Long Paths and Cycles in Oriented Graphs

GOLDSMITHS' COLLEGE LONDON, ENGLAND

Abstract

We obtain several sufficient conditions on the degrees of an oriented graph for the existence of long paths and cycles. As corollaries of our results we deduce that a regular tournament contains an edge-disjoint Hamilton cycle and path, and that a regular bipartite tournament is hamiltonian.

An oriented graph is a directed simple graph, that is to say, a digraph without loops, mutiple arcs, or cycles of length two. Many authors have obtained various degree conditions which imply that certain families of graphs, or digraphs, contain long paths and cycles. The corresponding literature for oriented graphs, however, is concerned almost entirely with tournaments, which are oriented complete graphs. In this paper we consider the problem for other families of oriented graphs. We first work with oriented graphs of fixed minimum in-degree, but an arbitrary number of vertices, and then specialise by also fixing the minimum out-degree. We next obtain some hamiltonian conditions by demanding that the total number of vertices be relatively small. Finally, we prove a result concerning the lengths of cycles in oriented complete bipartite graphs. We give many conjectures throughout, which indicate that the majority of our results are far from being best possible.

All terms not explicitly defined in this paper may be found in [4]. We note, however, that we shall refer to spanning paths, and spanning cycles, as Hamilton paths, and Hamilton cycles, respectively. Let R be an oriented graph and S.be a sugraph of R. Denote the set of vertices and arcs of S by $V(S)$ and $A(S)$, respectively. For $v \in V(R)$ and $B \subseteq V(R)$, define $N_{B}^{-}(v)$ and $N_{B}^{+}(v)$ to be the set of vertices of B which, respectively, dominate, and are dominated by, the vertex v. Put

$$
N_{B}(v)=N_{B}^{-}(v) \cup N_{B}^{+}(v) .
$$

To simplify notation, we shall denote $N_{V(S)}^{-}(v), N_{V(S)}^{+}(v)$, and $N_{V(S)}(v)$ by $N_{S}^{-}(v), N_{S}^{+}(v)$, and $N_{S}(v)$. We shall refer to $\left|N_{R}^{-}(v)\right|,\left|N_{R}^{+}(v)\right|$, and
$\left|N_{R}(v)\right|$ as the in-degree, the out-degree, and the degree, of v in R and denote them by $d_{R}^{-}(v), d_{R}^{+}(v)$, and $d(v)$, respectively. The oriented graph R is said to be k-diregular, or more simply diregular, if $d_{R}^{-}(v)=k=d_{R}^{+}(v)$ for all $v \in V(R)$: and m-disconnected if, for any distinct pair of vertices u, $v \in V(R)$, there exist m internally disjoint paths from u to v. If R is 1 diconnected, we shall say simply that R is diconnected.

Lemma 1. Let $P=v_{1} v \cdots v_{n}$ be a longest path in an oriented graph R. If $d_{R}^{-}\left(v_{1}\right) \geq 1$, then R contains a cycle of length at least $d_{R}^{\bar{R}}\left(v_{1}\right)+2$.

Proof. Since P is a longest path in $R, N_{R}^{-}\left(v_{1}\right) \subseteq V(P)$. Let $j=\max \left\{i \mid v_{1} \in\right.$ $\left.N_{R}\left(v_{1}\right)\right\}$ and put

$$
C=v_{1} v_{2} \cdots v_{j} v_{1}
$$

Then $\left\{v_{1}, v_{2}\right\} \cup N_{R}^{-}\left(v_{1}\right) \subseteq V(C)$. Moreover, since R is an oriented graph, $\left\{v_{1}, v_{2}\right\} \cap N_{R}\left(v_{1}\right)=0$, and hence

$$
|V(C)| \geq d_{R}^{-}\left(v_{1}\right)+2
$$

Lemma 2. Every oriented graph of minimum in-degree k, contains a cycle of length at least $k+2$.

Proof. Immediate from Lemma 1.
Lemma 2 is, in a sense, best possible since there exist oriented graphs of minimum in-degree k, which contain no cycles of length greater than $k+2$. To illustrate this we shall construct, recursively, a family of graphs, $\left\{R_{k}\right\}_{k \geq 1}$, with the following properties.
(1) R_{k} is diconnected.
(2) R_{k} has a distinguished vertex v_{k} such that $d_{R_{k}}^{-}\left(v_{k}\right)=k+1$, and $d_{R_{k}}(v)=k$ for all $v \in V\left(R_{k}\right) \backslash\left\{v_{k}\right\}$.

FIGURE 1
(3) All paths having initial vertex v_{k}, have length at most $k+1$.

The graph R_{1} with distinguished vertex v_{1} is given below.
The graph R_{k} is constructed from $k+1$ disjoint copies of R_{k-1} and a new distinguished vertex v_{k} by letting v_{k} be dominated by the vertex v_{k-1}, and dominate every other vertex, of each R_{k-1}. The fact that R_{k} contains no cycles of length greater than $k+2$ follows from properties (1) and (3).

Noting that the graphs R_{k} are not 2 -diconnected, and indeed have many vertices of out-degree one, we make the following conjectures.

Conjecture 1. Every 2-diconnected oriented graph of minimum in-degree k contains either a Hamilton cycle, or else a cycle of length at least $2 k+2$.

Conjecture 2. Every diconnected oriented graph of minimum in-degree and out-degree k, contains a cycle of length at least $2 k+1$.

Both conjectures would be, in a sense, best possible. The following example shows that the hypothesis of diconnectivity is necessary in Conjecture 2. Let \tilde{R}_{k} be the oriented graph obtained by reversing all arcs in R_{k}. Then the oriented graph consisting of one copy of R_{k} and one copy of \tilde{R}_{k}, such that each vertex of R_{k} dominates every vertex of \tilde{R}_{k}, has minimum indegree and out-degree k, but no cycles of length greater than $k+2$.

Conjecture 2 is of some interest in connection with a result of Dirac, [2, Theorem 2], which implies that, if G is a graph of minimum degree $2 k$, then G contains a cycle of length at least $2 k+1$. Conjecture 2 would imply that if G were oriented in such a way that the resulting oriented graph $R(G)$ was diconnected and each vertex had in-degree and out-degree at least k, then $R(G)$ would still contain a cycle of length at least $2 k+1$.

Some support for Conjecture 2 may be deduced from the following result.
Theorem 3. Let R be an oriented graph of minimum degree n, such that whenever $u v \notin A(R)$,

$$
d_{R}^{+}(u)+d_{R}^{-}(v) \geq n-1 .
$$

Then R contains a path of length n.
Proof. Let $P=v_{1} v_{2} \cdots v_{m}$ be a path of maximum length in R and suppose $m \leq n$. Since P is a longest path in $R, N_{R}^{-}\left(v_{1}\right) \subseteq V(P)$, and $N_{R}^{+}\left(v_{m}\right) \subseteq V(P)$. If $v_{m} v_{1} \in A(R)$, then

$$
P_{\mathrm{I}}=v_{2} v_{3} \cdots v_{m} v_{1}
$$

is a path of maximum length in R, and hence $N_{R}^{+}\left(v_{1}\right) \subseteq V\left(\boldsymbol{P}_{1}\right)$. If follows that

$$
\left\{v_{1}\right\} \cup N_{R}^{-}\left(v_{1}\right) \cup N_{R}^{+}\left(v_{1}\right) \subseteq V(P)
$$

and hence

$$
m=|V(P)| \geq d_{R}\left(v_{1}\right)+1 \geq n+1
$$

We may thus assume that $v_{m} v_{1} \notin A(R)$ and hence, by an hypothesis of the theorem

$$
d_{R}^{-}\left(v_{1}\right)+d_{R}^{+}\left(v_{m}\right) \geq n-1
$$

Let

$$
j=\max \left\{i \mid v_{i} \in N_{R}^{-}\left(v_{1}\right)\right\}
$$

and

$$
h=\min \left\{i \mid v_{i} \in N_{R}^{+}\left(v_{m}\right)\right\}
$$

Then $j \geq d_{R}^{-}\left(v_{1}\right)+2, h \leq m-\left(d_{R}^{+}\left(v_{m}\right)+1\right)$, and hence

$$
j-h \geq d_{R}^{-}\left(v_{1}\right)+d_{R}^{+}\left(v_{m}\right)+3-m \geq n+2-m \geq 2
$$

Suppose $h=2$. The path

$$
P_{2}=v_{j+1} v_{j+2} \cdots v_{m} v_{2} v_{3} \cdots v_{j} v_{1}
$$

is again of maximum length in R. As above, it follows that

$$
\left\{v_{1}\right\} \cup N\left(v_{1}\right) \cup N^{+}\left(v_{1}\right) \subseteq V\left(P_{2}\right)=V(P)
$$

and hence $|V(P)| \geq n+1$. Thus we may assume that $h \geq 3$, and by a similar argument, that $j \leq m-2$.
Put

$$
\begin{aligned}
& B=\left\{v_{i} \mid h<i<j\right\} \\
& D=\left\{v_{i} \in B \mid v_{i-1} \in N_{R}^{-}\left(v_{1}\right)\right\} \\
& F=\left\{v_{i} \in B \mid v_{i+1} \in N_{R}^{+}\left(v_{m}\right)\right\}
\end{aligned}
$$

Then $|D| \geq d_{R}^{-}\left(v_{1}\right)-h+1,|F| \geq d_{R}^{+}\left(v_{m}\right)-m+j$, and hence

$$
|D|+|F| \geq d_{R}^{-}\left(v_{1}\right)+d_{R}^{+}\left(v_{m}\right)-m+j-h+1
$$

However, $|D \cup F| \leq|B|=j-h-1$. Thus,

$$
|D \cap F| \geq d_{R}^{-}\left(v_{1}\right)+d_{R}^{+}\left(v_{m}\right)-m+2 \geq n-1-m+2 \geq 1
$$

Choose $v_{i} \in D \cap F$. Then

$$
P_{3}=v_{i} v_{i+1} \cdots v_{m} v_{h} v_{h+1} \cdots v_{i-1} v_{1} v_{2} \cdots v_{h-1}
$$

is a path containing all the vertices of P. Thus P_{3} is also a path of maximum length in R, and hence $N_{R}^{-}\left(v_{i}\right) \subseteq V\left(P_{3}\right)=V(P)$. Similarly,

$$
P_{4}=v_{j+1} v_{j+2} \cdots v_{m} v_{i+1} v_{i+2} \cdots v_{j} v_{1} v_{2} \cdots v_{i}
$$

is a path of maximum length in R and hence,

$$
N_{R}^{+}\left(v_{i}\right) \subseteq V\left(P_{4}\right)=V(P)
$$

Thus $\left\{v_{i}\right\} \cup N_{R}^{-}\left(v_{i}\right) \cup N_{R}^{+}\left(v_{i}\right) \subset V(P)$, and hence

$$
m=|V(P)| \geq d_{R}\left(v_{i}\right)+1=n+1
$$

This contradicts the initial assumption that $m \leq n$, and completes the proof of the theorem.

Theorem 3 has the following immediate corollary.
Corollary 3. Every oriented graph of minimum in-degree and out-degree k, contains a path of length $2 k$.

Corollary 3 is, in a sense, best possible because of the existence of k diregular tournaments on $2 k+1$ vertices. We have, however, been able to slightly improve the bound on the length of a longest path for the special case of diconnected oriented graphs. We use the following lemma.

Lemma 4. Let R be an oriented graph of minimum in-degree and out-degree k and let C be a longest cycle in R. If $R-C$ contains a longest path P, of length at least one, then

$$
|V(C) \cup V(P)| \geq 2 k+3
$$

Proof. Let $C=c_{1} c_{2} \cdots c_{n} c_{1}$ and $P=v_{1} v_{2} \cdots v_{m}$. Without loss of generality we may assume that

$$
\begin{equation*}
\left|N_{C}^{-}\left(v_{1}\right)\right| \leq\left|N_{C}^{+}\left(v_{m}\right)\right| . \tag{1}
\end{equation*}
$$

Let B be the set, and b the number, of distinct pairs $\left(c_{i}, c_{j}\right)$ such that $c_{i} \in$ $N_{C}^{-}\left(v_{1}\right), c_{j} \in N_{C}^{+}\left(v_{m}\right)$, and

$$
\left\{c_{i+1}, c_{i+2}, \cdots, c_{i-1}\right\} \cap\left(N_{C}\left(v_{1}\right) \cup N_{C}^{+}\left(v_{m}\right)\right)=\emptyset .
$$

If $\left(c_{i}, c_{j}\right) \in B$ then, since C is a longest cycle of R,

$$
\left|\left\{c_{i+1}, c_{i+2}, \cdots, c_{j-1}\right\}\right| \geq m .
$$

Putting $D=\left\{c_{i} \mid c_{i+1} \in N_{C}^{+}\left(v_{m}\right)\right\}$ it follows that $N_{C}\left(v_{1}\right) \cap D=\emptyset$, and

$$
|V(C)| \geq\left|N_{C}\left(v_{1}\right)\right|+|D|+b(m-1) .
$$

However, $\left|N_{C}^{-}\left(v_{1}\right)\right| \geq k-m+2$ and $|D|=\left|N_{C}^{+}\left(v_{m}\right)\right| \geq k-m+2$.
Thus, if $b \geq 1$,

$$
|V(C) \cup V(P)| \geq k-m+2+k-m+2+m-1+m=2 k+3
$$

The only remaining alternative is that $b=0$. Using (1), it follows that $\left|N_{C}\left(v_{1}\right)\right| \leq 1$. Hence $\left|N_{P}^{-}\left(v_{1}\right)\right| \geq k-1$, and

$$
|V(P)| \geq\left|N_{P}^{-}\left(v_{1}\right)\right|+2=k+1 .
$$

By Lemma $2,|V(C)| \geq k+2$, and hence

$$
|V(C) \cup V(P)| \geq 2 k+3 .
$$

Theorem 5. let R be a diconnected oriented graph of minimum in-degree and out-degree $k \geq 2$. Then R contains either, a Hamilton path, or else a path of length $2 k+2$.

Proof. Suppose the theorem is false. Let R be an oriented graph which satisfies the hypotheses of the theorem, but not the conclusion. Choose a longest cycle C in R, and a longest path P in $R-C$. The proof splits into two cases, depending on the length of P.

Case 1. P has length at least one.
If $\left|N_{C}\left(v_{1}\right)\right| \geq 1$, then R clearly contains a path P_{1} such that

$$
V(C) \cup V(P) \subseteq V\left(P_{1}\right)
$$

and, by Lemma $4,\left|V\left(P_{1}\right)\right| \geq 2 k+3$.
If, on the other hand, $\left|N_{C}\left(v_{1}\right)\right|=0$, then $\left|N_{P}^{-}\left(v_{1}\right)\right| \geq k$ and, by Lemma $1, R-C$ contains a cycle C_{1} of length at least $k+2$. Since R is diconnected, it contains a path P_{2} such that

$$
V(C) \cup V\left(C_{1}\right) \subseteq V\left(P_{2}\right)
$$

By Lemma 2, C also has length at least $k+2$ and hence, $\left|V\left(P_{2}\right)\right| \geq$ $2 k+4$.

Case 2. $R-C$ consists entirely of isolated vertices.
Choosing v a vertex of $R-C$, it follows that $N_{R}(v) \subseteq V(C)$. Moreover $N_{R}(v) \neq V(C)$ for otherwise R would contain a longer cycle than C. Hence $|V(C)| \geq d_{R}(v)+1 \geq 2 k+1$. Since, however, v and $V(C)$ lie on a path in R, and R contains no path of length $2 k+2,|V(C)|=2 k+1$. Again, since C is a longest cycle of R, we may label the vertices of C such that

$$
\begin{aligned}
C & =c_{0} c_{1} c_{2} \cdots c_{2 k} c_{0} \\
N_{R}^{+}(v) & =\left\{c_{1}, c_{2}, \cdots c_{k}\right\}, \text { and } \\
N_{R}^{-}(v) & =\left\{c_{k+1}, c_{k+2}, \cdots, c_{2 k}\right\}
\end{aligned}
$$

By considering the longest cycle $C_{2}=v c_{1} c_{2} \cdots c_{2 k} v$ of R, and the vertex c_{0} of $R-C_{2}$, it follows that

$$
\begin{aligned}
& N_{R}^{+}\left(c_{0}\right)=\left\{c_{1}, c_{2}, \cdots, c_{k}\right\} \\
& N_{R}^{-}\left(c_{0}\right)=\left\{c_{k+1}, c_{k+2}, \cdots, c_{2 k}\right\}
\end{aligned}
$$

Put $B=N_{R}^{+}\left(c_{0}\right) \backslash\left\{c_{k}\right\}$ and $D=N_{R}\left(c_{0}\right) \backslash\left\{c_{k+1}\right\}$.
Clearly, some vertex c_{i} of B satisfies

$$
\left|N_{B}^{+}\left(c_{i}\right)\right| \leq \frac{1}{2}(|B|-1)=\frac{1}{2}(k-2)
$$

If c_{i} dominates a vertex v^{\prime} of $R-C$ then

$$
P_{3}=v c_{i+1} c_{i+2} \cdots c_{i} v^{\prime}
$$

is a path of length $2 k+2$ in R. Moreover, if c_{i} dominates a vertex c_{j} of D then

$$
C_{3}=v c_{1} c_{2} \cdots c_{i} c_{j} c_{j+1} \cdots c_{0} c_{i+1} \cdots c_{j-1} v
$$

is a longer cycle than C. It follows that

$$
\begin{equation*}
N_{R}^{+}\left(c_{i}\right) \subseteq B \cup\left\{c_{k}, c_{k+1}\right\} \tag{2}
\end{equation*}
$$

Hence $d_{R}^{+}\left(c_{i}\right) \leq \frac{1}{2}(k-2)+2$. Since $d_{R}^{+}\left(c_{i}\right) \geq k \geq 2$, we may deduce that, $k=2, C=c_{0} c_{1} c_{2} c_{3} c_{4} c_{0}, N_{R}^{+}\left(v_{0}\right)=N_{R}^{+}\left(c_{0}\right)=\left\{c_{1}, c_{2}\right\}$, and $N_{R}^{-}(v)=$ $N_{R}^{-}\left(c_{0}\right)=\left\{c_{3}, c_{4}\right\}$. In addition, we must have equality in (2). Hence $N_{R}^{+}\left(c_{1}\right)=\left\{c_{2}, c_{3}\right\}$, and, by a similar argument to the above, $N_{R}^{+}\left(c_{4}\right)=$ $\left\{c_{2}, c_{3}\right\}$.

In this final case, the cycle

$$
C_{4}=v c_{1} c_{3} c_{0} c_{2} c_{4} v
$$

contradicts the choice of C and completes the proof of the theorem. We feel that Theorem 5 is far from being best possible.

Conjecture 3. Every diconnected oriented graph of minimum in-degree and out-degree k contains either, a Hamilton path, or else a path of length at least $3 k$.

Consider the oriented graph $R\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ defined as follows. The vertices of $R\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ may be partitioned into n independent sets B_{1}, B_{2}, \cdots, B_{n} such that $\left|B_{i}\right|=b_{i}$ and each vertex of B_{i} dominates every vertex of B_{i+1} for all $i, 1 \leq i \leq n$, where subscripts are to be read modulo n. The graphs $R(k, k, h)$, for h an integer greater than k, illustrate that Conjecture 3 is, in a sense, best possible. Moreover, the graph $R(1,1, h)$ shows that the conclusion of Theorem 5 is false when $k=1$.

Bermond, Germa, Heydemann, and Sotteau [1] have obtained a result, similar to Theorem 5, for the more general family of digraphs, by showing that every diconnected digraph of minimum in-degree and out-degree k contains either, a Hamilton path, or else a path of length $2 k$. Theorem 4 is also of interest in connection with a conjecture of P. Kelly [4, p. 7, Problem 9], that every diregular tournament is decomposable into Hamilton cycles. Given a k-diregular tournament T, on $2 k+1$ vertices, it follows from a result of Thomassen [6, Theorem 4] that T contains c^{k} Hamilton cycles for some constant $c>1$. For any Hamilton cycle H_{1} of $T, T-E\left(H_{1}\right)$ is a $(k-1)$ diregular diconnected oriented graph on $2 k+1$ vertices, and hence, by Theorem 4, contains a Hamilton path H_{2}^{*}. We may thus deduce that T contains c^{k} Hamilton pairs $\left(H_{1}, H_{2}^{*}\right)$, where H_{1} is a Hamilton cycle and H_{2}^{*} a Hamilton path. We had hoped to deduce that T contains c^{k} Hamilton pairs (H_{1}, H_{2}), where H_{1} and H_{2} are both Hamilton cycles of T, by showing that every $(k-1)$-diregular oriented graph on $2 k+1$ vertices is hamiltonian. Our only success to date, however, is the following result.

Theorem 6. Every oriented graph of minimum in-degree and out-degree $k \geq$ 2 , on at most $2 k+2$ vertices, is hamiltonian.

Proof. Suppose the theorem is false. Let R be a nonhamiltonian graph which satisfies the hypotheses of the theorem, and choose a longest cycle C in R. Using Lemma 4, it follows that $R-C$ contains an isolated vertex v. By a similar argument to that used in the proof of Theorem 5 , case 2 , we may deduce that R contains a cycle whose vertex set is $V(C) \cup\{v\}$. This contradicts the choice of C and completes the proof of the theorem.

The following conjecture of Thomassen [7] suggest that Theorem 6 is far from being best possible.

Conjecture 4 (Thomassen). Every oriented graph of minimum in-degree and out-degree k, on at most $3 k$ vertices, is hamiltonian.

The graph $R(k, k, k+1)$ illustrates that Conjecture 4 would be, in a sense, best possible. The graph $R(1,1,2)$ also shows that the conclusion of Theorem 6 is false when $k=1$. The reason that the graphs $R(k, k, k+1)$ are nonhamiltonian is essentially that they are not diregular. For the special case of diregular oriented graphs, perhaps even the following is true.

Conjecture 5. For $k \neq 2$, every k-diregular oriented graph on at most $4 k+1$ vertices is hamiltonian.

Examples of nonhamiltonian, 2-diregular oriented graphs on seven and eight vertices are given in [3]. It follows from a result of Nash-Williams [5, Theorem 3| that, if G is a $2 k$-regular graph on at most $4 k+1$ vertices, then G is hamiltonian. Conjecture 5 would imply that if G were given a k-diregular orientation, then it would remain hamiltonian for $k \neq 2$. We note that Conjectures 4 and 5 would also imply that a k-diregular tournament contained, respectively $\left[\frac{1}{3}(k+2)\right]$, and $\left[\frac{1}{2} k\right]$, edge-disjoint Hamilton cycles.

Following [4], we define an oriented complete bipartite graph to be a bipartite tournament. Using the following lemma, we obtain a bound on the length of a longest cycle in a bipartite tournament.

Lemma 7. If C is a longest cycle in a diconnected bipartite tournament T, then $T-C$ is acyclic.

Proof. Let $V(T)=X \cup Y$ be the bipartition of T and

$$
C=x_{1} y_{1} x_{2} y \cdot \cdots x_{n} y_{n} x_{1},
$$

where $x_{i} \in X$ and $y_{i} \in Y$ for all $i, 1 \leq i \leq n$. Suppose $T-C$ contains a cycle C^{\prime}. Choose $x \in V\left(C^{\prime}\right) \cap X, y \in V\left(C^{\prime}\right) \cap Y$ and, without loss of generality, assume that x_{1} dominates y. Since C^{\prime} contains a $y x$-path, and C is a longest cycle of T, x does not dominate y_{1}. Hence y_{1} dominates x. Similarly, since C^{\prime}
contains an $x y$-path, y does not dominate x_{2}, and hence x_{2} dominates y. By repeating the above argument, we may deduce that
(i) each vertex of $V(C) \cap X$ dominates every vertex of $V\left(C^{\prime}\right) \cap Y$ and
(ii) each vertex of $V(C) \cap Y$ dominates every vertex of $V\left(C^{\prime}\right) \cap X$.

Since T is diconnected, however, T contains a path which passes from $V\left(C^{\prime \prime}\right)$ to $V(C)$, and is internally disjoint from $V(C) \cup V\left(C^{\prime}\right)$. using (i) and (ii), it easily follows that T contains a longer cycle than C, which contradicts the hypothesis of the lemma, that C is a longest cycle in T. Thus the assumption that $T-C$ contains a cycle is false.

Theorem 8. Let T be a diconnected bipartite tournament such that whenever u and v are vertices of T and $u v \notin A(T)$,

$$
d_{T}^{+}(u)+d_{T}^{-}(v) \geq n .
$$

Then T contains a cycle of length at least $2 n$.
Proof. Let $V(T)=X \cup Y$ be the bipartition of T and choose x and x^{\prime} vertices of X. Since neither $x x^{\prime}$ nor $x^{\prime} x$ are arcs of T, it follows that

$$
2 n \leq d_{T}^{+}(x)+d_{T}^{-}\left(x^{\prime}\right)+d_{T}^{+}\left(x^{\prime}\right)+d_{T}^{-}(x)=d_{T}(x)+d_{T}\left(x^{\prime}\right)=2|Y| .
$$

Hence $|Y| \geq n$, and similarly $|X| \geq n$.
Let $C=x_{1} y_{1} x_{2} y_{2} \cdots x_{m} y_{m} x_{1}$ be a longest cycle of T, and P be a longest path of $T-C$. If P consists of a single vertex y, then $N_{T}(y) \subseteq V(C)$. Since, however, $N_{T}(y)$ is equal to either X or Y, it follows that C has length at least $2 n$. Hence we may suppose that P is a $u v$-path for distinct vertices u and v of T. Since, by Lemma 7,T-C is acyclic, it follows that $N_{T}(u) \cap V(P)=0$ and $N_{T}^{+}(v) \cap V(P)=0$. In particular, $v u \notin A(T)$ and hence

$$
d_{T}^{+}(u)+d_{\bar{T}}^{-}(v) \geq n .
$$

Without loss of generality assume that $u \in X$.

$$
\begin{aligned}
& \text { If } v \in Y \text {, put } B=\left\{y_{i}\left|x_{i+1} \in N_{T}^{+}(v)\right| .\right. \\
& \text { If } v \in X \text {, put } B=\left\{y_{i} \mid y_{i+1} \in N_{T}^{+}(v)\right\} .
\end{aligned}
$$

In both cases, since C is a longest cycle of T,

$$
N_{\bar{C}}^{-}(u) \cap B=\emptyset .
$$

Moreover, $N_{C}^{-}(u) \cup B \subseteq V(C) \cap Y$.
Hence,

$$
|V(C)| \geq 2\left(\left|N_{C}^{-}(u)\right|+|B|\right)=2\left(d_{T}^{-}(u)+d_{T}^{+}(v)\right) \geq 2 n .
$$

Corollary 8.1. Every diconnected bipartite tournament of minimum indegree h and minimum out-degree k contains a cycle of length at least $2(h+k)$.

Proof. Immediate.
Corollary 8.2. Every diregular bipartite tournament is hamiltonian.
Proof. Follows immediately from Corollary 8.1, since a k-diregular bipartite tournament has exactly $4 k$ vertices.

Corollary 8.1 is, in a sense, best possible since, for m large, we may orient the complete bipartite graph $K_{h+k, m}$ to form a diconnected bipartite tournament, $T\left(K_{h+k . m}\right)$, of minimum in-degree h and minimum out-degree k. Although the graphs $T\left(K_{h+k, m}\right)$ contain a cycle which spans one vertex set of the bipartition, we note that there exist infinitely many diconnected bipartite tournaments of minimum in-degree h and minimum out-degree k, whose longest cycle spans neither vertex set of the bipartition, and has length at most $2(h+k+1)$. This is most easily illustrated for the case $h=k$ by the graphs $R(k, l, m, n)$, for l, m, and n integers greater than or equal to k; where, in fact, the longest cycle has length $4 k$.

We conclude by suggesting that Kelly's conjecture remains valid for diregular bipartite tournaments.

Conjecture 6. Every diregular bipartite tournament is decomposable into Hamilton cycles.

ACKNOWLEDGMENT

I gratefully acknowledge the financial support of the Science Research Council of Great Britain.

Note added to proof: We have recently been informed of several further results on oriented graphs.
(1) M. C. Heydemann has proved the following theorems.

Theorem (Heydemann). Let R be a diconnected oriented graph on n vertices such that whenever $u v \notin A(R)$ and $v u \notin A(R)$,

$$
d(u)+d(v) \geq 2 n-2 h-1,
$$

for $1<h<n-1$. Then R contains a cycle of length at least $|(n-1) / h|+1$ and a path of length at least $|(n-1) / h|+|(n-2) / h|$.

For n and k positive integers, let r be the least non-negative residue of ($n-1$) modulo $(k-2$), and put

$$
f(n, k)=\frac{n^{2}(k-3)+2 n-k+1-r(k-2-r)}{2(k-2)} .
$$

Theorem (Heydemann). Every diconnected oriented graph on n vertices and more than $f(n, k)$ arcs contains a cycle of length at least k.
(2) J. Ayel has generalized Lemma 7 to diconnected m-partite tournaments (oriented complete m-partite graphs). Using this result she has verified Conjecture 2 for the special case of diconnected m-partite tournaments of minimum in-degree and out-degree k.
(3) Lowell W. Beineke and Charles H. C. Little have proved the following.

Theorem. Every hamiltonian bipartite tournament either contains cycles of all possible even lengths, or else is isomorphic to $R(k, k, k, k)$ for some $k \geq$ 1. Using this result, it follows that if a bipartite tournament T satisfies the hypotheses of Theorem 8 or its corollaries, then T contains cycles of many different lengths.
(4) Carsten Thomassen has generalized theorem 6 by proving that every oriented graph on n vertices with each in-degree and out-degree at least $n / 2-(n / 1000)^{1 / 2}$ is hamiltonian.
(5) Roland Häggkvist has shown that conjectures 3 and 4 are false by constructing an oriented graph on $8 t+4$ vertices, which does not contain a hamilton path, and each in-degree and out-degree is at least $3 t$.

References

[1] J. C. Bermond, A. Germa, M. C. Heydemann, and D. Sotteau, Longest paths in digraphs. Combinatorics 1979, proceedings of the Joint Canada-France Combinatorial Colloquium. Ann Discrete Math. To appear.
[2] G. A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc., 2 (1952) 69-81.
[3] B. Jackson, Paths and cycles in oriented graphs. Combinatorics 1979, proceedings of the Joint Canada-France Combinatorial Colloquium, Ann. Discrete Math. to appear.
[4] J. W. Moon, Topics in Tournaments. Holt, Rinehart and Winston, New York (1968).
[5] C. St. J. A. Nash-Williams, Valency sequences which force graphs to have hamiltonian circuits: Interim Report. University of Waterloo Research Report (1969).
[6] C. Thomassen, On the number of hamiltonian cycles in tournaments. University of Aarhus, Mathematics Institute. Preprint 23.
[7] C. Thomassen, Long cycles in digraphs. J. London Math. Soc. To appear.

