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Long noncoding RNAs in the progression, metastasis,
and prognosis of osteosarcoma
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Long noncoding RNAs (lncRNAs) are a class of non-protein-coding molecules longer than 200 nucleotides that are involved in the

development and progression of many types of tumors. Numerous lncRNAs regulate cell proliferation, metastasis, and

chemotherapeutic drug resistance. Osteosarcoma is one of the main bone tumor subtypes that poses a serious threat to

adolescent health. We summarized how lncRNAs regulate osteosarcoma progression, invasion, and drug resistance, as well as

how lncRNAs can function as biomarkers or independent prognostic indicators with respect to osteosarcoma therapy.
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Facts

� Long noncoding RNAs (lncRNAs) regulate cell proliferation

in osteosarcoma.

� LncRNAs regulate cell invasion and chemotherapeutic drug

resistance in human osteosarcoma.

� LncRNAs function as biomarkers and independent prog-

nostic indicators with respect to osteosarcoma therapy.

Open Questions

� How do lncRNAs regulate osteosarcoma progression and

invasion?

� How do lncRNAs regulate osteosarcoma chemothera-

peutic drug resistance?

� Can lncRNAs be used as biomarkers or prognostic

indicators with respect to human osteosarcoma treatment?

Osteosarcoma is the most common malignant bone tumor in

children and adolescents. It is a genetically unstable and

highly malignant mesenchymal tumor of bone characterized

by structural chromosomal alterations.1,2 Malignant osteosar-

coma cells produce osteoid matrix and fibrillary stroma.3 The

most common osteosarcoma subtypes are osteoblastic

osteosarcoma, chondroblastic osteosarcoma, and fibroblastic

sarcoma.4,5 Osteosarcoma occurs predominantly in adoles-

cents and young adults and accounts for ~ 5% of childhood

cancers. Most osteosarcoma patients are diagnosed under

the age of 25 years, and the disease occurs more often in

males than in females.6 Osteosarcoma often exhibits locally

invasive growth. Pulmonary metastases are often seen in

patients with aggressive tumors. Both biopsy findings and

classic X-ray findings contribute to the diagnosis of osteosar-

coma and yield important information that can be used to

select appropriate therapies.7,8 In most osteosarcoma

patients, chemotherapy and/or radiation therapy are usually

administered before or after surgery to prevent tumors from

spreading throughout the body. However, patients with distant

metastases still fare poorly, as the 5-year survival rate in these

patients is ~ 20%.9,10 Thus, developing comprehensive and

multidimensional treatments for osteosarcoma is necessary,

and gene therapies using viral vectors, immune therapies,

antiangiogenic therapies, and proapoptotic therapies have

been investigated regarding their application in patients with

osteosarcoma.

To date, the molecular mechanism underlying osteo-

sarcoma development remains unclear. The majority of

previous studies have focused on protein-coding genes as

crucial components involved in the progression and metas-

tasis of osteosarcoma and have overlooked the vast land-

scape of noncoding genes.

Since the invention of DNA sequencing methods and the

completion of the draft human genome sequence, researchers

have found that only 1.5% of 3.2 billion nucleotide pairs code

for proteins and that the other 98.5% of DNA sequences do not

code for proteins. These sequences are recognized as junk
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sequences that have accumulated because of the process of

evolution.11,12 ENCODE (Encyclopedia of DNA Elements)

projects postulate that 80% of genome sequences are

transcribed into primary transcripts and have biochemical

functions.13,14 The concept of ‘junk DNA’ has rapidly attracted

the attention of researchers. According to their biological

functions, noncoding RNAs can be divided into housekeeping

noncoding RNAs and regulatory noncoding RNAs.15–17

Housekeeping noncoding RNAs comprise ribosomal

RNAs,18–20 transfer RNAs,21,22 small nuclear RNAs,23–25

small nucleolar RNAs,26–28 guide RNAs,29–32 and telomerase

RNAs.33,34 Regulatory noncoding RNAs comprise small inter-

fering RNAs (siRNAs),35–37 micro RNAs (microRNA),38–40

piwi-interacting RNAs,41–43 and long noncoding RNAs

(lncRNAs).44,45

lncRNAs are a large and diverse class of non-protein-coding

transcripts longer than 200 nucleotides.46,47 lncRNAs have

recently gained widespread attention and have been shown to

have crucial roles in various biological regulatory processes.

lncRNA sequences are conserved, and lncRNA expression

profiles in adult tissues are broad. lncRNA messenger RNAs

(mRNAs) are generally less abundant than protein-coding

mRNAs but exhibit stronger tissue- and cell-specific lncRNA

expression patterns.48,49 Most lncRNAs are transcribed by

RNA polymerase II enzymes that lack open-reading frames

and are expressed in specific tissues and/or during specific

developmental stages, demonstrating that the genes encod-

ing thesemolecules are strictly regulated with respect to tissue

development. Previous research has mainly focused on

microRNAs and siRNAs. lncRNAs have recently been found

to be involved in development, differentiation, and prolif-

eration, as well as cell cycle regulation and programmed cell

death.50–53 They also have important roles in the progression

and metastasis of various tumors, such as colon cancer,

liver cancer, breast cancer, bladder cancer, and cervical

cancer51,54–59 (Figure 1). In this paper, we reviewed the

biological functions of lncRNAs and the molecular mechan-

isms underlying these functions with respect to osteosarcoma

progression. Chemotherapy drug resistance remains an

obstacle affecting osteosarcoma treatment. We therefore also

summarized the lncRNAs that are correlated with chemother-

apeutic drug resistance in osteosarcoma therapy. Further-

more, we summarized several lncRNAs that can function as

independent prognostic indicators of overall survival and can

serve as useful biomarkers of osteosarcoma progression and

prognosis. An overview of the lncRNAs that are associated

with osteosarcoma is shown in Table 1.

LncRNA Regulates Signaling Pathways in Osteosarcoma

Developing effective and targeted therapies for osteosarcoma

is dependent on gaining an improved understanding of the

molecular mechanisms underlying osteosarcomagenesis,

proliferation, invasion, and metastasis.60 To date, the mole-

cular mechanism underlying osteosarcoma development has

not been elucidated. It is known that Wnt signaling is involved

in osteosarcoma development, metastasis, and drug resis-

tance. For example, inhibiting Wnt signaling by targeting

c-Met, a Wnt-regulated proto-oncogene, was shown to be

useful for treating osteosarcoma, suggesting that the Wnt

signaling pathway is involved in osteosarcoma development

and metastasis.61 Chemotherapeutic drug resistance

represents a major obstacle with respect to osteosarcoma

treatment, due in part to phenotypic cell transitions toward

stem-like phenotypes caused by exposure to conventional

chemotherapeutics.62,63However, the combination of aWnt/β-

catenin signaling pathway inhibitor and doxorubicin prevented

the upregulation of factors linked to these types of transitions

and was thus envisaged as a means of overcoming adaptive

resistance.64 Aberrant hedgehog (Hh) signaling pathway

activity has been observed in osteosarcoma cell lines, as well

as in primary human osteosarcoma tissue specimens, and

exerts promigratory effects leading to the development of

osteoblastic osteosarcoma.65 Other studies have also

demonstrated that dysregulated Hh signaling contributes to

poor clinical outcomes in osteosarcoma therapy.66,67 Bone

morphogenetic protein (BMP) signaling pathways have been

reported to induce mesenchymal stem cell osteogenic

commitments and terminal differentiation, which is initiated

by BMP ligand heterodimer (BMPR I and II) binding and signal

transduction through the Smad pathway, as well as mitogen-

activated protein kinase (MAPK) phosphorylation.68–71 In

particular, of the 31 different types of known BMP ligands,

BMP-2, -4, -6, -7, and -9 have significant roles in osteogenesis

induction in osteosarcoma.72–74 Moreover, the Notch

pathway has been described as an oncogene that is involved

in osteosarcoma proliferation, migration, invasiveness, and

oxidative stress resistance, as well as the expression of

markers associated with stemness or tumor-initiating

cells.75–78 Moreover, this pathway has a vital role in regulating

tumor angiogenesis and vasculogenesis in osteosarcoma.79

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is also

Figure 1 Biological processes are regulated by lncRNAs, and several regulatory
mechanisms are shown
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thought to be one of themost important oncogenic pathways in

human osteosarcoma.80,81 A large number of regulatory

factors regulate osteosarcoma cell proliferation, apoptosis,

angiogenesis, metastasis, and chemotherapy drug sensitivity

by regulating PI3K/Akt signaling, including p53,82,83 VEGF,84

CXCR7,85 Aurora-B,86 microRNA-221,87 cyclooxygenase-2,88

BYL719, a PI3K inhibitor,89 and LY294002.90 All these signaling

pathways are interconnected to regulate osteosarcoma progres-

sion and migration.

To date, few studies have reported the roles of lncRNAs in

osteosarcoma osteogenesis, development, invasion, metas-

tasis or chemotherapy resistance. Alterations in the expres-

sion of several lncRNAs have been observed in

osteosarcoma. Li et al.91 detected the expression profiles of

numerous lncRNAs via microarray analysis and observed

several differentially expressed lncRNAs in osteosarcoma

tissues compared with paired adjacent noncancerous tissues.

In particular, 25 733 lncRNAs were expressed in osteosar-

coma, including 403 consistently over-regulated lncRNAs

involved in 34 pathways and 798 consistently under-regulated

lncRNAs involved in 32 pathways, across all samples (2.0-

fold, Po0.05), suggesting that lncRNAs can function as

therapeutic targets and serve as novel candidate biomarkers

with respect to osteosarcoma diagnosis and prognosis.91P50-

associated COX-2 extragenic RNA (PACER) was overex-

pressed in clinical osteosarcoma tissues and cell lines

influenced by DNA methylation, activated the COX-2 gene in

an NF-κB-dependent manner and functioned as an onco-

gene in osteosarcoma.92 Metastasis-associated lung adeno-

carcinoma transcript 1 (MALAT1), one of the first cancer-

associated lncRNAs to be identified, is expressed in numerous

tissues, is highly abundant in neurons and is involved in

regulating the recruitment of SR family pre-mRNA-splicing

factors to sites of transcription involved not only in nuclear

processes but also in synapse function.93 Aberrant MALAT1

expression has been observed in many types of tumors,

including hepatocellular carcinoma, cervical cancer, breast

cancer, ovarian cancer, and colorectal cancer. Dong et al.
94

found that MALAT1 was highly expressed in human osteo-

sarcoma tissues and that its expression level was closely

correlated with pulmonary metastasis. Moreover, they found

that MALAT1 knockdown suppressed human osteosarcoma

cell proliferation, invasion, and metastasis in vitro and in vivo.

They also explored the molecular mechanisms underlying the

function of MALAT1 in osteosarcoma and observed that

MALAT1 inhibited tumor growth and metastasis via the PI3K/

AKT signaling pathway, as the expression levels of proliferat-

ing cell nuclear antigen, matrix metallopeptidase 9 (MMP-9),

phosphorylated PI3Kp85α, and Akt were significantly

decreased in MALAT1-knockdown cells.94 Cai et al.
95

observed similar results in MALAT1 siRNA-treated osteo-

sarcoma cells. They showed that MALAT1 knockdown inhi-

bited osteosarcoma cell proliferation and migration, induced

osteosarcoma cell cycle arrest and cell apoptosis, and

delayed tumor growth in an osteosarcoma xenograft model.

Specifically, they found that MALAT1 siRNA administration

decreased the protein expression levels of RhoA and

its downstream effectors, the Rho-associated coiled-coil

containing protein kinases (ROCKs). Consistent with these

studies, high-dose 17β-estradiol (E2) treatment markedly

downregulated MALAT1-mediated osteosarcoma cell prolife-

ration, migration, invasion, and metastasis by upregulating

miR-9 in E2-dose-dependent and ER-independent manners.

In addition, MALAT1 downregulation promoted the formation

of the SFPQ/PTBP2 complex.96 Moreover, Taniguchi et al.97

found that MALAT1 contains a theoretical Myc-6-target

sequence that includes an E-box-like motif (at positions

−258 to − 251). Interestingly, knockdown of the putative

Myc-6 target MALAT1 obviously impairedMG63 cell growth. In

general, Myc-6 appears to exert its tumor-suppressive effects,

at least in part, through the specific downregulation of

MALAT1. The Hh signaling pathway hass important roles in

vertebrate embryonic development and growth regulation,

functions as a morphogen and mitogen, and is normally

deactivated after embryogenesis. However, Hh signaling is

reactivated and upregulated in various cancers, including

osteosarcoma, resulting in high levels of yes-associated

protein 1 (Yap1) expression. Yap1, a potent oncogene

expressed in both human and mouse tumor tissues, is

amplified in various cancers. Hh signaling inhibition reduces

Yap1 expression, and Yap1 knockdown significantly inhibits

tumor progression. Chan et al.98 found that aberrant Hh

signaling in mature osteoblasts is responsible for the

pathogenesis of osteoblastic osteosarcoma. Moreover, Hh

signaling upregulation and Yap1 overexpression lead to

aberrant lncRNA H19 expression in malignant osteosarcoma.

The lncRNAs involved in osteosarcoma and osteosarcoma-

related signaling pathways are shown in Figure 2.

LncRNA Regulates Osteosarcoma Metastasis

Distant metastases are commonly observed in patients with

osteosarcoma after surgery. It is estimated that metastases

have been found in 85% of patients with osteosarcoma. The

most common site of osteosarcoma metastasis is the lung.

Metastatic osteosarcoma is difficult to control, and respiratory

symptoms appear only in the setting of extensive involvement.

Osteosarcoma alsometastasizes to other bone and soft tissue

locations. This issue is still controversial, as some authors

have argued that bone metastases may actually be multifocal

osteosarcomas rather than actual metastases. Death from

osteosarcoma is usually a result of pulmonary metastasis and

respiratory failure because of widespread progression.

Tumor invasion and metastasis is a multilink, multistep

complex process comprising invasion, intravasation, dissemi-

nation, extravasation, and colonization. Briefly, tumor cells

alter cell–extracellular matrix (ECM) interactions at the

primary tumor site, escape from the primary site and invade

adjacent tissues, and translocate through the vasculature to

migrate to other systems. Then, these metastatic cancer cells

anchor to distant vessel walls and extravasate into their

destination tissues (Figure 3) before finally proliferating from

microscopic growths to form secondary tumors.

Adhesion molecules, angiogenic factors, proteolytic

enzymes, tumor metastasis-related factors, and metastasis

suppressors are involved in migration and metastasis. MMPs

are a family of proteolytic enzymes and are the key proteases

involved in digesting components of the ECM and surface

receptors. MMPs has an important role in tumor invasion and

metastasis by degrading the ECM and basement membrane
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to remodel the tumor microenvironment and promote tumor

angiogenesis. Conversely, MMP activity is suppressed by

endogenous tissue inhibitors of metalloproteinases (TIMPs),

specific MMP inhibitors. The levels of endogenous MMPs and

TIMPs contribute to imbalances between MMPs and TIMPs

and regulate ECM degradation and deposition. It has been

reported that the levels of MMP-2 and MMP-9 secretion are

elevated in several types of human cancers and that these

elevations are associated with a poor prognosis.99 During

osteosarcoma cell invasion and migration, several lncRNAs

reportedly promote or inhibit cell proliferation and invasion by

regulating MMP-2 and MMP-9 secretion.100 Osteosarcoma

cell invasion and metastasis and the lncRNAs associated with

these processes are shown in Figure 4.

The HOX antisense intergenic RNA (HOTAIR), a well-

known lncRNA, is involved in the pathogenesis and progres-

sion of multiple tumors. HOTAIR is commonly overexpressed

in osteosarcoma, and its knockdown significantly inhibits

cellular proliferation and invasion by decreasing MMP-2 and

MMP-9 section in osteosarcoma cells. Meanwhile, high

HOTAIR expression levels are significantly associated with

advanced tumor stages, high histological grades, and poor

prognoses. Thus, HOTAIR may be an important target in the

treatment of human osteosarcoma.101 It has been reported

that the small nucleolar RNA host gene 12 (SNHG12)

promotes cell proliferation and migration by upregulating

angiomotin (AMOT) gene expression in human osteosarcoma

cells.102 In particular, tissue samples from primary osteosar-

comas (n=20) and adjacent normal tissues (n= 20), as well

as samples from the osteosarcoma cell lines SAOS-2, MG63,

and U2OS and the human osteoblast cell line hFOB (OB3),

were studied using quantitative real-time polymerase chain

reaction to detect SNHG12 expression. They found that

SNHG12 mRNA expression was upregulated in osteo-

sarcoma tissues and cell lines compared with normal tissues

and cells and that SNHG12 knockdown suppressed cell

proliferation and migration but did not affect cell apoptosis.

These findings suggest that SNHG12 lncRNA promotes cell

Figure 3 Tumor invasion and metastasis is a multilink, multistep complex
process. Tumor cells at primary tumor sites invade surrounding tissues, migrate
through the blood or lymph and localize in distal targeted tissues. This process is
divided into the following five stages: invasion, intravasation, dissemination,
extravasation, and colonization

Figure 2 Osteosarcoma cell proliferation is regulated by lncRNAs, including H19, MALAT1, ANCR, and PACER. These osteosarcoma-related lncRNAs are involved in the
PI3K/Akt signaling pathway, NF-κB signaling pathway, and Hh/Yap1 signaling pathway
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proliferation and migration by upregulating AMOT gene

expression in osteosarcoma cells in vivo and in vitro and are

consistent with the findings of previous studies involving

human gastric cancer patients, which showed that upregula-

tion of SNHG15 lncRNA expression promotes cell proliferation

and invasion by regulating MMP-2/MMP-9 expression.103

Mammalian genomes encode numerous natural antisense

transcripts that are at least partially complementary to their

sense transcripts. FGFR3 antisense transcript 1 (FGFR3-

AS1) increased FGFR3 mRNA stability and upregulated

FGFR3 expression via antisense pairing with FGFR3

3′-UTR. Increased FGFR3-AS1 expression was correlated

with large tumor size, advanced Enneking stage, metastasis

and poor survival. FGFR3-AS1 knockdown inhibited xeno-

graft tumor growth of osteosarcoma cells in vitro and in vivo.

Therefore, lncRNA FGFR3-AS1 promoted osteosarcoma

growth by regulating its natural antisense transcript

FGFR3.104

LncRNA and Osteosarcoma Cell Proliferation

Cancer occurrence is characterized by uncontrolled cell cycle

activity, including uncontrolled DNA replication and parental

cell division.105 Imbalances between programmed cell death

and cell proliferation contribute to the development of various

cancers. Both oncogene activation and tumor suppressor

gene inactivation lead to cancer occurrence and develop-

ment.106,107 In osteosarcoma, lncRNAs also exhibit oncogenic

properties or act as tumor suppressors to control osteosar-

coma progression by regulating cell cycle progression or cell

apoptosis to regulate cell proliferation or migration. Antidiffer-

entiation noncoding RNA (ANCR) is a newly identified onco-

genic lncRNA that has an important role in the maintenance of

cell undifferentiation. ANCR knockdown significantly inhibited

U2OS and SAOS cell proliferation and U2OS cell colony

formation and arrested the U2OS cell cycle at the G0/G1

phase. Moreover, ANCR regulated and controlled cell cycles

by regulating the endogenous levels of cell cycle-related

proteins, including p21, CDK2, and CDK4.108 The levels of

taurine-upregulated gene 1 (TUG1) and one of its transcript

variants (n377360) were significantly higher in osteosarcoma

tissues compared with that in matched non-tumorous tissues.

Consistent with this finding, TUG1 and n377360 suppression

by siRNA significantly impaired osteosarcoma cell prolifera-

tion potential and promoted osteosarcoma cell apoptosis.109

Tumor suppressor lncRNAs are involved in regulating

human osteosarcoma. The levels of hypoxia-inducible factor-

2α (HIF2α) promoter upstream transcript (HIF2PUT), a novel

lncRNA, were assessed via quantitative polymerase chain

reaction in 17 osteosarcoma tissue specimens, and the data

demonstrated that HIF2PUT functions as an osteosarcoma

stem cell inhibitor in vitro partly by controlling HIF2α expres-

sion. HIF2PUT overexpression markedly inhibited cell

proliferation and migration, decreased the percentage of

CD133-expressing cells, and impaired the osteosarcoma

stem sphere-forming ability of MG63 cells.110 It has been

Figure 4 Osteosarcoma invasion and metastasis is regulated by lncRNAs, such as MALAT1, SNHG12, HOTAIR, FGFR3-AS1, and HIF2PUT. MMP-2 and MMP-9 secretion is
regulated by the Erk1/2, JNK1/2, P38, PI3K/Akt, and NF-κB signaling pathways. Osteosarcoma cell invasion is regulated by MMP-2 and MMP-9
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reported that the HIF2PUT expression levels were positively

correlated with HIF2α expression in osteosarcoma tissues.

However, HIF2PUToverexpression obviously suppressed cell

proliferation and migration, decreased the percentage of

CD133-expressing cells, and impaired the osteosarcoma

stem sphere-forming ability of MG63 cells. However, HIF2PUT

knockdown had the opposite effect. Tumor suppressor

candidate 7 (TUSC7) is a potential tumor suppressor that

has been shown to inhibit cell proliferation in osteosarcoma.

Cong et al.111 reported that TUSC7 expression was signifi-

cantly downregulated in osteosarcoma tissues compared with

paired non-tumor tissues. Low TUSC7 expression is asso-

ciated with poor survival (HR= 0.313, 95% confidence interval

(CI) 0.092–0.867) in osteosarcoma patients. Loss of TUSC7

copy number is also associated with a poor prognosis

(HR= 3.994, 95% CI: 1.147–13.91) in osteosarcoma patients.

The author of the above study used two osteosarcoma cell

lines, HOS and MG63, to investigate the biological function of

TUSC7. Silencing TUSC7 increased osteosarcoma cell

proliferation ability and colony formation ability. The cell cycle

was not affected by TUSC7 silencing; however, the percen-

tage of apoptotic cells decreased, and the expression levels of

several proapoptotic proteins were downregulated. Impor-

tantly, xenograft tumor models were established in nude mice

using MG63 cells. Silencing TUSC7 significantly promoted

tumor growth in vivo in treated mice compared with negative-

control mice. Thus, TUSC7 may be a tumor suppressor in

osteosarcoma. Similarly, Wang et al.
112 determined that

TUSC7 is a potential biomarker for NSCLC prognosis and

that TUSC7 dysregulation has an important role in NSCLC

progression. In their studies, they found that the expression

levels of TUSC7were lower in NSCLC tissues and lung cancer

cells compared with that in normal tissues and cells. Lower

TUSC7 expression levels in NSCLC tissues were associated

with larger tumor sizes and higher TNM stages. Patients with

lower TUSC7 expression levels exhibited worse overall

survival compared with patients with high TUSC7 expression

levels. Univariate and multivariate analyses suggested that

low TUSC7 expression was an independent prognostic

indicator of a poor prognosis in NSCLC patients. Moreover,

TUSC7 upregulation inhibited lung cancer cell proliferation

in vitro.

LncRNA and Osteosarcoma Prognosis

Genetic variants of HOTAIR lncRNA contribute to the risk of

osteosarcoma. A two-stage, case–control study involving 900

OS patients and 900 controls was performed to evaluate the

associations between HOTAIR lncRNA genetic variants and

OS risk in the Chinese population, the results of which

demonstrated that the C allele of rs7958904 was associated

with a significantly decreased OS risk compared with the G

allele (OR: 0.77; 95%CI: 0.67–0.90; P= 6.77x10− 4), suggest-

ing that patients with the rs7958904 CC genotype

had significantly lower HOTAIR RNA levels compared with

patients with other genotypes, as well as a lower OS risk.113

Ma et al.
114 found that TUG1 was significantly overexpressed

in osteosarcoma tissues compared with matched adjacent

normal tissues (Po0.01). Moreover, TUG1 levels were

strongly correlated with disease status and tumor size,

postoperative chemotherapy, and Enneking surgical stage.

Furthermore, TUG1 upregulation was strongly correlated with

a poor prognosis and was an independent prognostic indicator

for overall survival (HR= 2.78; 95% CI: 1.29–6.00; P= 0.009)

and progression-free survival (HR= 1.81; 95% CI= 1.01–

3.54; P= 0.037). HOTTIP was overexpressed in OS tissues

and was correlated with advanced clinical stage and distant

metastasis. High HOTTIP expression levels were associated

with poor overall survival in OS patients. Moreover, HOTTIP

expression was an independent prognostic factor for overall

survival in OS patients and may represent a novel prognostic

marker and therapeutic target in OS patients.115 Liu et al.
116

demonstrated that MEG3 lncRNA levels were clearly lower

in osteosarcoma tissues compared with that in adjacent non-

tumor tissues. Patients with low MEG3 lncRNA express-

ion levels exhibited shorter overall survival compared

with patients with high expression levels (log-rank test,

Po0.05). Furthermore, decreased MEG3 lncRNA expres-

sion, advanced clinical stage, and distant metastasis were all

independent predictors of shorter overall survival in osteo-

sarcoma patients.

lncRNA and Chemotherapeutic Drug Resistance in

Osteosarcoma

Surgery, radiotherapy, and chemotherapy are the three main

treatments for cancer. In particular, chemotherapy has an

important role in cancer therapy. However, chemotherapeutic

drug resistance is the largest obstacle limiting the success of

cancer therapy. Large numbers of studies have focused on

chemotherapy drug resistance in human osteosarcoma, but

the mechanism underlying this resistance remains to be

elucidated. In osteosarcoma, chemotherapy drug efficacy is

usually limited by acquired resistance to specific drugs, such

as doxorubicin and cisplatin. Zhu et al.
117 studied three sets of

doxorubicin-resistant MG63/DXR cells and their paired

parental MG63 cells and identified 3465 lncRNAs (1761 up

and 1704 down) and 3278 mRNAs (1607 up and 1671 down)

that were aberrantly expressed in MG63/DXR cells (fold

change 42.0, Po0.05 and FDRo0.05). Moreover, an

lncRNA-mRNA coexpression network identified lncRNAs,

including ENST00000563280 and NR-036444, that interact

with genes such asABCB1,HIF1A, and FOXC2 andmay have

an important role in doxorubicin resistance in OS. Several

lncRNAs have been found to serve as biomarkers predicting

the chemoresponses and prognoses of osteosarcoma

patients, including ENST00000563280, whose expression

level was significantly increased in the tissue specimens of OS

patients with poor chemoresponses compared with those with

good chemoresponses.

Conclusions and Perspectives

Previous studies have reported that lncRNAs regulate the

transcription, stability and translation of protein-coding genes

in the mammalian genome, play important roles in regulating

protein-coding genes at the transcriptional and post-

transcriptional levels, and participate in important biological

processes, including cell differentiation, development and

human diseases.118–120 Human genome studies have shown
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that ∼ 18% of protein-coding genes that produce lncRNAs

(10/57) are related to cancer, whereas only 9% of all human

protein-coding genes (2147/23621) are related to cancer

(chi-square test, P-value: 0.047; hypergeometric probability

P-value = 0.018), clearly demonstrating that genes implicated

in cancer development have a greater tendency to produce

lncRNAs.121 In this review, we have summarized how

lncRNAs regulate cell proliferation, invasion and chemother-

apeutic drug resistance in human osteosarcoma patients and

osteosarcoma cells. We have also summarized the roles of

lncRNAs as prognostic biomarkers in osteosarcoma therapy.

Finding promising therapeutic targets for the treatment for

human osteosarcoma, especially chemotherapeutic drug-

resistant osteosarcoma, will be beneficial for patients. How-

ever, several questions regarding the involvement of lncRNAs

in osteosarcoma remain unexplored and unresolved.

(1) To date, limited studies regarding the involvement of

lncRNAs in human osteosarcoma have been published.

Although several lncRNAs are known to exert tumor-

promoting or tumor-suppressing effects in osteosarcoma

species and cancer cell lines, the exact molecular

mechanisms underlying these effects remain unclear.

Thus, additional investigations are required to elucidate

the molecular mechanisms underlying human osteosar-

coma progression, metastasis and drug resistance.

(2) One lncRNA may be involved in several different signaling

pathways associated with cancer development and may

have more than one target associated with osteosarcoma

proliferation and metastasis. For instance, MALAT1 plays

an important role in the PI3K/AKT and RhoA/ROCKs

signaling pathways. However, understanding the connec-

tions between these signaling pathways, as well as

determining whether one of them plays a major role in

osteosarcoma development and progression, warrants

further study.

(3) lncRNAs usually have short half-lives and exhibit low

transcript abundance. They need to be transiently

expressed in vitro. Additionally, it is necessary to deter-

mine how the secondary and tertiary structures of

lncRNAs interact with specific protein targets.

(4) lncRNAs may represent novel therapeutic targets, which

are critical for developing novel strategies for the early

diagnosis and treatment of human osteosarcoma. The

potential clinical applications of miRNAs warrant

investigation.
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