
Long noncoding RNAs expressed in human hepatic 

stellate cells form networks with extracellular 

matrix proteins

Citation
Zhou, Chan, Samuel R. York, Jennifer Y. Chen, Joshua V. Pondick, Daniel L. Motola, Raymond T. 
Chung, and Alan C. Mullen. 2016. “Long noncoding RNAs expressed in human hepatic stellate 
cells form networks with extracellular matrix proteins.” Genome Medicine 8 (1): 31. doi:10.1186/
s13073-016-0285-0. http://dx.doi.org/10.1186/s13073-016-0285-0.

Published Version
doi:10.1186/s13073-016-0285-0

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318588

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318588
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Long%20noncoding%20RNAs%20expressed%20in%20human%20hepatic%20stellate%20cells%20form%20networks%20with%20extracellular%20matrix%20proteins&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=1c7b08a935c13fb7c346ecdbdefd25d8&department
https://dash.harvard.edu/pages/accessibility


RESEARCH Open Access

Long noncoding RNAs expressed in human
hepatic stellate cells form networks with
extracellular matrix proteins
Chan Zhou1, Samuel R. York1, Jennifer Y. Chen1, Joshua V. Pondick1, Daniel L. Motola1, Raymond T. Chung1

and Alan C. Mullen1,2*

Abstract

Background: Hepatic fibrosis is the underlying cause of cirrhosis and liver failure in nearly every form of chronic

liver disease, and hepatic stellate cells (HSCs) are the primary cell type responsible for fibrosis. Long noncoding

RNAs (lncRNAs) are increasingly recognized as regulators of development and disease; however, little is known

about their expression in human HSCs and their function in hepatic fibrosis.

Methods: We performed RNA sequencing and ab initio assembly of RNA transcripts to define the lncRNAs expressed

in human HSC myofibroblasts. We analyzed chromatin immunoprecipitation data and expression data to identify

lncRNAs that were regulated by transforming growth factor beta (TGF-β) signaling, associated with super-enhancers

and restricted in expression to HSCs compared with 43 human tissues and cell types. Co-expression network analyses

were performed to discover functional modules of lncRNAs, and principle component analysis and K-mean clustering

were used to compare lncRNA expression in HSCs with other myofibroblast cell types.

Results: We identified over 3600 lncRNAs that are expressed in human HSC myofibroblasts. Many are regulated by

TGF-β, a major fibrotic signal, and form networks with genes encoding key components of the extracellular matrix

(ECM), which is the substrate of the fibrotic scar. The lncRNAs directly regulated by TGF-β signaling are also enriched

at super-enhancers. More than 400 of the lncRNAs identified in HSCs are uniquely expressed in HSCs compared with

43 other human tissues and cell types and HSC myofibroblasts demonstrate different patterns of lncRNA expression

compared with myofibroblasts originating from other tissues. Co-expression analyses identified a subset of lncRNAs

that are tightly linked to collagen genes and numerous proteins that regulate the ECM during formation of the fibrotic

scar. Finally, we identified lncRNAs that are induced during progression of human liver disease.

Conclusions: lncRNAs are likely key contributors to the formation and progression of fibrosis in human liver disease.

Background

Liver fibrosis occurs as a result of chronic liver injury

and, if left unchecked, often proceeds to cirrhosis and

liver failure [1, 2]. Fibrosis develops as the result of accu-

mulation of extracellular matrix (ECM) proteins, includ-

ing collagen and glycoproteins [3–6], in a process that is

driven primarily by transforming growth factor beta

(TGF-β) signaling [7, 8]. Hepatic stellate cells (HSCs) are

the primary source of the ECM proteins that cause

fibrosis [9, 10]. In response to liver injury, quiescent

HSCs become activated and produce ECM proteins

[9, 11, 12]. When the source of liver injury is removed,

activated HSCs revert to an inactive phenotype, resulting

in reduced ECM protein expression [13, 14]. In chronic

liver disease, the continual activation of HSCs results in

differentiation into HSC myofibroblasts and constitutive

production of ECM proteins [2]. Collagen is the pri-

mary component of the fibrotic scar, and TGF-β is a

key signal that promotes collagen expression in HSC

myofibroblasts [15–17].

Differentiation of human HSCs into HSC myofibro-

blasts occurs in vivo in response to chronic liver injury

and this process can be modeled ex vivo by growth of

* Correspondence: acmullen@mgh.harvard.edu
1Gastrointestinal Unit, Department of Medicine, Massachusetts General

Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
2Harvard Stem Cell Institute, Cambridge, MA 02138, USA

© 2016 Zhou et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhou et al. Genome Medicine  (2016) 8:31 

DOI 10.1186/s13073-016-0285-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-016-0285-0&domain=pdf
mailto:acmullen@mgh.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


HSCs on plastic [9, 11]. Quiescent HSCs are more buoy-

ant than other liver cells due to the presence of fat drop-

lets and can be isolated by density centrifugation [11].

Culture of quiescent HSCs on plastic results in morpho-

logical changes and induction of genes, including ACTA2

(actin, alpha2 smooth muscle), LOX (lysyl oxidase), and

LOXL2 (lysyl oxidase like 2), which are characteristic of

HSC myofibroblasts [18–21]. Despite an understanding of

the protein-coding genes that regulate fibrosis and devel-

opment of ex vivo tissue culture models to study this

process, there are still no effective treatments directed at

HSCs to inhibit fibrosis and prevent progression of liver

disease.

In recent decades, genome-wide studies have uncovered

evidence for extensive transcription outside the regions of

DNA that encode proteins [22]. Long noncoding RNA

(lncRNA) transcripts are greater than 200 nucleotides (nt)

in length and have the same structure as messenger RNAs

(mRNAs), including a 5′ cap and a polyadenylated 3′ tail,

but do not encode proteins [23]. Over 56,000 lncRNA loci

have now been described in human cells [24] and new

lncRNAs continue to be identified as new tissues and cell

types are analyzed. lncRNAs were originally described as

regulators of chromatin [25–27], but as increasing num-

bers of lncRNAs have been analyzed, it has become clear

that they play essential roles in many different cellular

processes [28–30]. They are also increasingly recognized

as key regulators in mammalian development and disease

[30–38], but very little is known about their role in liver

fibrosis.

In liver disease, lncRNAs have been studied primarily in

relation to cancer. HULC, MALAT-1, TUC338, TUC339,

lncRNA-HEIH, MVIH, HOTAIR, lnc-RoR, and HOTTIP

have all been associated with higher expression in hepato-

cellular carcinoma (HCC) compared with normal liver

tissue [39–48], while MEG3 is repressed in HCC [41]. Ex-

pression of MALAT-1, HOTAIR, and lncRNA-HEIH was

also found to be predictive of HCC recurrence [42, 43, 49]

and expression of HOTTIP correlates with metastatic

HCC burden [46]. HULC can be detected in peripheral

blood and TUC339 can be detected in extracellular

vesicles, suggesting that each might be able to serve

as biomarkers for HCC [39, 50]. Outside of cancer,

lnc-LALR1 is induced in mouse models of liver regen-

eration, where it promotes hepatocyte proliferation [51].

In addition, MEG3 is repressed in models of liver injury

and in response to TGF-β signaling in the HSC line LX2

[52] and GAS5 promotes p27 expression to inhibit HSC

proliferation and activation [53]. The lncRNAs associated

with liver disease were discovered by analyzing the expres-

sion of candidate lncRNAs [40, 43, 46] or by screening

panels of lncRNAs to identify known lncRNAs that are

preferentially expressed in HCC [39, 41, 42, 44, 45, 54].

These studies have not defined the full population of

lncRNAs that are expressed in HCC or in liver fibrosis

and instead have focused solely on characterizing

lncRNAs already described in other cell types.

Many lncRNAs follow cell type-specific patterns of

expression [55–57], yet no genome-wide analysis has

been performed to identify lncRNAs that are uniquely

expressed in HSCs. Thus, we performed RNA-sequencing

and ab initio assembly of RNA transcripts to define the

lncRNAs expressed in HSC myofibroblasts and those

regulated by TGF-β signaling. We analyzed proximity to

protein-coding genes, chromatin modifications, response

to TGF-signaling, cell type-specific patterns of expression,

and clustering by co-expression network analyses in order

to identify lncRNAs with the potential to regulate hepatic

fibrosis.

Methods

Cell culture

Fetal HSCs (Sciencell) were grown in Dulbecco’s modi-

fied Eagle medium (DMEM) with 10 % fetal calf serum

(FCS) and 1 % penicillin/streptomycin (P/S). Adult human

HSCs were isolated from fresh nonparenchymal liver cells

obtained from Triangle Research Laboratories. Nonpar-

enchymal cells were centrifuged at 50 × g for 5 minutes to

remove residual hepatocytes. The cells in the supernatant

were pelleted at 860 × g for 10 min before re-suspension

in Optiprep (Sigma) diluted to 15 % weight per volume

(w/v) with Hanks’ balance salt solution without calcium

or magnesium. Additional layers of 11.5 % and 8.5 % Opti-

prep solution were added to the centrifuge tube before

centrifugation at 1400 × g for 17 min with no brake. HSCs

were enriched at the interface between the 11.5 and 8.5 %

layers. These cells were removed and expanded in DMEM

with 10 % FCS and 1 % P/S. All work with primary human

cells was performed with approval of the Massachusetts

General Hospital Institutional Review Board (IRB). RNA-

sequencing analysis was performed on HSC myofibroblasts

after seven to eight passages. Induction of the quiescent-

like phenotype was performed by culturing HSCs in growth

factor reduced Matrigel (BD). Analysis was performed after

3 days in Matrigel for quantitative RT-PCR. HSCs treated

with TGF-β were grown in serum starvation conditions for

48 h in media containing DMEM with 0.2 % bovine serum

albumin (BSA) and 1 % P/S. Cells were treated with TGF-β

(2.5 ng/ml, R&D systems) for 16 h prior to harvest.

PCR analysis

RNA was isolated from HSCs using Trizol Reagent

(Life Technologies) followed by DNAse I digestion (Life

Technologies). RNA was reversed transcribed with

Superscript III (Life Technologies). Quantitative RT-PCR

analysis was performed with Taqman primer/probe sets

(Life Technologies) using the Bio-Rad CFX384 Real Time

System. ACTA2, LOX, LOXL2, and COL1A1 expression
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was normalized to GAPDH. The following Taqman

primer/probe sets were used: Hs_00426835, ACTA2;

Hs_00942480, LOX; Hs_00158757, LOXL2; Hs_00164004,

COL1A1; Hs_02758991, GAPDH.

Microscopy

Matrigel (200 μl, BD) was distributed across the surface

of each well of a 24-well plate and allowed to gel before

HSC myofibroblasts were added to the well. Activated

HSCs were plated on plastic. After 3 days, the medium

was aspirated, and Bodipy 493/503 (Life Technologies)

and Hoescht were diluted in media and added to the

wells. Bodipy was added at a concentration of 67 pg/μl

and Hoescht was added at a concentration of 5 pg/ul.

After 45 minutes, the cells were washed twice with

Dulbecco's phosphate-buffered saline (DPBS) and imaged

with a Nikon A1plus confocal microscope 10× lens. The

cells were observed using a pinhole setting of 255.4 μm.

Laser intensity, background level, contrast, and electronic

zoom size were collected at the same level for each experi-

ment. Image processing was performed using Adobe

Photoshop software.

Preparation of RNA-seq and ChIP-seq libraries

Total RNA was isolated using Trizol reagent followed by

clean up using either the MirVana® Isolation Kit (Life

Technologies) following instructions for total RNA iso-

lation or re-precipitation after phenol:chloroform and

choloroform extractions. RNA quality was assessed via

Agilent 2100 Bioanalyzer and samples with RNA integ-

rity numbers (RIN) greater than or equal to 9 were used

for library preparation. Isolated RNA was prepared for

sequencing according to TruSeq Stranded mRNA

Library Prep Kit (Illumina). Chromatin immunoprecipi-

tation (ChIP) was performed using antibodies to detect

enrichment of H3K4me3 (07-472, Millipore) and H3K27ac

(Ab4729, Abcam) as previously described [58] with the

following modifications: 1 × 107 cells were sheared for

5 min in 1 ml of cell lysis buffer (Covaris) using a Covaris

S220 set to a peak wattage of 140, duty factor 5 % and

200 cycles per burst; immunoprecipitations were per-

formed using 1 μg of antibody with 10 μl of magnetic

beads. ChIP-seq libraries were prepared using the TruSeq

ChIP Sample Prep Kit (Illumina). They were sequenced

using the Illumina HiSeq 2000 to obtain 100 × 100-nt

paired-end reads for fetal HSCs and used for ab initio

assembly (see below). Illumina HiSeq 4000 was used to

obtain 50-nt single-end reads for primary adult HSC myo-

fibroblasts. We used 50-nt single-end reads for ChIP-seq

analysis.

Ab initio assembly of transcripts from RNA-seq data

We mapped each replicate of directional paired-end RNA-

seq data to the human reference genome (hg19/GRCh37)

using TopHat v2.0.10 [59, 60] before assembling tran-

scripts using both Cufflinks [61] and Scripture [62]. The

TopHat settings were as follows:

tophat -p 8 –library-type fr-firststrand –mate-inner-

dist 50 –mate-std-dev 50 –microexon-search –GTF

genes.gtf -o < output-folder > <index of reference

genome > Reads_end1.fastq Reads_end2.fastq

The reference genes in GTF file format (genes.gtf) were

downloaded from the University of California, Santa Cruz

(UCSC) genome browser [63]. We then assembled tran-

scripts through the following settings of Cufflinks using

TopHat output bam file as input:

cufflinks -p 8 –max-bundle-frags 100000000 –library-

type fr-firststrand –frag-bias-correct –multi-read-

correct -o < output_folder > <tophat_output_bam_file>

Max-bundle-frags was set to 100,000,000 such that

highly expressed genes would be included in the output.

For analysis in Scripture, we used the following TopHat

settings:

tophat -p 4 –microexon-search –GTF genes.gtf -o

< output_folder > <index_of_reference_genome >

<Reads_one_end.fastq>

We used Scripture (beta2 version) to assemble tran-

scripts by following the protocol for transcript assembly

(http://www.broadinstitute.org/software/scripture/). All

transcripts assembled in Cufflinks and/or Scripture were

then merged into one list through Cuffmerge [61].

Identification of long noncoding RNAs

The assembled transcripts were then filtered through

the following steps to identify lncRNAs:

1. Removed transcripts that overlapped with annotated

protein-coding genes, pseudogenes, rRNAs, tRNAs,

small nucleolar RNAs (snoRNAs) and microRNAs

on the same strand.

2. Removed transcripts with protein coding potential.

The coding potential of each remaining transcript

was estimated by HMMER protein domain search

[64, 65] and CPAT [66] using an alignment-free

logistic regression model. The Pfam protein families

database (v27.0) was downloaded from EMBL-EBI

[67]. Both Pfam-A, containing high-quality and

manual curated families, and Pfam-B, containing

automatically generated comprehensive protein

families, were used in the HMMER domain search.

We removed the transcripts matching a protein

domain with p value <1e-4. CPAT uses a logistic

Zhou et al. Genome Medicine  (2016) 8:31 Page 3 of 20

http://www.broadinstitute.org/software/scripture/


regression model built with four sequence features:

open reading frame size, open reading frame coverage,

Fickett TESTCODE statistic, and hexamer usage bias

to estimate the coding ability of transcripts. We used

0.364 as the threshold for discriminating noncoding

and coding transcripts. This threshold (0.364) was

chosen because it gives the highest sensitivity and

specificity (0.966 for each) for human data [66]

according to the nonparametric two-graph receiver

operating characteristic (ROC) curves.

3. Removed remaining transcripts that overlapped on

the same strand with any transcripts removed in

steps 1 or 2.

4. Removed remaining transcripts that lacked

H3K4me3 occupancy within 1 kb of their 5′ end.

5. Removed remaining transcripts that were shorter

than 200 nt or had low read coverage as defined as

less than 0.01 reads per kilobase per million unique

mapped reads or less than ten reads per transcript.

ChIP-Seq analysis for HSCs

ChIP-seq datasets were aligned to the human reference

genome (hg19/G37) using Bowtie2 [68]. We performed

alignment in end-to-end alignment mode with the settings

“bowtie2 -k2 -N1 -L32 –end-to-end”. We next used the

MACS2 [69] callpeak function to compare the mapped

bam files of each ChIP to its matched whole cell extract

background control. H3K4me3 and H3K27ac peaks were

predicted using the following setting: -q 0.01 –nomodel

–shiftsize = 150. This setting was used because histone

marks have an underlying characteristic fixed resolution

for nucleosome size and our ChIP-seq only sequenced

50 nt at the 3′ end. SMAD3 ChIP-seq data from LX2 cells

were downloaded from the Gene Expression Omnibus

(GEO; accession GSM934613 and GSM934616) and

SMAD3 peaks were called by using the default settings in

MACS2. We defined genes as bound by SMAD3 if the site

of occupancy was within 10 kb upstream of the transcrip-

tion start site (TSS) or within the gene body.

Identification of super-enhancers

H3K27ac peaks that were called using MACS2 were

analyzed using ROSE [70, 71] to classify enhancers into

typical enhancers and super-enhancers based on H3K27ac

signals. The human reference genome (build hg19) and

H3K27ac peaks were used as input files. lncRNAs were

considered to be associated with super-enhancers or

typical enhancers if the enhancer was located within 10 kb

of the lncRNATSS.

Classification of lncRNAs

We classified lncRNA loci into four categories according

to their genomic locations. An lncRNA was classified as

divergent if the TSS of the lncRNA locus was within

2 kb of the TSS of a protein-coding gene on the opposite

strand. Any remaining lncRNAs that were antisense to a

protein-coding gene and overlapped the protein-coding

gene by one or more base pairs were classified as natural

antisense. Remaining lncRNAs located within a 1000-bp

window of a region of H3K27ac occupancy were classified

as enhancer-associated. Any remaining lncRNAs that had

a TSS greater than 2 kb from the TSS of the nearest

protein-coding gene were classified as intergenic.

Calculation of expression levels for protein-coding genes

and lncRNAs

The expression levels of all protein-coding genes and

lncRNA loci, represented in fragments per kilobase of

transcript per million fragments mapped (FPKM), were

calculated by Cuffdiff (v2.2.1) with the following pa-

rameters: “–max-bundle-frags 100000000 –library-type

fr-firststrand -b < hg19 reference genome > –multi-read-

correct –no-effective-length-correction –min-isoform-fraction

0 –min-alignment-count”. The max-bundle-frags setting

was increased from the default parameters so that

highly expressed genes would not be excluded.

Differential expression analyses

To increase the sensitivity in detecting changes in expres-

sion of protein-coding and lncRNA genes, two approaches

were used to quantify changes in expression: (a) TopHat

[59, 72] and Cuffdiff (v2.2.1) [61] and (b) HTSeq [73] and

DESeq2 [74]. We took the union of differential expressed

lncRNAs found either by Cuffdiff or DESeq2 (adjusted

p < 0.05). We used the FPKM values to quantify changes

in expression for all figures unless otherwise stated.

Comparison of lncRNAs and protein-coding gene

structure

To compare the number of exons, transcript lengths,

and gene lengths between lncRNAs in HSCs and protein-

coding genes, the longest isoform for each locus was

selected to represent an lncRNA or protein-coding gene.

All protein-coding genes expressed in HSCs were used for

these comparisons.

Raw RNA-seq data of other human tissues and cell types

We obtained the raw RNA-seq data for 37 human tis-

sues (see Additional file 1: Table S1 for tissue name and

GTEx ID) and dermal fibroblasts from dbGaP [75].

RNA-seq data from the six tier 1 and tier 2 Encyclopedia

of DNA Elements (ENCODE) cell lines were down-

loaded from GEO. GM12878, K562, HeLa-S3, HepG2,

and human umbilical vein endothelial cell (HUVEC)

data were obtained from GSE26284 and H1 (WA01)

human embryonic stem cell data from GSE41009. RNA-

seq data of pancreatic stellate cells and immortalized
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human induced fibroblast (hiF-T) cells were downloaded

from GSE43770 and GSE62777, respectively.

Analysis of lncRNA expression across tissues and cell

types

Three samples were selected from each of 37 distinct

human tissues from the Genotype-Tissue Expression

(GTEx) project [75] and downloaded from dbGaP. The

HSC myofibroblasts analyzed in this study were male, so

the two male and one female samples with the highest

number of reads were selected for each tissue (Additional

file 1: Table S1). Where tissues were male- or female-

specific, all three samples were selected from the same

sex. The FPKM values for protein-coding and lncRNA

genes were used to quantify changes in expression. The

Wilcoxon–Mann–Whitney test was used to identify the

lncRNAs overexpressed in HSC myofibroblasts and HSC

myofibroblasts treated with TGF-β compared with 37

human tissues and six ENCODE cell lines. The dendro-

gram for clustering the human samples was calculated

by the default setting of the R function heatplot (in the

gplots and made4 libraries of R).

RNA-seq data from 35 liver samples from GTEx [75]

were downloaded from dbGaP. The pathology reads

were obtained from GTEx. Of the 35 liver samples, eight

showed normal histology, two showed bridging fibrosis,

and two showed cirrhosis (Additional file 2: Table S2).

These 12 samples were selected for further analysis. The

Z-score was calculated by subtracting the mean expres-

sion of an lncRNA for each row from the individual ex-

pression level of the lncRNA in a sample and dividing by

the standard deviation.

Generation of BigWig files

Fetal HSC RNA-seq data and the RNA-seq data of six

ENCODE cell types are directional, paired-end data and

both paired-end reads were mapped independently to

the reference genome (hg19) in order to retain strand-

specific information for HSC and ENCODE RNA-seq

data. In this way the second-strand sequence was mapped

to the genome and the reverse complement of the first-

strand sequence was mapped to the genome. We then

converted the mapped reads with strand information into

BigWig files.

The RNA-seq data from GTEx is undirectional paired-

end data, so we mapped both end reads into the human

reference genome without strand information. BigWig

files for ENCODE and GTEx were generated using

TopHat to align to the genome with the setting “–N 0”,

which was necessary to exclude a peak in this region

that mapped to multiple genomic locations.

We used the “bdgcmp” function of MACS2 to subtract

the whole-cell extract background sequencing reads

from the ChIP-seq reads using the log-likelihood ratio

(logLR) method, which calculates the log10 likelihood

ratio between the ChIP and whole-cell extract. All ChIP

and whole-cell extract background sequencing reads were

normalized by their sequencing depths. We then con-

verted the mapped reads into BigWig files.

Co-expression analysis and network construction

We constructed the co-expression networks for lncRNAs

and all protein-coding genes from RefSeq (version of 10

Feb 2014) using the mcxarray program in the Markov

Clustering (MCL)-edge network analysis tool [76] (http://

micans.org/mcl/) with Spearman correlation. Gene ex-

pression was calculated using Cuffdiff (see the previous

section in the “Methods” for details). In this study, we

choose 0.7 as the Spearman correlation cutoff in order to

balance the number of singletons and the median node

degree as recommended by the MCL protocol. To make

the co-expression analysis consistent through the entire

project, we used the same correlation and threshold to

examine if the divergently transcribed coding genes and

lncRNAs are co-expressed.

We adopted the MCL algorithm to identify clusters

from the constructed large networks. The MCL algo-

rithm is coded in the mcl program [76], which is a fast

and scalable unsupervised cluster algorithm for networks

based on simulation of stochastic flow in networks. The

default granularity “–I 1.4” was set for MCL clustering.

Cytoscape v3.1.1 [77] was used to visualize the connected

networks and clusters.

For the nucleotide-binding module, all the protein-

coding genes annotated in the Gene Ontology (GO)

nucleotide binding category in cluster I and their directly

co-expressed lncRNAs (linking by one-edge) in cluster I

were selected to be displayed. For the extracellular

matrix module, all the protein-coding genes annotated

in the GO extracellular matrix category in cluster II and

their directly co-expressed lncRNAs (linking by one-

edge) in cluster II were selected to be displayed.

GO enrichment analyses

GO enrichment analysis was performed using the protein-

coding genes identified in each co-expression cluster

(http://david.abcc.ncifcrf.gov/) [78, 79]. All protein-coding

genes used in the network construction were used as the

background in the GO enrichment analyses.

Statistical analysis

The p values in this study were calculated by Wilcoxon–

Mann–Whitney test, unless otherwise mentioned.

Principal component analysis

We used pricipal component analysis (PCA) to examine

the similarity in expression patterns of lncRNAs among

the indicated cell types and to examine the similarity in
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expression patterns of lncRNAs plus protein coding

genes between the same cell types. Each replicate for

each sample is represented with a vector of the expres-

sion levels of the indicated genes. All principal compo-

nents (PCs) were identified for each replicate through

PCA on its expression vector. We then used the k-mean

method to cluster the replicates of all samples according

to the first three major components. Graphs display the

first and second major components (PC1 and PC2) or

the first and third major components (PC1 and PC3) in

two dimensions.

Identification of enhancer-RNAs

To identify the enhancer-RNAs (eRNAs), we down-

loaded the H3K4me3 and H3K4me1 ChIP-seq data for

hiF-T cells (GSE62777). We excluded lncRNAs expressed

in HSC myofibroblasts that were classified as divergent

or natural antisense from eRNA analysis because their

histone marks cannot be distinguished from marks of

neighboring genes [80]. For the remaining lncRNAs, we

selected those that are also expressed in hiF-T cells

according to their calls by Cuffdiff. Next, we mapped

the raw H3K4me3 and H3K4me1 reads to the TSS

regions of each lncRNA (defined as within ±500 bp of

the TSS) and then calculated the H3K4me1/H3K4me3

ratio for each lncRNA. A ratio of >1.2 was used to

define eRNAs, as previously described [80].

Data access

RNA-seq and ChIP-seq data produced for this study are

available in the GEO (accession GSE68108).

Results

De novo identification of lncRNAs in human HSCs

We first established that primary human fetal HSC myofi-

broblasts share characteristics described for HSCs. These

cells were chosen for initial analysis as they could be

expanded more easily for genome-wide sequencing. Cul-

ture in Matrigel repressed ACTA2, LOX, and LOXL2

expression and induced accumulation of lipid droplets

characteristic of the reversion to an inactive HSC pheno-

type in Matrigel (Fig. 1a, b) [81, 82]. These HSCs also

showed induced collagen expression in response to TGF-β

signaling (Fig. 1c) [15]. We then performed massively par-

allel sequencing of polyadenylated RNAs (RNA-seq) to

identify lncRNAs that are expressed in human HSC myo-

fibroblasts. Directional libraries were prepared for paired-

end sequencing so that overlapping sense and antisense

transcripts could be distinguished from one another dur-

ing analysis. We then established a computational pipeline

for ab initio construction of lncRNA transcripts (Fig. 1d)

[58, 62, 83]. RNA-seq reads were first aligned to the gen-

ome with TopHat [59, 60]. Cufflinks [61] and Scripture

[62] were each used to assemble the aligned reads into

transcripts, which were then merged by Cuffmerge

[60, 61]. All assembled transcripts that overlapped on

the same strand with protein-coding genes in RefSeq

[84] or the UCSC database [85] were removed, as

well as those overlapping with rRNAs, tRNAs, micro-

RNAs and snoRNAs annotated in RefSeq. The remaining

transcripts were analyzed by a HMMER profile search of

protein domains [64, 65] and CPAT software with a logis-

tic regression model [66] to assess their protein-coding

potential (Additional file 3: Figure S1). Transcripts that

had low protein-coding potential as predicted by both

HMMER and CPAT were considered to be noncoding

RNAs. We next performed ChIP-seq using an antibody

against the chromatin mark H3K4me3 to identify sites of

transcription initiation [86]. All RNA transcripts whose 5′

ends were greater than 1 kb from an H3K4me3 site were

removed because the absence of a proximal transcription

initiation mark suggested that the assembled RNA tran-

scripts might be incomplete. All transcripts less than

200 nt in length and below expression thresholds were

removed (see “Methods” for additional details). We identi-

fied and assembled 7189 lncRNA transcripts into 2808

lncRNA loci (Additional file 4: Table S3).

Two lncRNAs identified with this pipeline are shown

in Fig. 1e. lncRNA-054349 (top) is an example of a three-

exon lncRNA that was not previously annotated and

EPHA5-AS1 is an example of a lncRNA for which a single

isoform was previously annotated. For both lncRNAs,

H3K4me3 occupancy is shown in black (top) and the

RNA-seq reads supporting the lncRNAs are shown in red

(sense). The genomic structure of each lncRNA is indi-

cated below the tracks in red, with arrows indicating the

direction of transcription. EPHA5-AS1 is divergently tran-

scribed from EPHA5 and the RNA-seq reads supporting

EPHA5 transcripts are indicated in blue (antisense).

Genomic characterization of lncRNAs

We next assessed the distribution of lncRNAs across the

genome. Over 65 % of HSC lncRNAs were divergently

transcribed from the promoter regions of protein-coding

genes. Four percent of the total identified lncRNAs were

antisense to coding genes (natural antisense), 10 % were

located at enhancers as defined by the presence of

H3K27ac [87], and 15 % originated from intergenic

regions away from coding genes (Fig. 2a). Plotting the

location of the transcriptional start site (TSS) of each

lncRNA relative to the TSS for the closest protein-

coding gene showed that the vast majority of lncRNAs

are transcribed antisense to protein-coding genes and

originate near the promoter of these genes (Fig. 2b), with

the TSS of the lncRNAs located a mean distance of 135 nt

upstream of the TSS of the paired protein-coding genes.

We also found that lncRNAs in HSCs tend to be

expressed at lower levels than protein-coding genes.
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Analysis of the expression level of lncRNAs and their di-

vergently transcribed mRNAs showed that lncRNAs are

expressed at approximately tenfold lower levels than

protein-coding genes (Fig. 2c; p < 2.2e-16). These findings

are consistent with the description of lncRNAs in other

cell types [55, 56, 58, 88].

Most of the identified lncRNA transcripts (>55 %)

are single exon transcripts whereas only 4 % of
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protein-coding genes expressed in HSC myofibroblasts

are encoded by single exons (Fig. 2d). HSC lncRNAs also

tend to have shorter genes and shorter transcripts than

protein-coding genes (Additional file 3: Figure S2) [88].

Super-enhancers are large domains of active enhancers

associated with genes that control cell identity [70, 71].

To identify lncRNAs that may regulate key facets of

HSC identity and function, we asked if lncRNAs are

associated with super-enhancers in HSCs. We performed

ChIP-seq to identify regions of chromatin containing

the histone modification H3K27ac, which is enriched

at active enhancers [87]. We identified 7339 typical

enhancers and 321 super-enhancers (Additional file 5:

Table S4) according to their H3K27ac signal strengths

(Fig. 2e). These super-enhancers are an order of magni-

tude larger than typical enhancers in genomic coverage

(Fig. 2f) and have larger peaks of H3K27ac enrichment

than typical enhancers (Fig. 2g). Super-enhancers are also

associated with lncRNAs identified in HSCs; for example,

lncRNA-002221 is located within a super-enhancer that

spans greater than 20 kb (Fig. 2h). Eighty lncRNAs discov-

ered in HSC myofibroblasts were found to be associated

with super-enhancers. H3K27ac signal at these super-

enhancers associated with lncRNAs also shows increased

genomic coverage (Fig. 2i) and larger peaks than typical

enhancers (Fig. 2j).

TGF-β signaling directly regulates lncRNA expression in

HSC myofibroblasts

TGF-β is a key regulator of fibrosis in liver disease [15–17]

and we next asked if TGF-β signaling regulates expression

of lncRNAs in HSC myofibroblasts. HSC myofibroblasts

were serum starved for 48 h to remove exogenous TGF-β

from the media, followed by treatment with TGF-β for

16 h (Fig. 3a). RNA was harvested from HSC myofibro-

blasts that were treated with TGF-β after serum starvation

and from HSC myofibroblasts that remained in serum

starvation conditions. We performed RNA-seq analysis to

confirm that TGF-β treated HSCs respond to TGF-β

signaling (Additional file 3: Figure S3a) and then used our

computational pipeline (Fig. 1d) to assemble the lncRNAs

expressed during serum starvation (low TGF-β) and after

TGF-β treatment. Wer assembled 2078 lncRNA loci in

serum-starved HSC myofibroblasts and 1759 lncRNA loci

after TGF-β treatment (Additional file 3: Figure S3b).

The lncRNA transcripts defined in HSC myofibroblasts,

serum-starved HSC myofibroblasts, and TGF-β-treated

HSC myofibroblasts were combined using Cuffcompare

[60, 61] to define a total of 16,299 lncRNA transcripts

expressed in at least one condition. These transcripts were

classified into 3692 lncRNA loci and represent all the

lncRNA loci detected in human HSCs (Additional file 6:

Table S5 and Additional file 7: Table S6). Many of these

(See figure on previous page.)

Fig. 2 Genomic and expression features of HSC lncRNAs. a Classification of lncRNA loci identified in HSC myofibroblasts. Divergent lncRNAs

are defined as having a transcription start site (TSS) within 2 kb of the TSS of a protein-coding gene and being transcribed from the strand

antisense to the protein-coding gene. Natural antisense lncRNAs overlap the coding gene by at least one base pair. Enhancer-associated lncRNAs

are located within 1 kb of an enhancer as defined by H3K27ac. Intergenic lncRNAs have a TSS greater than 2 kb from the TSS of the nearest

protein-coding gene and are not contained in any of the other categories. lncRNAs are indicated in red and protein-coding genes are indicated

in blue. Arrows show the start and direction of transcription. H3K72ac (K27ac) peaks mark enhancers. The abundance of each class of lncRNA is

displayed on the right. b Distribution of the TSS of lncRNAs relative to the TSS of their nearest protein-coding gene. All protein-coding genes

were normalized to equal length on the x-axis (black rectangle), and 10 kb of genomic sequence upstream of the TSS of each protein-coding

gene is shown. The location of the TSS of each lncRNA was plotted relative to the TSS of the nearest protein-coding gene. lncRNAs that are

antisense to protein-coding genes are indicated in red and lncRNAs that are sense to protein-coding genes are indicated in blue. The red peak

near the protein-coding TSS indicates that the majority of lncRNAs are located within 2 kb of protein-coding genes and transcribed antisense to

protein-coding genes. c lncRNAs (red) are expressed about tenfold lower than their divergent protein-coding genes (blue). The expression levels

(log2 transformed reads per fragment per million mapped reads (FPKM)) are indicated on the y-axis. The horizontal black line indicates the mean

and open circles indicate outliers. d lncRNAs contain fewer exons than protein-coding genes. The distribution of exons in lncRNA (red) and mRNA

(blue) transcripts. e Identification of super-enhancers in HSC myofibroblasts. Enhancers were defined by H3K27ac occupancy and ranked from

left to right (x-axis) by the total reads of H3K27ac mapped to each enhancer (H3K27ac signal, y-axis). We identified 321 super-enhancers from a

total of 7660 enhancers [70]. f Super-enhancers show broad domains of occupancy compared with typical enhancers. Metagenes represent the

mean H3K27ac density (in reads per million unique mapped reads per base pair) across super-enhancers (left) and typical enhancers (right). The

metagenes are centered on the enhancer region for each plot and display 3 kb of sequence flanking each enhancer. The median size of a

super-enhancer is 18,807 bp and the median size of a typical enhancer is 678 bp. The plots are scaled (x-axis) to reflect the median size of the

two classes of enhancers. The increase of signal at the boundary is characteristic of super-enhancers [71] because the boundary represents the

H3K27ac peaks at the edges of each super-enhancer. Thus, the peaks at the boundary tend to be aligned with each other while peaks away from

the boundaries are distributed more equally. g H3K27ac peaks are enriched at super-enhancers. Metagenes represent the mean H3K27ac density

across the major peak of super-enhancers (SE) and typical enhancers (TE). h Example of an lncRNA associated with a super-enhancer. H3K27ac

occupancy (normalized logLR value, y-axis) is shown surrounding lncRNA-002221 (red). The domain of the super-enhancer is indicated by a red

rectangle. i Super-enhancers were found to be associated with 80 lncRNAs. The median size of super-enhancers associated with lncRNAs was

18,699 bp and the median size of typical enhancers associated with lncRNAs was 1032 bp. We located 968 lncRNAs within 10 kb of a typical

enhancer. The enhancers were plotted as described in f. j H3K27ac peaks are enriched at super-enhancers associated with lncRNAs. Metagenes

represent H3K27ac density across the major peak of super-enhancers and typical enhancers associated with lncRNAs
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lncRNAs are novel, including 40 % that do not overlap

with a single nucleotide of human lncRNAs annotated in

existing databases (Additional file 3: Figure S3c).

We identified 139 lncRNA loci that were induced and

242 lncRNA loci that were repressed with activation of

TGF-β signaling (Fig. 3b; p < 0.05). The transcription fac-

tors SMAD2 and SMAD3 are activated by TGF-β

signaling to mediate the transcriptional effects of the

canonical TGF-β signaling pathway [89] and SMAD3

appears to play the dominant role in HSC myofibroblast
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with super-enhancers (Super-E), while lncRNAs that change in expression in response to TGF-β signaling and are not directly occupied by SMAD3

(Indirect target) are associated with typical enhancers (Typical E)
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activation [12]. To determine the direct targets of TGF-β

signaling, we identified the lncRNAs that were regulated

by TGF-β and occupied by SMAD3. For example,

lncRNA-000509 is occupied by SMAD3 and shows a ten-

fold induction between serum starvation (low TGF-β) and

induction of TGF-β signaling (Fig. 3c). Sixty-six percent of

lncRNAs induced by TGF-β (p < 3e-12) and 43 % of

lncRNAs repressed by TGF-β (p < 0.015) were found to be

occupied by SMAD3 in the human HSC line LX2, follow-

ing TGF-β treatment [90] (Fig. 3d). This analysis identified

91 lncRNAs that are directly induced by TGF-β signaling

and 104 lncRNAs that are directly repressed by TGF-β

signaling, with a mean induction and repression of two-

fold (Additional file 8: Table S7).

TGF-β signaling targets cell type-specific enhancers

bound by master transcription factors [91] and super-

enhancers regulate genes that define cell identity [70, 71].

We also found that lncRNAs directly targeted by TGF-β

signaling (regulated by TGF-β and occupied by SMAD3)

are more likely to be associated with super-enhancers in

HSCs than lncRNAs indirectly targeted by TGF-β signal-

ing (Fig. 3e; p < 6.3e-6), suggesting that these lncRNAs

may also play a key role in cell identity. Coding genes

directly targeted by TGF-β signaling are also more likely

to be associated with super-enhancers than indirectly tar-

geted genes (p < 5.9e-14). However, lncRNAs that are dir-

ectly targeted by TGF-β signaling are more likely to be

regulated by super-enhancers than coding genes directly

targeted by TGF-β (p < 1.6e-13).

lncRNAs enriched in HSC myofibroblasts

lncRNAs appear to be under weaker evolutionary con-

straints than protein-coding genes, resulting in more cell

type-specific patterns of expression compared with coding

genes [55–57]. While approximately 40 % of the 3692

lncRNA loci identified in HSCs were not described in

other lncRNA databases (Additional file 3: Figure S3c), it

is unclear if this result means that these lncRNAs are

unique to HSCs or that many of these lncRNAs are

expressed in other cell types but have not been described.

To define the lncRNAs specific to HSCs, we examined the

expression patterns of lncRNAs identified in HSC myofi-

broblasts and HSC myofibroblasts treated with TGF-β

compared with 37 other human tissues [75] and the six

tier 1 and tier 2 cell lines from the ENCODE project [92].

Analyses revealed that more than 400 lncRNAs are

significantly enriched in HSCs compared with the 43

other tissues and cell types analyzed (Fig. 4; p < 0.05;
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Fig. 4 Expression of HSC-specific lncRNAs. The normalized expression levels are shown for 435 lncRNAs (y-axis) that are enriched in HSCs compared

with other cell types and tissues. RNA-seq data from HSC myofibroblasts and HSC myofibroblasts treated with TGF-β (red) were compared with 37

normal tissues (black text) [75] and six ENCODE cell lines (blue text) [92]. The dendrogram at the top indicates hierarchical clustering. Each row represents
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Z-score is shown on the right. lncRNAs were considered HSC-specific if they were enriched in HSCs compared with other tissues with a p value

of <0.05 (Wilcox–Mann–Whitney test)
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Additional file 9: Table S8). This enrichment is observed

relative to primary tissue, including liver, and six cell lines,

including the hepatocellular carcinoma cell line HepG2.

For example, lncRNA-001762 is expressed at greater than

sixfold higher levels in HSC myofibroblasts treated with

TGF-β compared with the highest level of expression in

43 other tissues and cell lines (Fig. 5a). The FPKM for

lncRNA-001762 in HSC myofibroblasts is 2.9 and in-

creases to 5.4 with TGF-β treatment, whereas the mean in

all other samples is 0.13 with maximum expression of

0.85 in human umbilical vein endothelial cells (HUVECs).

The restriction in expression to HSCs is further illustrated

by visualizing the RNA-seq reads mapped to lncRNA-

001762 in the HUVEC cell line and testis (Fig. 5b).

These examples were chosen because they are the cell

line and primary tissue with the next highest expres-

sion of lncRNA-001762 compared with HSC myofibro-

blasts. Whole liver tissue and the HepG2 cells express

even lower levels of lncRNA-001762, which suggests that

this lncRNA is likely restricted in expression to HSCs in

the liver and is not induced in hepatocellular carcinoma.

lncRNAs expressed in HSCs are enriched in ECM networks

Co-expression network analyses have been used widely

to predict the functions of unknown coding and noncod-

ing genes [93–100] based on the expectation that genes

with similar expression patterns across multiple tissues,

cell types, or conditions share similar functions or are in-

volved in related biological processes [101, 102]. There-

fore, we conducted co-expression network analyses across

the 37 primary human tissues, six ENCODE cell lines, and

the HSCs described in this study using expression profiles

for all annotated genes expressed in at least one tissue or

cell type and the lncRNAs identified in this study.

We identified 169 subnetworks containing at least two

nodes where each node represents a protein-coding gene
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or an lncRNA and the edge between two nodes indicates

that the two genes are co-expressed with a Spearman-

correlation coefficient >0.7 (p < 4e-7; Fig. 6a). Most of

the identified subnetworks were small and only five

contained more than five nodes. To identify the subnet-

works that would provide the most information about

lncRNAs acting in HSCs, each subnetwork was scanned

for HSC identity lncRNAs that were defined as lncRNAs

proximal to super-enhancers, occupied by SMAD3, and

restricted in expression to HSCs (Additional file 10:

Table S9). Thirty-three lncRNAs met these criteria and 21

were contained in subnetwork A. HSC identity lncRNAs

were not found in any of the other subnetworks. Subnet-

work A contains 18,002 nodes and was decomposed to

identify smaller clusters that may provide further insight

into the function of lncRNA genes. Nine clusters were

identified based on their connection structure and correl-

ation value (see “Methods” for details) and three clusters

contained more than one HSC identity lncRNA. Cluster I

contained 3950 nodes, including two identity lncRNAs

and 332 lncRNAs expressed in HSCs. Cluster II contained

1865 nodes, including nine identity lncRNAs and 314

lncRNAs expressed in HSCs. Cluster IV contained 48

nodes, including two identity lncRNAs and seven lncRNAs

in HSCs.

We then performed gene ontogeny (GO) enrichment

analysis on clusters I, II, and IV to identify cellular pro-

cesses or functions that were key components of each

cluster. Cluster I was heavily enriched in nucleotide

binding (Fig. 6b), cluster II in ECM (Fig. 6c) and cluster

IV in DNA binding factors (Fig. 6d). We visualized clus-

ter I to show the size of the network and the relative

composition of mRNA and lncRNA genes by mapping

all protein-coding genes from cluster I that were con-

tained in the nucleotide-binding category and all the

lncRNAs in cluster I within one edge of these protein-

coding genes. This nucleotide-binding functional module

is composed of 521 genes encoding mRNA (blue) and 262

genes encoding lncRNAs (red) (Fig. 6e). We visualized the

ECM functional module in cluster II by mapping all

protein-coding genes from cluster II that were contained

in the ECM category and all the lncRNAs in cluster II

within one edge of these protein-coding genes. This ECM

module is more enriched for lncRNAs, being composed of

110 genes encoding mRNAs and 211 genes encoding

lncRNAs (Fig. 6f). We visualized cluster IV by showing all

protein-coding genes and lncRNA genes in that cluster.

Cluster IV is enriched in HOX transcription factor genes

(dark green) and known lncRNA genes associated with

HOX loci (light green) (Fig. 6g). Lists of individual genes

encoding mRNAs and lncRNAs and the co-expression

pairs related to each GO category (nucleotide binding in

cluster I, ECM in cluster II and Cluster IV) are included

in Additional file 11: Table S10.

The most significant finding from this analysis is that a

module of genes encoding mRNAs and lncRNAs is highly

associated with the ECM, whose production by HSC myo-

fibroblasts is the primary cause of liver fibrosis and pro-

gression to liver failure in chronic liver disease [9, 10]. To

exclude the possibility that the presence of protein-coding

genes and lncRNAs highly enriched in HSCs skewed the

co-expression network analysis, we repeated the analysis

without the HSC data. This analysis also yielded the ECM

module within cluster II, demonstrating that this is a

robust functional module even in the absence of HSC

expression data (Additional file 3: Figure S6).

Twelve HSC identity lncRNAs were present within

one edge of protein-coding genes in cluster II that were

associated with ECM (Fig. 6h). This sub-cluster is highly

enriched in genes related to liver fibrosis, including 11

collagen genes and genes encoding TGFB1, matrix me-

talloproteinases, tissue inhibitors of metalloproteinases,

and lysyl oxidase like proteins. These findings suggest

that the 12 identity lncRNAs in this sub-cluster likely

contribute to ECM production and liver fibrosis.

We then asked if coordinated expression of coding

and noncoding genes within super-enhancers could ex-

plain the structure of the co-expression networks.

Cluster I and cluster II contained 30 paired genes encod-

ing lncRNAs and mRNAs that were co-expressed and

located in the same super-enhancers, but these examples

were almost entirely associated with divergently tran-

scribed genes that were located in a super-enhancer. In

contrast, cluster IV did contain two super-enhancers

where multiple mRNAs and lncRNAs were co-expressed

(Fig. 6i). While cluster IV does contain examples of co-

expressed genes within super-enhancers, association within

super-enhancers appears to account for only a small frac-

tion of co-expressed genes.

The majority of lncRNAs expressed in HSC myofibro-

blasts are divergently transcribed from genes that encode

proteins (Fig. 2a). We found that over 90 % of divergent

lncRNAs expressed in HSCs were paired with protein-

coding genes that are also expressed in HSCs (Additional

file 12: Table S11). We analyzed expression of each

lncRNA and the paired protein-coding gene across 37 pri-

mary tissues [75] and the six tier 1 and tier 2 cell lines

from the ENCODE project [92] and found that only 14 %

of these pairs are co-expressed across tissues (Spearman

correlation >0.7, p < 4e-7; Additional file 13: Table S12).

Thus, in many cell types where a protein-coding gene is

expressed, the divergent lncRNA identified in HSCs is

silent.

lncRNAs expressed in fetal HSCs exhibit expression

patterns similar to those in adult HSCs

The lncRNAs analyzed in this study were defined in

human fetal HSCs myofibroblasts and we next asked if
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these findings also apply to adult HSC myofibroblasts.

We performed RNA-sequencing to quantify expression

of lncRNAs in primary human HSCs that were transdif-

ferentiated into HSC myofibroblasts by ex vivo culture.

Over 96 % (3566 out of 3691) of lncRNAs detected in

fetal HSC myofibroblasts were also detected in adult

HSC myofibroblasts (Additional file 14: Table S13). The

435 lncRNAs that were uniquely enriched in fetal HSC

myofibroblasts (Fig. 4) were also highly enriched in adult

HSC myofibroblasts (Fig. 7a). We then asked if these

lncRNAs were specific to HSC myofibroblasts or were

also expressed in myofibroblasts originating in other

tissues. We found that pancreatic stellate cells [103] and

dermal fibroblasts [75] also expressed many lncRNAs in

common with fetal HSC myofibroblasts (Additional

file 3: Figure S7a, Additional file 14: Table S13). How-

ever, lncRNA expression in fetal HSC myofibroblasts

was more closely associated with lncRNA expression

in adult HSC myofibroblasts compared with pancre-

atic stellate cell myofibroblasts (p < 1.23 e-7) or der-

mal fibroblasts (p < 8.8e-6) and is also shown by PCA

(Fig. 7b). This association was also present when tak-

ing into account expression of both lncRNAs and

protein-coding genes (Additional file 3: Figure S7b).

In addition, adult HSC myofibroblasts stimulated with

TGF-β signaling showed similar patterns of gene in-

duction and repression compared with fetal HSC

myofibroblasts treated with TGF-β (Additional file 3:

Figure S7c, Additional file 15: Table S14).

Cluster II (Fig. 6f ) contains the lncRNAs that form a

network with ECM proteins. Adjusting this network to

contain lncRNAs expressed in adult HSC myofibroblasts

led to removal of only four lncRNAs (Additional file 3:

Figure S7d). We then analyzed expression of the lncRNAs

in the ECM module across normal human liver tissue,

bridging fibrosis, and cirrhosis. This analysis identified 16

lncRNAs that were expressed in both fetal and adult HSC

myofibroblasts and were significantly enriched in human

liver fibrosis and cirrhosis compared with normal livers

(Fig. 7c), suggesting that induction of these lncRNAs is

associated with progression of human liver fibrosis. It also

indicates that the ECM module is enriched in lncRNAs

induced in bridging fibrosis and cirrhosis (7.6 %) com-

pared with the total lncRNA pool in HSCs (1.4 %).

A small fraction of the noncoding RNAs identified in HSCs

can be classified as unidirectional eRNAs

lncRNAs were identified in this study by the presence

of polyadenylation and size greater than 200 nt. eRNAs

are noncoding RNAs (ncRNAs) transcribed from en-

hancers and tend not to be polyadenylated or spliced

[104]. They can be transcribed unidirectionally or bidirec-

tionally and unidirectional eRNAs can be polyadenylated

[105]. The functional differences between polyadenylated

unidirectional eRNAs and lncRNAs transcribed from

enhancers are not clearly understood [106], but the abun-

dance of the chromatin mark H3K4me1 compared with

H3K4me3 has been used to classify these ncRNA tran-

scripts [22, 80]. To determine the fraction of lncRNAs

identified in this study that overlap with polyadenylated

unidirectional eRNAs, we analyzed ChIP-seq data of

H3K4me1 and H3K4me3 in immortalized human in-

duced fibroblasts (hiF-Ts) [107]. Of the 1042 lncRNAs

identified in HSCs and classified as enhancer-associated

or intergenic (Fig. 2a), 851 were also expressed in hiF-Ts.

Using the H3K4me1:H3K4me3 ratio >1.2 as the threshold,

we found that 181 of 851 ncRNAs (21 %) meet the defin-

ition of eRNAs (Fig. 7d; Additional file 16: Table S15) [80]

and 90 of these loci encode only single exon ncRNAs. It is

not clear if these unidirectional eRNAs may have different

activities to lncRNAs, but eRNAs accounted for only

5.6 % of lncRNAs in the ECM functional module (Fig. 6f)

and removal of these eRNAs led to loss of two additional

protein-coding genes from the ECM module (Additional

file 3: Figure S7d and Additional file 11: Table S10).

Discussion

HSCs are the primary cell type responsible for liver

fibrosis and liver failure in chronic liver disease. While

many protein-coding genes that regulate HSC function

have been described, the diversity of lncRNA expression

in HSCs and the biological pathways they affect are un-

known. This study was performed to define the lncRNAs

expressed in human HSCs and to predict those that are

likely to regulate the fibrotic process. Identification of

lncRNAs uniquely enriched in HSCs will provide poten-

tial targets to inhibit the progression of fibrosis without

affecting other cell types in the liver.

We also find that many lncRNAs are expressed diver-

gently from protein-coding genes, as previously described

[55, 58]. While our analysis does not address co-expression

of the paired protein-coding and lncRNA genes at the

single cell level [108], it does suggest that the lncRNAs

and their divergent protein-coding genes are usually

both expressed is HSCs. In contrast, a minority of these

paired lncRNA and protein-coding genes are co-expressed

across different cell types. Thus, while a protein-coding

gene may be expressed in many different cell types, the

expression of its paired, divergent lncRNA appears to be

more restricted, suggesting that there are cell type-specific

levels of lncRNA gene regulation independent of the tran-

scriptional control of the divergent protein-coding gene.

Our analysis also identified 195 lncRNAs that are dir-

ectly affected by TGF-β signaling as indicated by SMAD3

occupancy [90] and change in expression in response to

TGF-β signaling. In addition, lncRNAs directly regulated

by TGF-β signaling are enriched in super-enhancers,

which suggests that the lncRNAs controlled by TGF-β
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signaling may play key roles in HSC function and fibrosis.

TGF-β is a key activator of fibrosis [2] and this analysis

was performed on HSC myofibroblasts that underwent

transdifferentiation ex vivo as a model to identify human

lncRNAs regulated by TGF-β signaling. Now that these

lncRNAs have been defined, it will be important to iden-

tify and characterize those that are induced in human liver

disease.

Genes that control cell identity tend to be lineage-

restricted [109–114]. To identify additional lncRNAs

that may be key contributors to fibrosis progression, we

defined the lncRNAs enriched in HSC myofibroblasts.

We identified over 400 lncRNAs that are restricted in

expression to HSCs compared with 43 other tissues and

cell types. This analysis provides a more accurate repre-

sentation of cell-type specificity than the identification

of HSC lncRNAs that were not previously annotated

because ab initio assembly of lncRNA transcripts has

not been performed in all the tissues and cell types we

were able to analyze. By defining the lncRNAs that were

HSC-specific, bound by SMAD3, and associated with

super-enhancers, we were able to focus on a small set of

lncRNAs that are most likely to control HSC myofibro-

blast cell identity, which we refer to as identity lncRNAs.

Tracing these lncRNAs through the co-expression net-

work analysis allowed us to focus on the networks

containing lncRNAs most relevant to HSC function.

Co-expression network analysis revealed that lncRNAs

are co-expressed with protein-coding genes that regulate

production of ECM proteins. Over half the genes in this

network are lncRNAs and the network also includes

numerous collagen genes, whose products make up the

fibrotic scar, as well as proteins that are responsible for

crosslinking and remodeling the ECM. Co-expression

analysis was repeated in the absence of HSC expression

data and confirmed that the ECM network is present.

These findings indicate that the ECM network repre-

sents a robust co-expression network that is not identi-

fied solely based on high expression of genes in HSCs.

In addition, a subset of the lncRNAs in the ECM network

is induced in human liver fibrosis (Fig. 7c), suggesting that

they are associated with human liver disease. HSCs make

up only 5–10 % of the cells in the liver [115] and add-

itional lncRNAs are likely to be induced in HSCs during

the progression of fibrosis that were not detected in whole

liver samples due to lower levels of expression.

We found that lncRNA expression was highly conserved

between fetal and adult HSC myofibroblasts. In addition,

many lncRNAs were also shared between HSC myofibro-

blasts, pancreatic stellate cell myofibroblasts, and dermal

fibroblasts. Analysis of lncRNAs alone or lncRNAs and

protein-coding genes together revealed that fetal HSC

myofibroblasts were more closely related to adult HSC

myofibroblasts than to the other cell types analyzed. This

study focused on the identification of lncRNAs in HSC

myofibroblasts but also suggests that understanding the

role of lncRNAs in HSC myofibroblasts may lead to

insight into the function of lncRNAs in myofibroblasts

from other tissues.

Conclusions
We provide the first comprehensive catalog of lncRNAs

expressed in human HSCs and demonstrate that the

lncRNAs identified are relevant to human liver disease. We

discovered more than 3600 lncRNAs, including approxi-

mately 40 % that have not been described in other cell

types and greater than 400 that are uniquely enriched in

HSCs compared with 43 other tissues and cell types. We

analyzed the genomic location, chromatin modifications,

response to differentiation and signaling, and expression

across different tissues and cell types to identify lncRNAs

that are likely to be involved in HSC function and fibrosis.

This analysis provides a resource for future studies to in-

vestigate lncRNA function in liver disease and fibrosis.
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