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ABSTRACT 

We obtain several sufficient conditions on the degrees of an oriented graph for 
the existence of long paths and cycles. As corollaries of our results we deduce 
that a regular tournament contains an edge-disjoint Hamilton cycle and path, 
and that a regular bipartite tournament is hamiltonian. 

An orientedgraph is a directed simple graph, that is to say, a digraph with- 
out loops, mutiple arcs, or cycles of length two. Many authors have obtained 
various degree conditions which imply that certain families of graphs, 
or digraphs, contain long paths and cycles. The corresponding literature for 
oriented graphs, however, is concerned almost entirely with tournaments, 
which are oriented complete graphs. In this paper we consider the problem 
for other families of oriented graphs. We first work with oriented graphs of 
fixed minimum in-degree, but an arbitrary number of vertices, and then 
specialise by also fixing the minimum out-degree. We next obtain some 
hamiltonian conditions by demanding that the total number of vertices be 
relatively small. Finally, we prove a result concerning the lengths of cycles in 
oriented complete bipartite graphs. We give many conjectures throughout, 
which indicate that the majority of our results are far from being best 
possible. 

All terms not explicitly defined in this paper may be found in [4]. We note, 
however, that we shall refer to spanning paths, and spanning cycles, as 
Hamilton paths, and Hamilton cycles, respectively. Let R be an oriented 
graph and S be a sugraph of R. Denote the set of vertices and arcs of S by 
V(S)  andA(S), respectively. For Y E V(R)  and B S V(R), define Nj(u)  and 
G ( v )  to be the set of vertices of B which, respectively, dominate, and are 
dominated by, the vertex Y. Put 

To simplify notation, we shall denote N&,(v), N&,(v), and NQS)(Y) by 
&(v), N&), and N&). We shall refer to I NR(u) I , 1 N ~ ( Y )  1 , and 
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1 NR(v) /  as the in-degree, the out-degree, and the degree, of v in R and 
denote them by &(v), dRf(v), and d(v) ,  respectively. The oriented graph R is 
said to be kdiregular, or more simply diregular, if &(v) = k = d,f(v ) for all 
v E V(R): and mdisconnected if, for any distinct pair of vertices u, 
v E V(R), there exist m internally disjoint paths from u to v .  If R is 1- 
diconnected, we shall say simply that R is diconnected. 

Lemma 1. Let P = v l v -  1 *vn be a longest path in an oriented graph R .  If 
d i ( v I )  2 1, then R contains a cycle of length at least d i ( v , )  -I- 2. 

Proof. Since P is a longest path in R,&(vl) C V(P).  L e t j  = max (i 1 v 1  E 
M U I N  and Put 

Then ( v l ,  v2) U N i ( v l )  C V(C). Moreover, since R is an oriented graph, 
{ v I ,  v2)  n &(vl )  = 0, and hence 

Lemma 2. Every oriented graph of minimum in-degree k ,  contains a cycle of 
length at least k + 2. 

Roo$ Immediate from Lemma 1. 
Lemma 2 is, in a sense, best possible since there exist oriented graphs of 

minimum in-degree k, which contain no cycles of length greater thank -I- 2. 
To illustrate this we shall construct, recursively, a family of graphs, (RkJkZl ,  
with the following properties. 

(1) Rk is diconnected. 
(2) Rk has a distinguished vertex v, such that Gk(uk) = k -I- 1, and 

&,(v) = k for all Y E V(R,)\ (v,). 

R 1  

FIGURE 1 
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(3) All paths having initial vertex vk, have length at most k + 1. 
The graph R 1  with distinguished vertex ul is given below. 
The graph Rk is constructed from k + 1 disjoint copies of RkPl and a new 
distinguished vertex vk by letting vk be dominated by the vertex + I ,  and 
dominate every other vertex, of each R k - l .  The fact that Rk contains no 
cycles of length greater than k f 2 follows from properties ( 1 )  and (3).  

Noting that the graphs Rk are not 2-diconnected, and indeed have many 
vertices of out-degree one, we make the following conjectures. 

Conjecture 1. Every 2-diconnected oriented graph of minimum in-degree k 
contains either a Hamilton cycle, or else a cycle of length at least 2k + 2.  

Conjecture 2. Every diconnected oriented graph of minimum in-degree and 
out-degree k,  contains a cycle of length at least 2k + 1. 

Both conjectures would be, in a sense, best possible. The following 
example shows that the hypothesis of diconnectivity is necessary in 
Conjecture 2.  Let & be the oriented graph obtained by reversing all arcs in 
Rk. Then the oriented graph consisting of one copy ofRk and one copy of R k ,  

such that each vertex of Rk dominates every vertex of i i k ,  has minimum in- 
degree and out-degree k ,  but no cycles of length greater than k + 2.  

Conjecture 2 is of some interest in connection with a result of Dirac, 12, 
Theorem 21, which implies that, if G is a graph of minimum degree 2k, then G 
contains a cycle of length at least 2k + 1. Conjecture 2 would imply that if G 
were oriented in such a way that the resulting oriented graph R ( G )  was 
diconnected and each vertex had in-degree and out-degree at least k ,  then 
R( G )  would still contain a cycle of length at least 2k + 1. 

Some support for Conjecture 2 may be deduced from the following result. 

Theorem 3. Let R be an oriented graph of minimum degree n,  such that 
whenever uu 6 A(R) ,  

dR+(u) + & ( v )  2 n - 1 

Then R contains a path of length n. 

ProoJ: Let P = u1 v2 - - * v,,, be a path of maximum length in R and suppose 
m I n. Since P is a longest path in R, N;(v C V(P),  and Ni(u,) .C V(P). 
If vmvl E A(R) ,  then 

is a path of maximum length in R ,  and hence N i ( v I )  (I V(Pl ) .  If follows that 
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and hence 

m = I V ( P ) (  2 d R ( v I )  + 1 2  n + 1. 

We may thus assume that v,v, $ A ( R )  and hence, by an hypothesis of the 
theorem 

d ; ( v l )  + dRf(v,) 2 n - 1. 

Let 

and 

j = max( i  

h = min(i 

T h e n j  L &(q) + 2, h I m - (&(v,) + l ) ,  and hence 

j - h 2 d ~ ( v , )  + dR+(v,) + 3 - m 2 n + 2 - rn 2 2. 

Suppose h = 2. The path 

P2 = v;+1v;+2* a ' V m V 2 V 3 '  * ' U ; V ,  

is again of maximum length in R. As above, it follows that 

b l )  u N - ( v , )  u m u , )  L: W 2 )  = VV),  

and hence 1 V(P)I 2 n f 1. Thus we may assume that h 2 3, and by a 
similar argument, t l ia t j  I rn - 2. 
Put 

B = ( v ; l h < i < j } ,  

D = {v ;  E BI U j - ,  E & ( v , ) } ,  

F = (v ;  E BI vi+,  E NRf(vm)}.  

I DI + I FI 2 dR(ul )  + d i ( v , )  - rn + j  - h + 1. 
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However, I D U FI I I BI = j  - h - 1. Thus, 

Choose vj f D n F. Then 

is a path containing all the vertices of P. Thus P3 is also a path of maximum 
length in R ,  and hence &(uj )C V(P3) = V(P). Similarly, 

is a path of maximum length in R and hence, 

Thus {ui) U &(ui) U NRf(vi) .C V(P),  and hence 

m = 1 V(P) I  2 d R ( v i )  + 1 = n + 1. 

This contradicts the initial assumption that m 5 n,  and completes the proof 
of the theorem. I 

Theorem 3 has the following immediate corollary. 

Corollary 3. Every oriented graph of minimum in-degree and out-degree k ,  
contains a path of length 2k. 

Corollary 3 is, in a sense, best possible because of the existence of k- 
diregular tournaments on 2k + 1 vertices. We have, however, been able to 
slightly improve the bound on the length of a longest path for the special case 
of diconnected oriented graphs. We use the following lemma. 

Lemma 4. Let R be an oriented graph of minimum indegree and outdegree 
k and let C be a longest cycle in R. If R - C contains a longest path P, 
of length at least one, then 

1 V(C) U V(P) I  2 2k + 3 .  

Proof. Let C = cIc2* * - c,cl and P = v lv2*  * *urn. Without loss of gen- 
erality we may assume that 
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Let B be the set, and b the number, of distinct pairs (ci, q )  such that ci E 
~ ~ ( v l ) ,  c j  E N:(vrn), and 

If (ci. c;) E B then, since C is a longest cycle of R,  

Putting D = (ci I ci+l E @(urn))  it follows that & ( u l )  f l  D = 0, and 

However, I &(ul)l 2 k - m + 2 and I DI = I @(urn)I 2 k - m + 2. 
Thus, if b 1 1, 

I V ( C )  U V ( P )  1 1 k - m + 2 f k - m +2 + m - 1 fm = 2k+ 3 .  

The only remaining alternative is that b = 0. Using (l),  it follows that 
I &(ul)l I 1. Hence I &(ul)I 2 k - 1, and 

By Lemma 2, 1 V(C)( 2: k -t 2, and hence 

I V ( C )  U V ( P ) )  1 2 k  + 3 .  

Theorem 5. let R be a diconnected oriented graph of minimum in-degree and 
out-degree k 2 2. Then R contains either, a Hamilton path, or else a path of 
length 2k + 2. 

Boo$ Suppose the theorem is false. Let R be an oriented graph which 
satisfies the hypotheses of the theorem, but not the conclusion. Choose a 
longest cycle C in R ,  and a longest path P in R - C. The proof splits into two 
cases, depending on the length of P. 

Case 1. P has length at least one. 

If 1 &(ul ) 1 2 1, then R clearly contains a path P I  such that 
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and, by Lemma 4, 1 V(P,)( 2 2k + 3 .  
If, on the other hand, I &(vI ) 1 = 0, then 1 &.( vl ) 1 2 k and, by Lemma 

1, R - C contains a cycle C, of length at least k + 2. Since R is diconnected, 
it contains a path P2 such that 

By Lemma 2,  C also has length at least k + 2 and hence, I V(P2)l 2 
2k + 4. 

Case 2. R - C consists entirely of isolated vertices. 

Choosing v a vertex of R - C, it follows that NR(t') .L V(C).  Moreover 
NR(t') f V(C) for otherwise R would contain a longer cycle than C. Hence 
I V(C) I 2 dR(v) + 1 2 2k + 1.  Since, however, ZI and V(C) lie on a path in 
R ,  and R contains no path of length 2k + 2, 1 V( C )  1 = 2k + 1. Again, since 
C is a longest cycle of R, we may label the vertices of C such that 

By considering the longest cycle C2 = vcIc2 * * - c2kv of R, and the vertex co of 
R - C2, it follows that 

Put B = $(co)\ (ck} and D = &(co) \ {ck+,}.  
Clearly, some vertex ci of B satisfies 

If c,. dominates a vertex v' of R - C then 

is a path of length 2k + 2 in R .  Moreover, if ci dominates a vertex cj ofD then 
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is a longer cycle than C. It follows that 

Hence d i ( c i )  I i ( k  - 2 )  + 2 .  Sinced,f(ci) 2 k 2 2 ,  we may deduce that, 
k = 2 ,  C = coc1c2c3c4co, G ( v 0 )  = Nj$(co) = (cl, cz}, and & ( v )  = 
&(c0) = ( c 3 ,  c4}. In addition, we must have equality in ( 2 ) .  Hence 
X(c,) = ( c 2 ,  c 3 } ,  and, by a similar argument to the above, G ( c 4 )  = 

k 2 ,  c3J. 
In this final case, the cycle 

contradicts the choice of C and completes the proof of the theorem. We feel 
that Theorem 5 is far from being best possible. 

Conjecture 3. Every diconnected oriented graph of minimum in-degree and 
out-degree k contains either, a Hamilton path, or else a path of length at least 
3k. 

Consider the oriented graph R ( b l ,  b,; * * .  b,,) defined as follows. The 
vertices of R(b, , b2, - * - , b,,) may be partitioned into n independent sets BI , 
B2, * - - , B,, such that I Bj I = bi and each vertex of Bj dominates every 
vertex O ~ B , + ~  for all i, 1 I i I n,  where subscripts are to be read modulo n. 
The graphs R(k,  k ,  h) ,  for h an integer greater than k ,  illustrate that 
Conjecture 3 is, in a sense, best possible. Moreover, the graph R( 1, 1, h )  
shows that the conclusion of Theorem 5 is false when k = 1. 

Bermond, Germa, Heydemann, and Sotteau [ 13 have obtained a result, 
similar to Theorem 5 ,  for the more general family of digraphs, by showing 
that every diconnected digraph of minimum in-degree and outdegree k con- 
tains either, a Hamilton path, or else a path of length 2k. Theorem 4 is also of 
interest in connection with a conjecture of P. Kelly [4, p. 7, Problem 91, that 
every diregular tournament is decomposable into Hamilton cycles. Given a 
k-diregular tournament T, on 2k + 1 vertices, it follows from a result of 
Thomassen 16, Theorem 41 that T contains ck Hamilton cycles for some 
constant c > 1. For any Hamilton cycle HI of T, T - E ( H l )  is a ( k  - 1)- 
diregular diconnected oriented graph on 2k + 1 vertices, and hence, by 
Theorem 4, contains a Hamilton path w. We may thus deduce that T 
contains ck Hamilton pairs (HI, Hf), where HI is a Hamilton cycle and a 
Hamilton path. We had hoped to deduce that T contains ck Hamilton pairs 
(HI, H2),  where HI and H2 are both Hamilton cycles of T, by showing that 
every ( k  - 1)-diregular oriented graph on 2k + 1 vertices is hamiltonian. Our 
only success to date, however, is the following result. 
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Theorem 6.  Every oriented graph of minimum in-degree and out-degree k 2 
2, on at most 2k i- 2 vertices, is hamiltonian. 

ProoJ Suppose the theorem is false. Let R be a nonhamiltonian graph 
which satisfies the hypotheses of the theorem, and choose a longest cycle C 
in R.  Using Lemma 4, it follows that R - C contains an isolated vertex u.  By 
a similar argument to that used in the proof of Theorem 5, case 2, we may 
deduce that R contains a cycle whose vertex set is V(C) U ( u ) .  This 
contradicts the choice of C and completes the proof of the theorem. 

The following conjecture of Thomassen [ 71 suggest that Theorem 6 is far 
from being best possible. 

Conjecture 4 (Thomassen). Every oriented graph of minimum in-degree 
and out-degree k .  on at most 3k vertices, is hamiltonian. 

The graph R(k,  k ,  k + 1 )  illustrates that Conjecture 4 would be, in a sense, 
best possible. The graph R(1, 1, 2) also shows that the conclusion of 
Theorem 6 is false when k = 1. The reason that the graphs R(k ,  k ,  k 4- 1) are 
nonhamiltonian is essentially that they are not diregular. For the special case 
of diregular oriented graphs, perhaps even the following is true. 

Conjecture 5 .  For k # 2, every k-diregular oriented graph on at most 
4k 4- 1 vertices is hamiltonian. 

Examples of nonhamiltonian, 2-diregular oriented graphs on seven and 
eight vertices are given in [3]. It follows from a result of Nash-Williams [5, 
Theorem 31 that, if G is a 2k-regular graph on at most 4k 4- 1 vertices, then G 
is hamiltonian. Conjecture 5 would imply that if G were given a k-diregular 
orientation, then it would remain hamiltonian for k # 2. We note that 
Conjectures 4 and 5 would also imply that a k-diregular tournament 
contained, respectively [:(k f 2)], and [ t k ] ,  edge-disjoint Hamilton cycles. 

Following 141, we define an oriented complete bipartite graph to be a 
bipartite tournament. Using the following lemma, we obtain a bound on the 
length of a longest cycle in a bipartite tournament. 

Lemma 7. If C is a longest cycle in a diconnected bipartite tournament T, 
then T - C is acyclic. 

Boo$ Let V(T)  = X U Y be the bipartition of T and 

c = X l y l X f l ’  -x,y,x,, 

where xi E X and.vj E Y for all i, 1 I i I n. Suppose T - C contains a cycle 
C‘. Choose x E V(C’) n X , y  E V(C’) n Y and, without loss of generality, 
assume that x ,  dominates y .  Since C’ contains a yx-path, and C is a longest 
cycle of T, x does not dominatey, . Henceyl dominates x. Similarly, since C‘ 
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contains an xy-path, y does not dominate x2, and hence x2 dominates v .  By 
repeating the above argument, we may deduce that 

(i) each vertex of V(C) n X dominates every vertex of V(C’) n Y and 
(ii) each vertex of V(C)  n Y dominates every vertex of V(C’) n X. 

Since T is dicdnnected, however, T contains a path which passes from 
V(C)  to V(C), and is internally disjoint from V(C) U V(C‘). using (i) and 
(ii), it easily follows that T contains a longer cycle than C, which contradicts 
the hypothesis of the lemma, that C is a longest cycle in T. Thus the 
assumption that T - C contains a cycle is false. 

Theorem 8. Let T be a diconnected bipartite tournament such that whenever 
u and u are vertices of T and uu 6 A(T),  

Then T contains a cycle of length at least 2n. 

ProoJ Let V(T) = X U Y be the bipartition of T and choose x and x’ 
vertices of X. Since neither xx’ nor x’x are arcs of T, it follows that 

Hence I YI 2 n ,  and similarly I XI 2 n. 
Let C = x,y,xf12 * * .x,y,xl be a longest cycle of T, and P be a longest 

path of T - C. If P consists of a single vertex y ,  then N d y )  c V(C). Since, 
however, N,(y) is equal to either X or Y, it follows that C has length at least 
2n. Hence we may suppose that P is a uv-path for distinct vertices u and u of 
T. Since, by Lemma 7, T - C is acyclic, it follows that N-,(u) fl V(P) = 0 
and G ( u )  n V(P) = 0. In particular, uu @ A(7‘) and hence 

Without loss of generality assume that u E X. 

If v E Y, put B = Cyi 1 x , + ~  E @(u)). 

In both cases, since C is a longest cycle of T, 

Moreover, G ( u )  U B c V(C) n Y. 
Hence, 



LONG PATHS AND CYCLES IN ORIENTED GRAPHS 155 

Corollary 8.1. Every diconnected bipartite tournament of minimum in- 
degree h and minimum out-degree k contains a cycle of length at least 
2(h + k). 

ProoJ Immediate. 

Corollary 8.2. Every diregular bipartite tournament is hamiltonian. 

ProoJ Follows immediately from Corollary 8.1, since a k-diregular 
bipartite tournament has exactly 4k vertices. 

Corollary 8.1 is, in a sense, best possible since, form large, we may orient 
the complete bipartite graph Kh+k.m to form a diconnected bipartite tourna- 
ment. T(Kh+k,m)r of minimum in-degree h and minimum out-degree k. 
Although the graphs T(Kh+k,,) contain a cycle which spans one vertex set of 
the bipartition, we note that there exist infinitely many diconnected bipartite 
tournaments of minimum in-degree h and minimum out-degree k,  whose 
longest cycle spans neither vertex set of the bipartition, and has length at 
most 2(h + k + 1). This,is most easily illustrated for the case h = k by the 
graphs R(k,  I, m, n , ) ,  for I ,  m, and n integers greater than or equal to k; 
where, in fact, the longest cycle has length 4k. 

We conclude by suggesting that Kelly’s conjecture remains valid for 
diregular bipartite tournaments. 

Conjecture 6. Every diregular bipartite tournament is decomposable into 
Hamilton cycles. 
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Note added to proof: We have recently been informed of several further 

(1) M. C. Heydemann has proved the following theorems. 
results on oriented graphs. 

Theorem (Heydemann). Let R be a diconnected oriented graph on n 
vertices such that whenever uu 4 A ( R )  and vu $! A ( R ) ,  

d ( u )  + d(u )  2 2n - 2h - 1, 

for 1 < h < n - 1. Then R contains a cycle of length at least I ( n  - l) /h 1 + 1 
and a path of length at least 1 ( n  - l ) /h l  + I ( n  - 2)/hl . 
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For n and k positive integers, let r be the least non-negative residue of 
( n  - 1 )  modulo (k - 2) ,  and put 

n2(k  - 3 )  + 2n - k + 1 - r (k  - 2 - r )  
2(k - 2 )  

An, k )  = 

Theorem (Heydemann). Every diconnected oriented graph on n vertices 
and more thanfln, k )  arcs contains a cycle of length at least k .  

(2) J. Aye1 has generalized Lemma 7 to diconnected m-partite tourna- 
ments (oriented complete m-partite graphs). Using this result she has verified 
Conjecture 2 for the special case of diconnected m-partite tournaments of 
minimum in-degree and out-degree k .  

(3) Lowell W. Beineke and Charles H. C. Little have proved the following. 

Theorem. Every hamiltonian bipartite tournament either contains cycles of 
all possible even lengths, or else is isomorphic to R(k,  k ,  k ,  k )  for some k 1 
1. Using this result, it follows that if a bipartite tournament T satisfies the 

hypotheses of Theorem 8 or its corollaries, then T contains cycles of many 
different lengths. 

(4) Carsten Thomassen has generalized theorem 6 by proving that every 
oriented graph on n vertices with each indegree and out-degree at least 
n/2 - (n/1000)”* is hamiltonian. 

( 5 )  Roland Haggkvist has shown that conjectures 3 and 4 are false by 
constructing an oriented graph on 8t + 4 vertices, which does not contain a 
hamilton path, and each in-degree and outdegree is at least 3t. 
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