 

an additional eight abdominal adipose tissue samples, 

in a stranded and paired end manner with 2 ×  100  bp, 

on a HiSeq  2000 (Illumina) and HiSeq  3000 (Illumina), 

respectively. Libraries with an on average 230-bp insert 

were prepared following Illumina’s instructions by puri-

fying poly-A RNAs (TruSeq RNA Sample Prep kit). Illu-

mina adapters containing indexing tags were added for 
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subsequent identification of samples. Samples were PCR-

amplified, and quantitative PCR was then performed for 

library quantification (QPCR NGS Library Quantification 

kit). All samples were filled on two to five lanes with a 

flow cell to minimize the inter-lane bias. After sequenc-

ing, the samples were de-multiplexed, and the indexed 

Fig. 6 DHCR24 gene and its divergent lncRNA gene. a Gene models of the lncRNA/mRNA pair in the chicken and human genomes. b Expression 

correlation in liver using RNA-Seq data (left) and confirmed by RT-qPCR (right). c Expression in adult birds analyzed by RNA-Seq (left) and young birds 

under fasted and fed statuses analyzed by RT-qPCR (right). d Expression across 17 tissues (see the “Methods” section). Correlation significance: ***p 

value <0.001
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adapter sequences were trimmed using CASAVA v1.8.2 

software (Illumina). We obtained 101 million reads per 

sample on average (111 million reads for the liver and 92 

million reads for the adipose tissue), with a total of 3.3 

billion reads for the 32 samples.

Pre-processing steps on RNA-Seq data

�ree billion reads from the RNA sequencing were 

mapped onto the chicken Galgal4 reference genome 

using STAR (v2.4.0i) [68], and the PCR duplicates were 

removed for each RNA-Seq sample using the SAMtools 

rmdup tool (v0.1.19) [69]. All the data were merged into 

one bam file with the merge tool (v1.1) from the Sam-

tools suite to create the input file used to model tran-

scripts and genes. Gene modeling was performed with 

both Stringtie (v1.0.1) [70] and Cufflinks (v2.2.1) [71], 

using the Ensembl gene annotation file (release 82) as a 

reference. To compare the results, tests were conducted 

under the same conditions with 12 cores. �e CPU was 

an Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50  GHz. �e 

counting step was performed by featureCounts (v1.4.5-

p1) [72] with standard options but using both the multi- 

and the mono-mapped read options. Note that separated 

“.bam” files (one per sample) including the PCR dupli-

cates were used for this counting step. We obtained 2.418 

billion mapped reads with the ‘no multi-mapping’ option 

and 2.487 billion reads with the ‘multi-mapping’ option. 

�erefore, only 2.8% of the total reads were multi-

mapped and these were discarded from further analyses. 

After completing all the filtering steps, we obtained an 

average number of mapped reads per sample of approxi-

mately 75 million overall (88 million and 63 million for 

the liver and adipose tissue, respectively). Each command 

line and input/output file used to run the different analy-

ses are in Additional file 6.

Long noncoding RNA prediction

lncRNA annotation was performed by the FEELnc pro-

gram (FlExible Extraction of Long noncoding RNAs, 

v.23/11/2015 [22, 23]. Briefly, FEELnc is an alignment-

free software that uses multi k-mer frequency data and 

relaxed open reading frame (ORF) annotation as the 

main computational features/predictors to discriminate 

protein-coding from non-coding RNAs. �ese features 

are then used in a machine-learning algorithm (ran-

dom forest) to compute a coding potential score (CPS) 

that will discriminate between mRNAs and lncRNAs. In 

particular, the program can be self-trained with species-

specific annotations and it automatically defines the cod-

ing potential threshold that maximizes the classification 

performance (i.e., where the sensitivity equals the speci-

ficity). Once the FEELnc model is trained with the above 

predictors, it is then applied on a set of novel transcript 

models (e.g., from Cufflinks or Stringtie) reconstructed 

after transcriptome sequencing to predict their protein-

coding capacity. �e description of the FEELnc program 

is accessible at bioarxiv [23] in which extensive bench-

marking of the program in comparison with six other 

programs is presented based on the GENCODE human 

and mouse gold-standard datasets. Basically, FEELnc has 

three modules: “FEELnc_filter”, “FEELnc_codpot” and 

“FEELnc_classifier”. Using the first module “FEELnc_fil-

ter”, we filtered out all transcripts for which exons over-

lapped in the sense protein-coding exons or pseudogenes 

that are referenced in the chicken V78 Ensembl annota-

tion. Note that the V78 Ensembl annotation is equiva-

lent to the last V84.4 annotation for the chicken, with 

15,508 coding genes and 17,954 coding transcripts. We 

also filtered out transcripts that were shorter than 200 bp 

according to the commonly accepted definition of long 

noncoding RNAs. �e second module “FEELnc_codpot” 

separates putative long noncoding RNAs (lncRNAs) from 

protein-coding RNAs by first computing a coding poten-

tial core (CPS, ranging from 0 to 1) for each transcript 

and then computing a CPS cut-off that maximizes both 

the lncRNA sensitivity and specificity using a tenfold 

cross-validation according to the input training files. For 

the training set of protein-coding transcripts, we used the 

15,508 known coding transcripts annotated by Ensembl. 

For the training set of long noncoding transcripts, we 

used both the 13,085 chicken putative transcripts from 

the NONCODEV5 database (v.2016) [18, 19] and a set 

of 11,000 genomic intergenic regions automatically 

extracted by FEELnc. Note that the lncRNA predictions 

of NONCODE are mainly based on the analysis of the 

Cufflinks gene models by the coding-non-coding index 

(CNCI) method [35]. Here, the CPS calculation is based 

on ORF coverage, mRNA size and multi k-mer frequen-

cies; for this latter criterion, we chose frequencies of 1-, 

2-, 3-, 6-, 9- and 12-mers, and the optimal performance 

in terms of specificity for our training data was 0.96. 

FEELnc allows the user to increase the performance met-

rics to obtain high-confidence predictions of lncRNAs/

mRNAs, although this option leads to the creation of an 

intermediate category of ambiguous coding/noncoding 

transcripts (TUCp). �e third module “FEELnc_classi-

fier” classifies each lncRNA with respect to its location 

and orientation compared to its closest annotated pro-

tein-coding genes. �e two main classes are (1) the genic 

lncRNA class, corresponding to lncRNA transcripts that 

overlap a protein-coding gene, and (2) the intergenic 

lncRNA class, with three subtypes that are the divergent, 

convergent and same-strand sub-classes, as detailed on 

the FEELnc website [22] and schematized in Fig. 1e. Each 

command line and input/output file used to run the dif-

ferent analyses are available in Additional file 6.
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Comparison of our lncRNA set with the chicken lncRNAs 

from the NONCODE and ALDB databases

�e multi-species NONCODE [18, 19] and ALDB [20, 

21] databases contain 9343 and 6132 chicken lncRNAs, 

respectively, that are either intergenic or overlap a gene 

in antisense orientation. �e exon coordinates of our 

chicken lncRNA set were compared to those of both 

databases using the “bedtools intersect” tool v.2.25.0 

[73]. Two thresholds were used i.e. 100% (stringent cri-

teria) and 50% (relaxed criteria), which refer to the per-

centage of the lncRNA exon lengths in our dataset that 

match those of the analyzed database set. Because of the 

non-perfect modeling of lncRNAs, we considered that a 

lncRNA was present in two sets if at least one exon was 

shared by these sets.

Sequence conservation

Sequences of human lncRNA transcripts were down-

loaded from the GRCh38 Ensembl database, version 83. 

Sequence comparisons between our chicken FEELnc 

sequences and the human sequences were conducted 

using the Blast software suite [74] (blastn V2.4.0+, with 

a word size of 7). �e thresholds used for the FEELnc and 

human transcript comparison were 50% for the query 

coverage and 70% for the identity percentage.

Syntenic conservation

A syntenic conservation analysis was performed for the 

lncRNA genes that were surrounded by two neighboring 

protein-coding genes with a 1-to-1 orthologous relation-

ship with the human genome (Ensembl v.83, Biomart 

web-based tool [75, 76]). We considered that there was 

synteny conservation for a lncRNA if a lncRNA was also 

found in the human (GrCh37) between the same two 

coding genes, with the same orientation and the same 

order. Note that no upper limit was used in terms of 

distance between the lncRNA and the nearest protein-

coding genes, but most of the distances are between 6 nt 

(min) and 35,000 nt (third quartile).

Expression analysis

�e raw counts for each gene were calculated by feature-

Counts [72] at the gene (locus) level and normalized by 

the gene size and the total number of reads that mapped 

in the most highly expressed genes, as proposed in the 

upper quartile (UQ) method described by Bullard et al. 

[77]. �us, the raw counts after normalization were 

called FPKM-UQ (FPKM for Fragment Per Kilobase 

and Milllions—UQ for Upper Quartile). �is method is 

particularly relevant because highly expressed genes are 

known to account for most of the reads and therefore to 

strongly influence the total read number, whereas they 

represent only a small fraction of the expressed genes. 

In our study, the top 10 and 25% most highly expressed 

genes represent 34 and 96% of the reads, respectively, in 

the liver, and 16 and 90% in the adipose tissue. Finally, 

a gene was considered as expressed in a tissue when at 

least 10 of the 16 samples per tissue had a FPKM-UQ 

greater or equal to 0.1, a threshold often used in studies 

focusing on lncRNAs [6, 8, 38, 78]. In this study, such 

a threshold corresponds to eight and two average reads 

for coding (1987 nt long) and long noncoding (494 nt 

long) transcripts, respectively. To determine this mini-

mum number of samples (10 of 16) for defining a gene 

as expressed in one tissue, we analyzed the reproduc-

ibility of expression across the 16 biological replicates 

in each tissue (see the “Results” section and Fig.  1d). 

Moreover, to provide an estimation of the background 

signal and then justify the expression threshold of 0.1, 

we sampled, several times, a set of genomic intervals 

with the same size distribution as that of our lncRNA 

loci, and with no overlapping with any gene (protein-

coding genes and non-coding genes) using the “bedtools 

shuffle” command. We refer to this set as the “no-gene” 

set. We then counted the numbers of reads in these sets 

for the 16 liver replicates and transformed these read 

counts into FPKM-UQ (see Additional file  7: Fig. S3). 

First, we can observe that the third quartile is approxi-

mately 0.1 (on the left of Additional file  7: Figure S3). 

Second, the distribution of the “no gene” set that satis-

fied the FPKM-UQ threshold of 0.1 across the 16 repli-

cates is very different from those observed for lncRNAs: 

only 8% of the loci satisfied our double criteria “at least 

10 of the 16 samples had a FPKM-UQ greater or equal 

to 0.1”. �us, we conclude that our criteria allow us to 

distinguish expressed entities with a low but reproduci-

ble expression from noise with a lower signal that is less 

reproducible.

For the tissue-specificity analysis, a gene expressed in 

one tissue was considered as not expressed in the other 

tissue if its expression was below the FPKM threshold of 

0.1 in at least 12 of the 16 samples.

Co-expression analysis

A lncRNA/protein-coding RNA pair was considered 

as significantly correlated in a tissue across the 16 rep-

licates when the correlation p value was lower or equal 

to 0.1 after correction for multiple-testing by the Benja-

mini–Hochberg method [79]. Pearson correlations were 

calculated using the log10(FPKM-UQ). For all expressed 

gene pairs, we considered the highest correlations among 

those calculated for either liver or adipose tissue. To rep-

licate the analyses with “coding–coding” pairs, we recon-

stituted “coding–coding” pairs for divergent, convergent 

and same-strand FEELnc classes in accordance with the 

FEELnc nomenclature.
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RT-qPCR

Total RNA and cDNA were prepared from various tis-

sues, as previously described by Roux et  al. [80]. Four 

experimental bird designs were analyzed: 16 young males 

(9 weeks old) analyzed in this study with RNA-Seq data 

(FatInteger Project—ANR-11-SVS7), 56 adult laying 

hens (over 30  weeks of age) from the ChickStress Pro-

ject—ANR-13-ADAP, 20 young males (9  weeks old) fed 

ad libitum or fasted for 16 h, and finally the multi-tissue 

design with 17 different tissues, as reported in Roux et al. 

[80]. RT-qPCR was performed with the primers included 

in Table  2, and amplification specificity was confirmed 

by sequencing. �e results are given either as CT (cycle 

threshold) or, for the multi-tissue design, as fold-change 

compared to a CT equal to 30 (considered as very weak 

expression).
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Table 2 RT-qPCR primers used to amplify genes of interest

Gene of interest Forward Reverse

DHCR24 TGGAGAGCCCAAAACGA 
AACA

CGCGGGTCATGTAGCAATC

lncRNA_DHCR24 GAGAGAAGCTGGAT 
GGTCCTG

CTGAAGGAGACTGCAAG 
GTGT

NPNT CGATGAATGTGCTAC 
TGGGAGA

AACTACCACACTGATGC 
TGGC

lncNPNT-AS TGCACTCTCATCTTGTGT 
GCT

CAACGTGACCATAAGGGC 
TG

Additional �les

Additional �le 1: Fig. S1. Global Jaccard index for our RNA-Seq data 

calculated with various threshold values using the R software HTSfilter 

[32]. This figure shows on the left, count data for long noncoding RNAs; 

and on the right, count data for protein-coding genes. Count data were 

normalized by TMM methods [81]. For each type of gene, the data-based 

threshold corresponds to the red cross and red dotted line. For the 

long noncoding genes (left), the curve shape of the Jaccard index (that 

gives a threshold—at the maximum of the curve—equal to one read) is 

not consistent with the expected index curve shape, in contrast to the 

protein-coding genes (right) that behave correctly, with a maximum of 

approximately 32 reads.

Additional �le 2: Table S1. LncRNA transcripts (2412) and lncRNA genes 

(1670) and their classes according to the FEELnc classification. These 

lncRNA transcripts and genes are characterized by a good reproducibility 

of expression in at least one of the two tissues. We provide ID, genomic 

location, FASTA sequence, length, classification with the closest protein-

coding gene and FPKM-UQ mean expression in the liver and adipose 

tissue. LncRNAs that were also predicted by the CPC method [24] and rep-

resenting more than 90% of the lncRNAs are indicated in the column CPC.

Additional �le 3: Table S2. Enriched biological process GO terms of 

the liver- or adipose-specific subsets for protein-coding genes and long 

noncoding genes. The enrichment was performed using DAVID software 

[41, 42], and the GO terms were considered enriched according to the 

DAVID thresholds used by default.

Additional �le 4: Table S3. Four subsets of adipose- and liver-specific 

genes for long noncoding and protein-coding genes.

Additional �le 5: Fig. S2. Visualization by IGV of the lncLSTR, APOA1-AS 

and HULC loci in the chicken genome. IGV: Integrative Genomics Viewer 

from the Broad Institute. LncLSTR [60] was expected between HMCN1 and 

Ivns1abp genes localized on Scaffold JH375182.1. HULC long noncoding 

gene was expected between the OFCC1 and SLC35B3 genes localized on 

chromosome 2, and APOA1-AS was expected to overlap with APOA1 local-

ized on chromosome 24. Expected locations are in red squares. The liver 

RNA-Seq data used here are a merge of the .bam files of the 16 samples. 

The chicken reference genome was the Ensembl Galgal4, and the annota-

tion version was Ensembl v84.4.

Additional �le 6. Command lines and input files used to run the differ-

ent analyses in the current study.

Additional �le 7: Fig. S3. Boxplot and distribution across the 16 

replicates of the “no gene” set representing the noise signal. This figure 

shows on the left the boxplots of FPKM-UQ for 10 “no gene” sample sets 

(see “Methods” section) in white compared to those for lncRNAs (red) and 

mRNAs (blue); and on the right, the distribution across the 16 replicates 

of the “no gene” set (green) that satisfied the FPKM-UQ threshold of 0.1. 

This distribution is very different from those observed for lncRNAs (red) or 

mRNAs (blue).
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