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For the precise analysis and design of LPFG’s, a new method of generalized NxN coupled-mode
theory by section-wise discretization was proposed. This is applicable to the analysis for arbitrary
grating structures, which can readily take grating nonuniformities and multimode couplings into
account. Utilizing the method, several analyses of LPFG’s were presented, and relationships between
the grating structures and their spectral responses were discussed.

L INTRODUCTION

Fiber gratings have numerous and important appli-
cations in optical fiber sensors and communication sys-
tems and have received considerable attention in re-
cent years. Fiber Bragg gratings (FBG’s, short-period
fiber gratings) currently play important roles in opti-
cal fiber systems. As a new feature of fiber grating, a
long-period fiber grating (LPFG) was introduced as a
band-rejection filter 1], which is also applicable to a
fiber sensor [2,3] and an amplified spontaneous emis-
sion (ASE) filter or a gain-flattening filter for erbium
doped fiber amplifiers (EDFA’s) [1,4].

Comparing with FBG’s, LPFG’s have different prop-
erties. As for fabrication [1,5], LPFG’s are fabricated,
as is depicted in Fig. 1, by ultra-violet (UV) radi-
ation through an amplitude mask, while FBG’s are
fabricated through a phase mask. As for mode cou-
pling [1,6,7], a propagating core mode is coupled to
leaky cladding modes in LPFG’s, while to a backward-
propagating core mode in FBG’s (even though the cou-
pling to cladding modes is possible, the coupling to a
backward core mode is dominant unless the grating is
tilted). LPFG’s are more sensitive to fiber and grating
structure than FBG’s, because cladding modes, which
are expected to be coupled with a fundamental core
mode, are more dependent on fiber and grating struc-
ture, and more sensitive to external perturbations than
the core mode.

The propagation constant differences are shown in
Fig. 2 for the core and cladding modes in the unit
of length, which is helpful in determining the grating
period which is required for resonant coupling. An
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FIG. 1. An LPFG fabrication by UV radiation through
an amplitude mask.

LPFG with a grating period A is taken as an exam-
ple, which is indicated by an arrowhead line in Fig.
2. For the LPFG, although the exactly phase-matched
wavelength, at which a fundamental core mode can res-
onantly be coupled to a cladding mode is at A as shown
in Fig. 2(a), the neighboring region, which is denoted
by dashed-line ellipses, can be involved in the coupling
process due to small phase mismatches. Thus, several-
mode couplings can exist due to the narrow mode spac-
ing. That is, the neighborhoods of a resonant mode
can be assistants or disturbers for the coupling pro-
cess. In Fig. 2(a), the vertical dashed-line ellipse de-
notes the possibility of multimode coupling for a given
wavelength, and the horizontal dashed line ellipse de-
notes the spectral rejection band of the LPFG. As the
tangent of the mode-difference line grows, the spec-
tral rejection band becomes narrow in a given length
of the LPFG. If mode spacing is sufficiently narrow or
the tangent of mode-difference line is sufficiently large
at the region of interests, a multiple resonant coupling
occurs as depicted with small circles in Fig. 2(b). This
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FIG. 2. Propagation-constant differences. (a) For a sin-
gle-mode fiber (SMF) with core refractive index n.,, =
1.4514, cladding refractive index n, = 1.4469, core radius
rco = 4 pm, and cladding radius r,; = 62.5 ym (SMF 1).
(b) For a SMF with n., = 1.460, nyg = 1.437, reo = 1.3
pm, e = 62.5 pm (SMF 2). 8., and ﬂg') denote the prop-
agation constants of the core mode and the nth cladding
mode, respectively. The numbers in the parentheses de-
note the cladding mode designation number. A denotes
the LPFG period.

might be desirable or to be avoided according to pur-
poses of applications. In addition, the grating index
pattern is not exactly sinusoidal shape due to the fact
that LPFG’s are fabricated by means of openings of
an amplitude mask, as mentioned previously. That
is, the wide opening, say hundreds of micrometers,
permits the grating structure to have a saturation re-
gion of index modulation [7]. Hence, the higher-order
terms of Fourier components for the index modulation
can nontrivially be involved in mode coupling, since
many cladding modes exist readily for them. There-
fore, a single-harmonic representation for an LPFG
in the coupled-mode equation might not be sufficient
for all cases. Furthermore, highly complicated struc-
tures of gratings including, for example, phase-shifted,
chirped, and superimposed gratings, are required for
desirable filter properties. Therefore, the precise anal-
ysis of LPFG is truly required so that the multimode
couplings can be analyzed in arbitrary grating struc-
tures.

Here a new analysis method of generalized NxN
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coupled-mode theory by section-wise discretization is
proposed, which can resolve precise grating structure
with a high accuracy and readily consider multimode
couplings [8].

II. GENERALIZED N x N COUPLED-MODE
THEORY BY SECTION-WISE
DISCRETIZATION

The coupled-mode equation induced from Lorentz
reciprocity [9] is given by (see APPNEDIX A)

V- (E'xH; +E; xH') = ~iwE; - AeE', p=1,2,...
(1)

where the terms subscripted by p denote the pth eigen-
mode including either core or cladding mode, and the
terms superscripted by a prime denote the perturbed
mode which is represented by a sum of eigenmodes
multiplied by variation constants. Ae and * represent
the permittivity perturbation and the complex conju-
gate, respectively. The permittivity perturbation, i.e.,
the imposed index modulation can vary both trans-
versely and longitudinally. Relative to the variation
of index modulation along the fiber axis (z direction),
it can be represented as depicted in Fig. 3(a). When
the permittivity perturbation is an arbitrary function
of z position, it would be cumbersome to solve the
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FIG. 3. (a) Index modulation in fiber core and (b) its
discretization. A denotes the grating period. Note that
the asymmetric shape of the index modulation illustrates a
possibility for an arbitrary grating shape.
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coupled equation analytically. However, if the permit-
tivity perturbation Ae is regarded as constant in each
finite section relative to the z direction, as is depicted
in Fig. 3(b), the coupled equation is represented by an
ordinary linear differential equation within the spec-
ified section. This can be solved easily, regardless of
mode numbers and complexity of the grating structure.
In this respect, we call the discretizing of the permit-
tivity variation and solving (1) with multiple modes
as ”generalized NxN coupled-mode theory by section-
wise discretization”. It is noteworthy that the depen-
dence on transverse coordinates in Ae can be estimated
to an average value by applying overlap integration in
the plane transverse to the z direction. By cascading
the solution in each finite section, the entire analysis
of fiber gratings can be accomplished with proper re-
lations at section boundaries. If the fiber grating has a
uniform periodicity, it is sufficient to calculate just for
one period of the refractive index change. In general,
even in the grating structure having no periodicity, the
method can readily be applied in the analysis. In ad-
dition, there is no need for representing the grating
structure with a Fourier series or a Fourier integral,
since the proposed method represents it realistically
by appropriate discretizations of the optical quanti-
ties. Hence, the grating representation problem in the
case of finite-length gratings is excluded. Proper dis-
cretization with a consideration of the degree of index
variation can give sufficiently accurate results. The
entire calculations are performed by matrix algebra as
follows.

Let us suppose that the pth eigenmode, which can
be either core or cladding mode, is given by

E, = ep(r, ¢) exp(—ifp2) (2)

where e,(r, ¢) is the electric field vector which is nor-
malized to a power flow of 1 W in the z direction, r and
¢ denote the polar coordinates in the plane transverse
to the z direction, and B, denotes the propagation con-
stant in the z direction. The perturbed electric field is
supposed to be

E'(m) = an(z;m)ep(r, @) exp(—ifBq2) (3)

where the argument m denotes the mth discretized sec-
tion relative to the z direction. Substituting (3) into
(1), along with the discretized quantity of Ae(m), the
coupled equation of (1) is changed to (see APPENDIX
B)

dA(z;m)

K =_*B+%Mm®uM%m

=D(m) - A(z;m), 4)
where A is a column vector whose elements are

Ap( =1,2,..), and B and M are matrices, whose
(p, q) elements are By, q) and M(, o) , respectively:

A(p)(Z; m) = ap(z;m) exp(—iﬂ,,Z) (5.2)
_[ B p=4g

Bua={ o P2 (5.0)

My = /e;'J - €(m)e,dS (5.c)

where dS denotes surface integral element in the plane
transverse to the z direction.

It is noteworthy that there is no z variation in D(m),
because the permittivity variation along the 2 direction
has readily been discretized with Ae(m) in the mth
section. Hence, (4) can be solved to a transfer relation
form by means of finding eigenvalues and correspon-
dent eigenvectors of the matrix D(m) as follows:

A(zg;m) = V(m) - exp[U(m) - (25 — 2)]
V(m)™! - A(zi;m) = T(m) - A(z;;m) (6)

where z; and z; denote the left-end and the right-end
positions of the mth section, respectively, and U(m)
and V(m) denote the diagonal eigenvalue matrix of
D(m) and the corresponding eigenvector matrix, re-
spectively. Since A(z;;m + 1) equals to A(zy;m) for
the given notation, the overall transfer relation through
the entire cascading sections can be constructed as fol-
lows:

ATight _ ---T(m + 1) -T(m) -T(m - 1) . 'T(l) . Alcft.
(M

Therefore, the overall spectral response of the fiber
grating can be obtained by cascading the transfer rela-
tions for discretized sections with initial incident condi-
tions. In other words, this method can be stated as an
extended concept of the transfer matrix method [6,10],
which has widely been being used in analyzing nonuni-
form gratings. While the transfer matrix method re-
gards a nonuniform grating as a series of slightly dif-
ferent but uniform gratings, the proposed method rep-
resents it realistically by discretizing its precise struc-
ture regardless of uniformity. Thus, it can resolve the
nonuniformity into an amount less than one grating
period. When using this method, it is not required to
consider which mode is coupled and to select dominant-
coupling constant, and multimode couplings can easily
be resolved. That is, the mode selection rule [6,7] is no
longer required. Only the proper discretization of op-
tical quantities is required in representing the grating
structure.

1II. NUMERICAL RESULTS

In the calculations, it is assumed that the fiber is a
common single-mode fiber. Thus, the eigenmodes for
core and cladding mode are chosen as HE,; core mode
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and the cladding modes that have the same ¢ variation
with that of the core mode, respectively, since the over-
lap integral matrix M has non-zero values for the same
¢ variation unless the gratings are tilted [€] (note that
other cladding modes can be included if Ae(m) has ¢
variation, for example, in cases of tilted fiber gratings).
The mathematical expressions of fiber modes are rep-
resented by the Bessel functions of the first and second
kind, and the modified Bessel functions of the second
kind according to region [7,11]. The modes are de-
termined by solving characteristic equations from the
continuity relations for tangential E- and H-field at the
boundaries. The dimensions of the characteristic ma-
trix equations are 4 x 4 for core mode, and 8 x 8 for
cladding mode, respectively.

Fig. 2, previously shown, represents the eigen-
modes determined by the characteristic equations for
the given fibers surrounded by air. Fig. 4 shows the
several overlap-integral values of E-fields (within core
region) between the core and cladding mode (excluding
Ae(m) multiplication). It can be seen that the inte-
gral values depend on the mode orders, which have the
role of coupling efficiency, as well as the index mod-
ulation depth does. In order to achieve the efficient
coupling, it is desirable to determine the grating pe-
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FIG. 4. Overlap integral values of E-fields in the core
region between the core and cladding mode for (a) SMF
1, (b) SMF 2. The numbers in the parentheses denote the
designation number of cladding mode.

riod such that the overlap-integral value is sufficiently
large on resonant coupling condition. The tangent of
the mode-difference line is also required to be precisely
considered for the spectral rejection band determina-
tion, which is also dependent on wavelength, grating
length, and mode effective index [1,6].

When discretizing the optical quantities through the
grating, it is assumed that the saturated index region is
a half of an amplitude-mask opening, and each falling
and rising index region is a quarter of it. The profile
of refractive index change is modeled by a six-order
super-Gaussian function and discretized with 26 dis-
crete sections per period unless stated otherwise.

Fig. 5 shows calculated results using the proposed
method with twenty-one modes, i.e., with one core
mode and twenty cladding modes (hereafter, the mode
set is assumed to be composed of twenty-one eigen-
modes). In principle, this is an extensive consideration
of multimode couplings. In practice, not necessarily
all, but several of cladding modes, which are nearest-
neighboring modes along the resonant coupling condi-
tion, are required for the appropriate calculation {6].
It can be seen that the rejection band moves to longer
wavelengths as the index modulation depth grows [1],
which is due to the fact that the mode-difference lines,
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FIG. 5. Spectral responses of transmission through
LPFG’s for various index modulation depths (a) on SMF
1, A = 660 pm, 1 inch-long, (b) on SMF 2, A = 300 um,
and 1 inch-long. Note that the graphs are inverted for an
ease of visualization, i.e., the transmission becomes smaller
along the vertical axes of the graphs.
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as depicted in Fig. 2, are effectively contracted down-
ward as the index modulation depth increases, i.e., the
effective indices increase. Comparing Figs. 5(a) and
5(b), several differences can be seen. In the case of Fig.
5(b), the amount of band rejection is smaller than that
of the case of Fig. 5(a). This is due to the difference in
the overlap-integral value between the coupling modes.
Even though they are dependent on the mode order as
mentioned previously, they are also dependent on the
core size if other conditions are fixed. That is, as the
core size increases, the fraction of interaction region
for the core and cladding modes is increased relatively.
In the case of Fig. 5(b), the amount of band shift is
smaller than that in the case of Fig. 5(a). This is
due to the fact that the effective index increment in
the case of Fig. 5(b) is smaller than that in the case
of Fig. 5(a) with the same index modulation depth
increment. Note that the effective index increment is
proportional to the product of index modulation and
overlap integral value. Thus, contraction of the mode-
difference line for the case of Fig. 5(b) is relatively in-
sensitive to the increment of index modulation depth,
because the overlap integral values are relatively small
comparing with the case of Fig. 5(a). For auto-overlap
integral, the value for the case of Fig. 5(b) is smaller
than that for the case of Fig. 5(a), because of smaller
V-parameter value [11]. When the V-parameter value
is relatively large, the core mode is well confined in the
core region, hence permitting large auto- and cross-
overlap integrals, which are relative to the amounts of
rejection-band shift and depth, respectively. In addi-
tion, it can be seen in Fig. 5(b) that there exist two
rejection bands in the given spectral region. In Fig.
2(b), it can be seen that there are multiple resonant
coupling points. However, only two resonant couplings
are dominant, since others have relatively smaller over-
lap integral values, which, in fact, are EH-like modes.

Fig. 6 shows the band-rejection properties for var-
ious duty ratios (high-index region versus low-index
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FIG. 6. Spectral responses of transmission through
LPFG’s on SMF 1 for various duty ratios of the opening
and the closing in an amplitude mask: Anmaz =5 x 1074,
A = 660um, and 1 inch-long.
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FIG. 7. Spectral responses of transmission through
LPFG’s on SMF 1 for various phase shifts at the center
position of each LPFG: Anpaz = 5 x 1074, A = 660 um,
and 1 inch-long.

region) of the opening and the closing in an amplitude
mask with a fixed period. It can be seen that the re-
jection band moves to longer wavelengths as the duty
ratio increases. This is due to the fact that the effective
indices are increased as the duty ratio increases, which
is similar to the case of index modulation increment,
as in Fig. 5. However, the shape of the rejection band
becomes distorted as the duty ratio deviates from the
ratio (5 : 5). As the duty ratio deviates from the sym-
metry, higher-order components of spatial Fourier har-
monics becomes nontrivial, thereby permitting their
contribution to the spectral response.

Fig. 7 shows the band-rejection properties accord-
ing to the grating phase shift at the center position
of a uniform LPFG. As the phase shift increases, the
rejection-band lobe in the longer wavelength region be-
comes large, and the overall band moves simultane-
ously to shorter wavelengths. At phase shift of 7, the
rejection band becomes split to the center of the non-
phase-shifted one, which is like a band-pass filter [12].

This phenomenon can be interpreted as follows.
Since the phase shift is placed at the center position of
the LPFG, the LPFG can be regarded as a composition
of three parts; two identical uniform periodic gratings
in both sides and a small one, which gives the phase
shift, at center (see Fig. 8). Thus, the phase-shift
part at center can be regarded as a perturbation in a
uniform LPFG, since the uniform ones in both sides
are identical. If the phase-shift position is not at cen-
ter, the length ratio of uniform gratings in both sides
must be considered as a perturbation factor. Math-
ematically, this is due to the multiplication order of
transfer matrices. That is, the transfer matrix for the
phase-shift part (see (7)) does not commute with that
of the uniform grating; thus, the imbedding position
can also be a primary factor. Hereafter, let us primar-
ily discuss the case that the phase-shift part is located
at center. The grating length of the phase-shift part,
which is a perturbation to the uniform grating with
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FIG. 8. Interpretation of phase-shift part and Fourier
transform of the overall index profile (a) for the phase shift
less than 7 and (b) for the phase shift #. L, and L; de-
note the lengths of the phase-shift grating when it is re-
garded as a shorter grating and as a longer one, respec-
tively. (c) Fourier transform of the overall index profile in
phase-shifted LPFG by means of FFT.

violation of the grating sequence, can be treated as
in two ways; a shorter or a longer grating, as shown
in Fig. 8. Therefore, the overall effective (averaged)
period of gratings can be interpreted as reduced or en-
larged, respectively. Up to phase shift m, its playing
as a shorter one is dominant rather than as a longer
one, since the phase-mismatch amount of the former
case is smaller than that of the latter case. However,
its playing as a longer one becomes larger as the phase
shift increases, which results in the increment of the
rejection-band lobe in the longer wavelength region.
By the way, both the shorter and the longer one lose
their lengths as phase shift increases, and, hence, each

rejection band moves to shorter wavelengths. If the
phase shift becomes 7, the phase-shift part in the ab-
sence of a half period can be interpreted as either a
half-period or a one-and-half-period grating, since it is
attached to the former grating sequence enlarging the
tail, as depicted in Fig. 8(b). Then, the alternative
effects are balanced; thus, the rejection band becomes
split symmetrically to the center of a rejection band in
the case of a non-phase-shifted grating, except the pre-
cise rejection amount that is dependent on the overlap
integral value according to wavelengths. After phase
shift 7, the effect of a longer one exceeds that of a
shorter one; thus, the rejection-band lobe in the longer
wavelength region increases furthermore and moves si-
multaneously to shorter wavelengths, and finally, it re-
turns back to the non-phase-shifted case at phase shift
27.

Alternatively, this concept can be verified by
Fourier-transform analysis. Fig. 8(c) shows the
Fourier transform of the overall phase-shifted grating,
which has been calculated by the fast Fourier trans-
form method (FFT) with the discretized profile of the
index modulation. In Fig. 8(c), peaks at spatial fre-
quencies zero and 1/A denote dc and first-order com-
ponents of the FFT result, respectively. The first-order
peak at 1/A represents the effective period. Second-,
third-, and higher-order peaks follow after; however,
they are omitted for ease of visualization. It can be
seen that the peak at 1/A becomes split into two com-
peting parts as the phase shift increases. That is, the
effective grating period becomes shorter or longer, as
has been mentioned. Each peak produces a rejection-
band lobe according to its amplitude. In addition, it
can be seen that the peak becomes split symmetrically
at phase shift 7. The envelopes follow the trend as was
discussed previously.

The realization of EDFA gain-flattening filter with
LPFG requires a precise design technique. The fil-

Transmission [dB] (inverted)
(=}

1525

1550
Wa 1575
Velengy, [ 1600

FIG. 9. Spectral responses of transmission through a su-
perimposed LPFG with Anmez = 5 x 10™*. The superim-
posed grating periods are 645 pm, 655 pm, and 660 um,
corresponding ratio of index modulation depthsis (5.0 : 3.5
: 4.5), and the grating is 2-inch long,.
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FIG. 10. Index modulation profile of the superimposed LPFG.

in a complex index profile in right one.

ter can be implemented with nonuniform gratings such
as chirped, phase-shifted, superimposed, and cascade
types, according to specific filtering properties. For ex-
ample, the spectral response of a superimposed grat-
ing has been analyzed in Fig. 9(a) using the proposed
method with a resolution of 1-mm-long discrete sec-
tion. This can be realized by multiple exposure of UV
radiation with several different-period masks or by a
single integrated mask. It is assumed that the grating
is superimposed by three different period gratings, the
index modulation of which are depicted in Fig. 9(b).
It can be seen that the superposition of three grat-
ings, whose grating periods are 645 pym, 655 pm, and
660 pm, respectively, produces a wide rejection band
around wavelength 1560 nm on the right side of the
normal rejection band at wavelength 1535 nm.

The analysis of nonuniform gratings like this ex-
ample can be complicated by conventional coupled-
" mode theory. The proposed method can resolve them
by means of section-wise discretization of the com-
plex optical quantities, regardless of their complexi-
ties. Therefore, the proposed method can be useful as
an analysis method for the precise LPFG design in the
cases of nonuniform gratings and multimode-coupling
regimes. In contrast to the easy treatment of highly
nonuniform gratings, the calculation time, however,
becomes slower when the length of a discretization sec-
tion is shortened, and the number of modes which are
involved in the calculation increases.

IV. CONCLUSION

For precise analysis of LPFG’s, the generalized N x
N coupled-mode theory by section-wise discretization
has been proposed. The validity and versatility of this
method have been verified by several numerical exam-
ples. It can be seen that the spectral response of an
LPFG is more dependent on fiber and grating param-
eters than for an FBG. Understanding the nature of
LPFG’s with the proposed method can be a guide to

TN
S4
=
£3
% pp RS -y
B2
E
g
E1

LU

Z—r

Superposition of each index modulation in left graph results

an LPFG design. In addition, the proposed method is
applicable to the analysis of FBG’s, distributed Bragg
reflector (DBR) lasers, distributed feed back (DFB)
lasers, and other grating devices, as well as to that of
LPFG’s.
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APPENDIX A

For complex-valued amplitudes, Lorentz reciprocity theorem is represented by [9]
V- (Eq xHy +Ep* xH,) =0, p,g=1,2,... (A1)

where p and ¢ denote the eigenmode designation numbers. The eigenmode denotes the orthogonal mode which
can exist in a lossless medium represented by permittivity ¢ and permeability u. Let us suppose that a certain
perturbation exists in the permittivity e; thus, the permittivity is changed to €’ , which can be represented by the
sum of an unperturbed term € and a perturbed term Ag, i.e., € = € + Ae (assuming no change in permeability ).

Then, let us assume that the perturbed fields in the medlum of ¢ are represented by E' and H'. Substituting E,

and H, with E' and H' in the left-hand side (LHS) of (A1) leads to

LHS=V .- (E'xH; +E; x H'). (A2)
After manipulating (A2), it follows that
LHS = —iw(E;-D' - E'-D; + H; - B' - H' - B}) (A3)

where exp(iwt) excitation is assumed, and D and B denote the corresponding displacement vector and magnetic
flux density, respectively. Applying the constitutive relations, i.e., D, = €E,, D' = €E’' = (¢ + Ae)E', B, = uH,,
and B’ = pyH' , to (A3), it follows that

V. (E'x H3 + E} x H') = —iwE} - AcE'. (Ad4)

If Ae is zero, E' and H' become the eigenmode fields for the unperturbed medium ¢ , and, hence, the right-hand
side of (A4) becomes zero. As expected, (A4) becomes (A1) if Ae = 0. Therefore, the derivation of coupled-mode
equation is completed.

APPENDIX B

Assuming slowly varying amplitudes with the variation constant method [9], the perturbed fields E' and H' can
be represented, without losing generality, as follows:

(i) = Setesm (i) ) = Sontsm) (9o ) ®

where E; and H; denote the fields for the gth eigenmode, whose electric field vector e,(r, ) and magnetic field
vector hy(r, ¢) are normalized to a power flow of 1 W in the 2z direction, and m denotes the mth discretized section.
Substituting (B1) into (1) with the discretized permittivity perturbation Ae(m) yields

dag

Zaq(z m)V - (Eq x Hj + Ep” xHq)+Z—il"—)(E x Hy + Ep* x Hy) - 2 (B2)

= —szaq(z;m)E; -Ae(m)E,, p=1,2, ...
g

where 2 denotes a unit vector along the z direction. It can be seen that the first summation in the left-hand side of
(B2) vanishes by means of Lorentz reciprocity theorem of (A1). Applying surface integration on both sides of (B2)
in the plane transverse to the z direction, it follows that

BT erp(—ify) = -.—zw m) exp(=iy2) [ e} Ac(m)eqdS, p=1,32. (83)

where dS denotes the surface integral element in the plane transverse to the z direction, and the power normalization
1], i.e,
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has readily been utilized. Therefore, (B3), along with (5), leads to

dA(z;m)
dz -

—i (B + %M(m)) - A(z;m) = D(m) - A(z; m).
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