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Abstract. Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth.
Their long profiles hold clues to their present state and past evolution. We currently possess first-principles-based
governing equations for flow, sediment transport, and channel morphodynamics in these systems, which we lack
for detachment-limited bedrock rivers. Here we formally couple these equations for transport-limited gravel-bed
river long-profile evolution. The result is a new predictive relationship whose functional form and parameters are
grounded in theory and defined through experimental data. From this, we produce a power-law analytical solution
and a finite-difference numerical solution to long-profile evolution. Steady-state channel concavity and steepness
are diagnostic of external drivers: concavity decreases with increasing uplift rate, and steepness increases with
an increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of
river form: to match observed channel concavities, gravel-sized sediments must weather and fine – typically
rapidly – and valleys typically should widen gradually. To match the empirical square-root width–discharge
scaling in equilibrium-width gravel-bed rivers, downstream fining must occur. The ability to assign a cause to
such observations is the direct result of a deductive approach to developing equations for landscape evolution.

1 Introduction

Mountain and upland streams worldwide move clasts of
gravel (> 2 mm). Therefore, they consistently reshape their
beds and – unless they are fully bedrock-confined – their
bars and banks as well (Parker, 1978; Brasington et al., 2000,
2003; Church, 2006; Eke et al., 2014; Phillips and Jerolmack,
2016; Pfeiffer et al., 2017). Such rivers build and maintain
topographic relief by carrying gravel out of the mountains.
They can also transport sediment across moderate-relief con-
tinental surfaces and into sedimentary basins.

Geomorphologists commonly separate rivers into two
broad categories based on the factor that limits their ability to
change their long profile: detachment-limited and transport-
limited (Whipple and Tucker, 2002). Detachment-limited
rivers incise at a rate that is set by the mechanics of river
incision into bedrock. Transport-limited rivers can incise or

aggrade at a rate that is set by the divergence of sediment
discharge through a river or valley cross section.

Here we present a new derivation for transport-limited
gravel-bed river long-profile evolution that is based on re-
lationships derived from theory, field work, and experimen-
tation. We argue that developing this deductive approach –
considering specific process relationships – is essential to ad-
vancing fluvial geomorphology and landscape evolution.

Much past work has focused on an inductive “stream-
power” based formulation for detachment-limited river
incision, in which the erosion rate is proportional to
the drainage area (as a proxy for geomorphically effec-
tive discharge) and channel slope (e.g., Gilbert, 1877;
Gilbert, 1877; Howard, 1980; Howard and Kerby, 1983;
Whipple and Tucker, 1999; Gasparini and Brandon, 2011;
Harel et al., 2016). This rule is intuitive, and may also be
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described in terms of the rate of power dissipation against
the river bed. However, such a generalized approach is
agnostic to geomorphic processes. Efforts to understand
the detailed mechanics of abrasion (Sklar and Dietrich,
1998, 2004; Johnson and Whipple, 2007) and quarrying
(Dubinski and Wohl, 2013), the two main mechanisms of
bedrock river erosion (Whipple et al., 2000), have aided
efforts to generate mechanistic models for bedrock incision
(Gasparini et al., 2006; Chatanantavet and Parker, 2009).
However, the large number of measured parameters required
for these relationships limits their use in practice and/or
requires simplifications, such that the basic stream-power
law remains the dominant model for detachment-limited
rivers.

Writing a set of equations to describe the long-profile evo-
lution of transport-limited gravel-bed rivers, in contrast, is
aided by an extensive history of study that can be directly
applied to models of long-profile evolution. This includes
open-channel flow and flow resistance that can be applied
to sediment-covered channels (e.g., Nikuradse, 1933; Keule-
gan, 1938; Limerinos, 1970; Aguirre-Pe and Fuentes, 1990;
Parker, 1991; Clifford et al., 1992), bed-load transport (e.g.,
Shields, 1936; Meyer-Peter and Müller, 1948; Gomez and
Church, 1989; Parker et al., 1998; Wilcock and Crowe, 2003;
Wong and Parker, 2006; Bradley and Tucker, 2012; Furbish
et al., 2012), and fluvial morphodynamics (e.g., Lane, 1955;
Leopold and Maddock, 1953; Parker, 1978; Ikeda et al.,
1988; Ashmore, 1991; Church, 2006; Pitlick et al., 2008; Eke
et al., 2014; Bolla Pittaluga et al., 2014; Blom et al., 2016,
2017; Phillips and Jerolmack, 2016; Pfeiffer et al., 2017).
Critical to the present work is the fact that the authors of these
past studies have developed theory, tested it in both labora-
tory and field settings, and empirically determined the values
of the relevant coefficients (e.g., Wong and Parker, 2006).
Furthermore, bedrock channels can act as transport-limited
systems (Johnson et al., 2009), meaning that an approach
to transport-limited conditions may be able to describe the
evolution of not only alluvial rivers, but rivers across much
of Earth’s upland surface. Based on this past research, we
are able to write a simple and consistent set of equations for
transport-limited gravel-bed river long-profile evolution that
eschews tunable parameters, common in stream-power ap-
proaches to river long-profile evolution (Howard and Kerby,
1983; Whipple and Tucker, 1999, 2002) for those based on
experimentation, measurements, and theory.

Here we link sediment transport and river morphodynam-
ics to develop equations to describe gravel-bed river long
profiles and, as a necessary extension, their tightly coupled
width evolution. Our approach is complementary to a recent
set of relations for alluvial river long profile shapes devel-
oped by Blom et al. (2016) and Blom et al. (2017), who
explore equilibrium alluvial river long profile shapes in re-
sponse to changes in grain size, slope, and width. Our ap-
proach and discussion are tailored to timescales from decades
to millions of years, a broad range that results from the di-

rect derivation of these equations and their parameter val-
ues from fundamental physics, observations, and laboratory
experiments. In particular, we (1) consider evolution of the
full river valley, permitting analysis of timescales longer than
those of channel filling; (2) follow Parker (1978) in allowing
channel widths to self-form as a function of excess channel-
forming shear stress; and (3) define channel roughness as a
function of flow depth and grain size. Step (2) and (3) ul-
timately contribute to grain size canceling out of the final
equation, leading to a relatively simple and applicable equa-
tion for gravel-bed river long-profile evolution in response to
changes in water supply, sediment supply, and base level.

Our approach is outlined as follows: first, we generate
fully coupled equations of gravel transport and fluvial mor-
phodynamics to describe how channel long profiles change.
Second, we investigate how the governing equations for
gravel-bed rivers differ when we assume a channel with a
self-formed equilibrium width vs. an externally set width.
Third, we derive both analytical and numerical solutions for
the case of an equilibrium-width channel, which is nearly
ubiquitous in nature (Phillips and Jerolmack, 2016). Fourth,
we quantify the constants for stream-power-based bed-load
transport from Whipple and Tucker (2002) in a dimension-
ally consistent form that is based on our derived equations
and the sizes of storm footprints. Fifth, we demonstrate that
most gravel clasts in the landscape must be removed rapidly
by weathering and/or downstream fining in order to pro-
duce rivers with concavities that lie within observed ranges.
Sixth, we show that valley widening is required to produce
rivers with observed concavities. Seventh, we investigate
both steady-state and transient effects of base-level change
(e.g., through tectonics) and the sediment-to-water discharge
ratio (via climate and/or tectonics) on river long profiles,
and demonstrate that the former changes concavity while
the latter changes steepness. Eighth and finally, we derive
that downstream fining and channel concavity must com-
bine to be the mechanistic cause of channel width scaling
with the square root of water discharge (b ∝ Q0.5) (Lacey,
1930; Leopold and Maddock, 1953), at least in equilibrium-
width (including near-threshold) transport-limited gravel-
bed rivers.

2 Derivations

We consider gravel-bed rivers to exist in one of two states:
equilibrium-width and fixed-width. In the first, we assume
that the channel-forming (i.e., bank-full) shear stress on the
bed remains a constant ratio of the critical shear stress that
sets the threshold for initiation of sediment motion (after
Parker, 1978). The channel width is set to maintain this ra-
tio. In the second, the channel and valley width are assumed
to be identical in order to use the one-dimensional form of
the sediment continuity equation, called the Exner equation
(e.g., Paola et al., 1992; Whipple and Tucker, 2002; Blom
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et al., 2016). A third and more general case exists in which
one externally imposes both channel and valley width. We
do not address this case here, although it may be solved us-
ing the equations provided.

Our primary focus here is on equilibrium-width rivers,
which are common throughout the world (Phillips and Jerol-
mack, 2016; Pfeiffer et al., 2017). Most maintain a bed shear
stress that is slightly greater than that for the initiation of
motion (Parker, 1978; Phillips and Jerolmack, 2016), and
this near-threshold condition is characteristic of both fully
alluvial and alluvial-mantled bedrock streams (Phillips and
Jerolmack, 2016). Rivers in rapidly uplifting mountain belts
maintain a bed shear stress that can be much greater than
that for the initiation of particle motion; this results in higher
sediment discharges that help to balance the high inputs of
sediment that result from rock uplift (Pfeiffer et al., 2017).
Although these rivers do not exist in a near-threshold state,
they maintain an equilibrium width corresponding to their ra-
tio of bed shear stress to critical shear stress for the initiation
of motion that allows them to transport the sediment that they
are supplied (Pfeiffer et al., 2017).

We split our derivations into sections on equilibrium-width
(Sect. 2.1) and fixed-width (Sect. 2.2) rivers. We first develop
a sediment-discharge relationship as a function of channel
morphology. This portion of the derivation can apply to both
alluvial (transport-limited) and bedrock (both transport- and
detachment-limited) rivers. Simulating detachment-limited
rivers in which abrasion is the dominant mechanism of river
incision requires sediment-flux-dependent erosion relation-
ships (Sklar and Dietrich, 2001; Whipple and Tucker, 2002;
Sklar and Dietrich, 2004; Gasparini et al., 2006, 2007), which
we do not discuss in detail here. We focus on alluvial and
transport-limited bedrock cases by applying a statement of
sediment volume balance (the Exner equation) to develop a
differential equation that describes alluvial river long-profile
evolution over time. The width closure for the equilibrium-
width gravel-bed river produces a mathematically clean so-
lution from which intuition can be readily gained, and this
is the focus of our discussion. The fixed-width case, which
is characteristic of an engineered gravel-bed river with rigid
walls, is included for contrast with the equilibrium-width
case and comparison with studies in which an externally set
width is assumed (e.g., Blom et al., 2016, 2017).

2.1 Equilibrium-width river

We derive an equation for the evolution of the long profile
of an equilibrium-width gravel-bed river that lies within a
valley whose shape is arbitrary (although at least as wide
as the channel) and may evolve through time. We first state
a modified Exner equation for the conservation of bed-load
sediment discharge (Qs) for a river in a valley of width B

(Fig. 1):

∂z

∂t
= − 1

1 − λp

(

1

B

∂Qs

∂x
− Qs

B2

∂B

∂x

)

. (1)

Here, z is the elevation of the river bed surface, and is often
also denoted as η in the alluvial river literature. Time is repre-
sented by t . λp is porosity, for which 0.65 is a representative
value (consistent with Beard and Weyl, 1973). x is down-
valley distance, which is the same as down-channel distance
only for a straight river flowing directly down-valley. B is the
width of the river valley at the current level of the river bed;
it may change with changes in river bed elevation and/or as
the valley widens or narrows over time. These and all vari-
ables are defined in Appendix A. λp and B scale the result: a
higher porosity means that less sediment must be eroded or
deposited to produce the same change in bed elevation (i.e.,
aggradation or incision). A wider valley means that more
sediment must be moved to produce a given amount of aggra-
dation or incision.

Equation (1) differs from the original form that Exner
(1920, 1925) developed (Eq. B1), which considers only
channel-width-averaged sediment discharge (e.g., Paola
et al., 1992; Paola and Voller, 2005). This is appropriate for
aggradation or incision within a channel or in a vertically
walled valley that is exactly one channel width wide, but is
unable to be solved for aggradation or incision for the com-
mon case of a valley that is wider than the channel. Because
the evolving landform is the valley, we have chosen x to be
down-valley distance, and describe the steps required to link
channel-scale dynamics to longer-term long-profile evolution
using our modified Exner equation (Eq. 1) for sediment con-
tinuity in Appendix B1.

Following this definition of a sediment continuity equa-
tion, we take several steps towards developing a simple for-
mulation for the total discharge of sediment through the river,
Qs. Once we find the correct expression for this value, we
insert it into Eq. (1), which we then simplify into a final dif-
ferential equation for transport-limited gravel-bed river long-
profile evolution.

Towards this eventual goal, our second step is to define
bed-load sediment discharge per unit width, qs, where

qs = Qs

b
. (2)

Here, b is the width (breadth) of the river channel (b ≤ B).
We compute bed-load transport using the Wong and Parker
(2006) formulation of the Meyer-Peter and Müller (1948)
formula. This formula is semi-empirical: its core form is
based on a balance of shear stress along the bed driving par-
ticle motion and particle weight resisting that motion, but its
power-law functional form as well as its coefficients and ex-
ponents are fit to the results of laboratory experiments. More
fully theory-based formulations are under development (Fur-
bish et al., 2012; Fathel et al., 2015) and promise signifi-
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Figure 1. Schematic block diagram of sediment transport through a reach of a transport-limited river. Variables are defined in the text and in
Appendix A. The balance of sediment input, sediment output, and uplift determine whether the river bed at each point downstream will rise,
fall, or remain at a constant elevation.

cant advances in our understanding and prediction of sedi-
ment transport. Our choice to use the Meyer-Peter and Müller
(1948) formulation stems from its longevity, its simplicity,
the fact that it has been well tested (Wong and Parker, 2006),
and its compatibility with the channel-width closure resulting
from the work of Parker (1978). We stress that our general set
of steps to deriving equations for long-profile evolution may
be repeated for any sediment-transport relation.

qs =






0 if τ ∗
b ≤ τ ∗

c

φ
(

ρs−ρ
ρ

)1/2
g1/2

(

τ ∗
b − τ ∗

c

)3/2
D3/2 if τ ∗

b > τ ∗
c .

(3)

Here, φ = 3.97 (Wong and Parker, 2006) is an experimen-
tally derived sediment-transport rate coefficient. ρs is sedi-
ment density, ρ is water density, and g is acceleration due
to gravity.

∣

∣τ ∗
b

∣

∣ is the magnitude of the dimensionless basal
shear stress (defined in Eq. 6, below), and is also called the
“Shields stress” (after Shields, 1936). τ ∗

c = 0.0495 (Wong
and Parker, 2006) is the experimentally derived dimension-
less critical shear stress for the initiation of particle motion,
and is also called the “critical Shields stress”. D is a repre-
sentative sediment grain (particle) size, which we take to be
the median gravel clast diameter. This formula is technically
for sediment-transport capacity, Qc, per unit channel width,

but in a transport-limited river, sediment is always supplied
at or above capacity such that Qs ≡ Qc. We assume that we
know the downstream direction; a supplement to this deriva-
tion in which we explicitly consider directionality is included
in Appendix C in order to streamline the main text.

While the Meyer-Peter and Müller (1948) equation is only
strictly valid for a single grain size class, it is often an ac-
ceptable approximation for natural rivers with multiple size
classes (Gomez and Church, 1989; Paola and Mohrig, 1996).
Interactions among multiple grain size classes may cause
a condition of “equal mobility” in gravel-bed rivers (e.g.,
Parker et al., 1982): small grains become trapped inside pits
between larger grains, while large grains rest on a carpet of
smaller grains and thus are exposed to more of the force of
the flow. Even where significant deviations from equal mo-
bility are observed, τ ∗

c for the 50th percentile grain size (D50)
remains constant (Komar, 1987; Komar and Shih, 1992). For
the representative grain size (D) in Eq. (3) (and Eq. 27, be-
low), Wong and Parker (2006) used the mean size of uniform
gravel. We suggest the median grain size (D50) as represen-
tative of D for the mixed-size sediment of natural rivers due
to its relative ease of standardized measurement (Wolman,
1954) and constant dimensionless critical shear stress for the
initiation of motion (Komar, 1987; Komar and Shih, 1992;
Paola and Mohrig, 1996). Regardless of this choice, D can-
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cels out in our formulation for equilibrium-width gravel-bed
rivers, starting in Eq. (18).

Basal shear stress induces a drag force on the grains and
drives sediment transport. To compute this basal shear stress
(τb), we invoke the normal flow (steady, uniform) assump-
tion, the wide-channel approximation (b ≫ h, where h is the
flow depth), and the small-angle formula (Fig. 1, upper right
inset):

τb = ρghsinα (4)

≈ ρghS.

Here, α is the angle between the plane of the water surface
and the horizontal in the downstream direction, and S is the
channel slope. The water surface and bed surface slopes are
assumed to be parallel (following the normal flow assump-
tion). Assuming that the flow is from left to right, we can
define channel slope as

S = − 1

S

dz

dx
. (5)

The above equation includes the sinuosity (river length di-
vided by valley length, S) of the channel in the valley; this
is necessary to convert the channel slope, which drives sed-
iment transport, into the valley slope, which follows the x

coordinate orientation used in Eq. (1) (see Appendix B). The
negative sign is used to denote direction, but is included for
convenience and intuition rather than for mathematical pre-
cision. When slope is raised to a power, only the magnitude
of the slope is affected, with the “−” sign being applied af-
terwards.

The drag force on sediment grains induced by basal shear
stress is resisted by the submerged weight of the grains. The
ratio of these forces defines the Shields stress:

τ ∗
b = τbD

2

(ρs − ρ)gD3
= τb

(ρs − ρ)gD
. (6)

In gravel-bed rivers, all of the shear stress is assumed to act
as skin friction, meaning that it is directly imparted to the
particles instead of being partially absorbed as form drag on
larger-scale features (e.g., bedforms). When this dimension-
less stress is in excess of the critical Shields stress (τ ∗

c ), par-
ticles begin to move.

In equilibrium-width gravel-bed rivers, the dimensionless
basal shear stress at the channel-forming discharge is as-
sumed to be maintained as a constant multiple of the dimen-
sionless critical shear stress for initiation of sediment mo-
tion (Parker, 1978). This proportionality may be equally rep-
resented by dimensional stresses; we use the dimensionless
Shields stresses here for consistency:

τ ∗
b = (1 + ǫ)τ ∗

c . (7)

Parker (1978) derived that ǫ ≈ 0.2 for self-formed gravel-bed
rivers with mobile banks made of the same size gravel as the

bed, based on theory and channel geometry. This value has
been found empirically and near-universally in rivers around
the world outside of rapidly tectonically uplifting environ-
ments (Phillips and Jerolmack, 2016; Pfeiffer et al., 2017).
(1 + ǫ)τ ∗

c is the dimensionless shear stress experienced by
the bed of the channel when the shear stress experienced by
the banks is equal to τ ∗

c . The Parker (1978) near-threshold
gravel-bed river solution states that any excess stress would
cause the banks to erode and the channel to widen, reducing
the flow depth, and thereby decreasing τ ∗

b to (1 + ǫ)τ ∗
c .

The channel-forming discharge, also termed the geomor-
phically effective discharge, is equivalent to the bank-full
flow in a self-formed gravel-bed river with gravel bars and
banks. Blom et al. (2017) derived a method to differenti-
ate the channel-forming discharge, defined as that required
to maintain the channel slope, from the most effective dis-
charges to move different grain size classes of sediments.
This is a significant distinction, but one that will not be nec-
essary for our modeling approach, as we consider only the
discharges that are large enough to cause non-negligible ge-
omorphic change. In a self-formed gravel-bed river, a near-
threshold state is maintained in which τ ∗

b = 1.2τ ∗
c (Parker,

1978). We use this ratio between applied and critical shear
stress to compute the numerical values for constants given in
this derivation.

Substituting τ ∗
b in Eq. (3) with its value given in Eq. (7)

reduces the complexity of Eq. (3) by converting its excess
shear stress terms at a channel-forming discharge (τ ∗

b − τ ∗
c )

into a constant (by a factor of ǫ) and requiring that only the
case with a positive nonzero qs be a plausible solution:

qs = φ

(

ρs − ρ

ρ

)1/2

g1/2ǫ3/2τ ∗
c

3/2
D3/2 (8)

= kqsD
3/2.

In an equilibrium-width gravel-bed river, qs is a function
of grain size alone. The value of kqs = 0.0157 is obtained
from φ = 3.97 (Wong and Parker, 2006), ρs = 2650 kg m−3

(density of quartz), ρ = 1000 kg m−3 (density of water), g =
9.807 m s−2, ǫ = 0.2 (for a threshold-width channel; Parker,
1978), and τ ∗

c = 0.0495 (Wong and Parker, 2006).
It may be counterintuitive that sediment discharge per

unit width increases with grain size. This is a result of the
equilibrium-width argument. Channel geometry adjusts to
maintain a constant excess basal shear stress regardless of
grain size. However, larger grains have a greater vertical di-
mension: many small grains rolling or sliding along the bed
will displace less mass than a single larger grain.

Equation (8) is physically valid only where b > D (see
Eq. 16, below) and is a good approximation only where
b ≫ h and h > D (see Eq. 9, below). It seems likely that, at a
flow width that is some small multiple of D, an equilibrium-
width gravel-bed channel would be replaced by a boulder
cascade or similar system that is more dispersed. While we
do not investigate the exact point of this process-domain
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boundary, this forms a practical limit to the theory presented
here.

For a self-formed gravel-bed channel, channel depth must
satisfy Eq. (7). Using the normal flow assumption, the depth–
slope product (Eq. 4) defines basal shear stress. Inserting the
dimensionless basal shear stress (calculated by combining
Eqs. 4 and 6) into Eq. (7) and rearranging to solve for h at a
channel-forming discharge results in

h = ρs − ρ

ρ
(1 + ǫ)τ ∗

c
D

S
. (9)

Next, we compute mean water flow velocity (u) for a ge-
omorphically effective flow. We solve for mean flow veloc-
ity using the empirically derived Manning–Strickler formu-
lation (following Parker, 1991) of the Chézy equation. We
first write the Chézy equation for steady, uniform flow,

u = Cz

√

ghS. (10)

Here, Cz is a factor that relates flow velocity to shear veloc-
ity, and

√
ghS is the shear velocity for steady, uniform flow.

We then define Cz, following the Manning–Strickler formu-
lation, as

Cz = 8.1

(

h

λr

)1/6

. (11)

The coefficient of 8.1 is empirical (Parker, 1991). λr is the
characteristic roughness length scale; this is often denoted
as ks, but we reserve this notation for the channel steepness
index in slope–area space (Sect. 5.2). The flow depth (h)
in the numerator and the roughness (λr) in the denomina-
tor indicate that flow velocity increases with distance to the
no-slip boundary, and decreases with increasing boundary
roughness. The gravel clasts themselves are the major source
of roughness (and therefore flow resistance) in a gravel-bed
river. Clifford et al. (1992) related grain size to roughness
length to obtain the approximation that λr ≈ 6.8D, where D

is the median gravel clast diameter. Carrying this forward,
but using a standard “equals” sign, produces an expression
for flow velocity that depends only on constants and basic
geomorphic parameters:

u = 5.9g1/2 h2/3S1/2

D1/6
. (12)

The power-law form of the empirically developed Manning–
Strickler formulation (see Parker, 1991) closely approxi-
mates the more theoretical logarithmic boundary layer ap-
proach of Keulegan (1938) for ratios of depth to roughness
length that are characteristic of gravel-bed rivers; thus, the
former is an equally accurate and more mathematically con-
venient approach.

Water discharge per unit width can be computed by multi-
plying u by h as follows:

q = uh = 5.9g1/2 h5/3S1/2

D1/6
. (13)

Substituting Eq. (9) into Eq. (13) gives

q = uh = 5.9g1/2
(

ρs − ρ

ρ

)5/3

(1 + ǫ)5/3τ ∗
c

5/3 D3/2

S7/6
. (14)

The final equation that we require to obtain channel width
(b) for Eq. (2) is that for continuity. We approximate the
channel cross section as rectangular such that the magnitude
of the channel-forming water discharge, Q, is equal to the
product of the flow speed, width, and depth:

Q = ubh = qb. (15)

Rearranging Eq. (15) to solve for b, and then substituting
Eq. (14) for q, yields

b = 0.17g−1/2
(

ρs − ρ

ρ

)−5/3

(1 + ǫ)−5/3τ ∗
c

−5/3 QS7/6

D3/2
(16)

= kb

QS7/6

D3/2
.

Equation (16) predicts the equilibrium width of a river chan-
nel that has a constant ratio of basal Shields stress to critical
Shields stress (Eq. 7), following Parker (1978). This equi-
librium width is set by a trade-off between discharge and
slope, both increasing basal Shields stress, and grain size,
which decreases the basal Shields stress. To focus atten-
tion on these key variables (Q, S, and D, respectively), we
lump the constants into kb = 2.61, assuming ǫ = 0.2 (Parker,
1978; Phillips and Jerolmack, 2016).

Finally, channel width (b) and sediment discharge per unit
width (qs, Eq. 8) can be multiplied together to yield Qs. In
order to relate this product to the field, we include an addi-
tional term, the intermittency (I ), which is the fraction of the
total time that a river produces a geomorphically effective
flow (after Paola et al., 1992); smaller flows are considered
to be unable to produce non-negligible geomorphic change.
For example, if the annual flood on a self-formed gravel-bed
river is a bank-full event, and this event lasts for 3–4 days,
I ≈ 0.01; such conditions are typical for rainfall-fed midlat-
itude rivers.

We express this equation first in terms of magnitudes,

Qs = kQsIQS7/6. (17)

We then return directionality to the equation by replacing S

following Eq. (5), and noting that the sign is applied after
raising its argument to a power. (See Appendix C for a very
brief discussion of the use of slope, S, in place of separate
terms for its direction and magnitude.)

Qs = −kQsI

S7/6
Q

dz

dx

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

1/6

. (18)
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In both of these equations,

kQs = kqskb (19)

= 0.17φǫ3/2

(

ρs−ρ
ρ

)7/6
(1 + ǫ)5/3τ ∗

c
1/6

= 0.041.

The numerical value for kQs is provided for ǫ = 0.2, follow-
ing Parker (1978). While we treat ǫ as a constant here, re-
cent research by Pfeiffer et al. (2017) indicates that its value
may vary. Furthermore, it is important to note that by using a
rectangular channel assumption, we neglect the potentially
important component of spatial variability in flow depth.
This variability, which is especially common in braided sys-
tems, can result in deep scours that increase the net bed-load
sediment-transport capacity of the river channel (Paola et al.,
1999). This unaccounted for variability may, therefore, sig-
nificantly increase kQs beyond what is predicted here.

Equation (18) demonstrates that in an equilibrium-width
river, sediment discharge obeys a stream-power relationship
(Paola et al., 1992; Whipple and Tucker, 2002) in which the
values of the coefficient and exponents are defined based on
the above derivation. Although it is beyond the scope of this
work on transport-limited rivers, the derivation of transport
capacity to this point may be useful for studies of sediment-
flux-dependent detachment-limited river incision (Gasparini
et al., 2006, 2007; Hobley et al., 2011).

Hydraulic geometry adjustment in an equilibrium-width
gravel-bed river causes bed-load sediment discharge to be in-
dependent of grain size. Sediment discharge per unit width
increases with grain size as qs ∝ D3/2 (Eq. 8). Channel
width, in comparison, decreases as grain size increases, b ∝
D−3/2 (Eq. 16), due to the scaling relationships between
grain size and both channel depth and flow resistance (Eqs. 9
and 14).

In this derivation, we hold τ ∗
c constant instead of making it

a function of slope to the 1/4 power, as has been suggested by
Lamb et al. (2008) based on experimental and field data. We
do so for three reasons. First, a constant critical Shields stress
is appropriate for rivers with slopes that are /0.03 (Lamb
et al., 2008); this set comprises most rivers in the world. Sec-
ond, the assumption of an equilibrium-width river (Parker,
1978) results in the removal of the threshold associated with
τ ∗

c from the sediment-transport equation. Third, the remain-
ing slope dependence is to the 1/24 power (Eq. 19). Adding
such a weak slope dependence that may marginally improve
accuracy would introduce a mathematically significant non-
linearity into the system of equations, thereby impeding our
goal of providing intuition into the behavior of gravel-bed
rivers.

While q and qs are defined in the down-channel direction,
Q and Qs are equal for both the down-channel and down-
valley directions. This convenient equality results geometri-
cally from the fact that, as the angle between a river cen-

terline and a line that crosses the valley perpendicularly in-
creases, the flux (width-normalized discharge) decreases, but
the fraction of the line occupied by river increases (Fig. B2).
This decrease and increase are proportional, and thus can-
cel one another out. One may also consider this to be the
result of path independence: the discharge that exits a seg-
ment of valley must be equal to the discharge that enters it
(Appendix B2).

We combine Eqs. (1) and (18) with a source/sink term
for uplift (or subsidence) to produce a long-profile evolution
equation for a transport-limited gravel-bed river:

∂z

∂t
= kQsI

S7/6
(

1 − λp
)

[

7

6

1
(

∂z
∂x

)

∂2z

∂x2
+ 1

Q

∂Q

∂x
− 1

B

∂B

∂x

]

(20)

Q

B

∂z

∂x

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

1/6

+ U.

This equation has the general form of a nonlinear diffu-
sion equation, with the nonlinearity being a combination of
|dz/dx|1/6 and any possible nonlinear relationships that arise
in Q(x) and B(x). To the right of the equals sign, the left-
most term is a collection of constants. The brackets hold the
gradients in slope, water discharge, and valley width. To the
right of the brackets are the main drivers: long-profile re-
sponse rates increase with increasing discharge magnitude
and slope, both of which speed sediment transport, and re-
sponse rates decrease as valley width increases, which cre-
ates more space that must be filled or emptied to produce
a change in river-bed elevation. By placing sinuosity with
the constants, we assume that it changes in space only grad-
ually, if at all. This equation would simplify to the linear
diffusional relationship derived by Paola et al. (1992) if we
(1) considered a constant bed roughness instead of includ-
ing the Manning–Strickler-based flow resistance that intro-
duces a depth dependence (Eq. 12), (2) removed the effects
of variable valley width, and (3) considered a uniform water
discharge.

Uplift and subsidence (U ) are not the only possible source
and sink for material: Murphy et al. (2016) note the impor-
tance of chemical weathering, which must remove mass from
rock, and Shobe et al. (2016) investigate the importance of
local colluvial input to rivers. We do not focus on either of
these here, but note that the latter must also be related to
valley width evolution, which may produce enhanced hill-
slope sediment inputs, for example, through bank collapse
and landsliding.

Equation (20) describes the long-profile evolution of an
equilibrium-width gravel-bed alluvial river. The dependen-
cies of the variables in Eq. (20) are as follows:

z = z(x, t) (21)

Q = Q(x, t) (22)

B = B(z(x, t), t) (23)

U = U (x, t). (24)
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The dependency of valley width, B, on the elevation of the
river bed, z, is the result of the fact that few valleys have
vertical walls. Therefore, changes in valley elevation produce
changes in valley width, even in absence of time-evolution
of the valley geometry that then feeds back into the rate of
long-profile evolution. Mathematically, this adds an arbitrary
dependence on z that limits the analytically solvable forms
of Eq. (20).

2.2 Fixed-width river

If the width of the river is externally known and is identical
to the width of the valley, another solution is possible. To
produce this solution, we first simplify the Exner equation to
its one-dimensional form for the case in which b = kb,BB, in
which the constant coefficient kb,B ≤ 1. By expanding Qs =
qsb and canceling out width:

∂z

∂t
= − kb,B

1 − λp

∂qs

∂x
. (25)

Combining this form of the Exner equation with the Wong
and Parker (2006) version of the Meyer-Peter and Müller
(1948) gravel transport formula, given in Eq. (3), and assum-
ing that τ ∗

b ≥ τ ∗
c , leads to the following differential equation

for gravel-bed river long-profile evolution:

∂z

∂t
= kb,B

1 − λp

3

2
φ

(

ρs − ρ

ρ

)1/2

g1/2(τ ∗
b − τ ∗

c

)1/2
D1/2 (26)

[

D
∂τ ∗

b

∂x
+
(

τ ∗
b − τ ∗

c

) ∂D

∂x

]

.

Here, no form of width closure is assumed. We maintain the
assumption that τ ∗

c is a constant, meaning that this equa-
tion is valid for rivers of slopes that are /0.03 (Lamb et al.,
2008). This simplification is included both for comparison
with Eq. (20) for equilibrium-width rivers and to avoid the
added mathematical complexity of including a weak nonlin-
earity.

Equation (26) hides discharge, width, slope, and an addi-
tional grain-size dependence within τ ∗

b . To include these ex-
plicitly, we combine Eq. (15) and (12) to solve for flow depth,
h, and insert this depth into the Meyer-Peter and Müller
(1948) sediment-transport formula (Eq. 3) via the definition
of dimensionless basal shear stress given in Eq. (6):

qs = (27)






















0 if |τ ∗
b | ≤ τ ∗

c

−sgn
(

dz
dx

)

φ
(

ρs−ρ
ρ

)1/2
g1/2

(

0.345
g3/10S7/10

1
ρs−ρ

ρ

1
D9/10

(

Q
b

)3/5∣
∣

∂z
∂x

∣

∣

7/10 − τ ∗
c

)3/2

D3/2 if |τ ∗
b | > τ ∗

c .

Here, the signum function and absolute values are included
to allow for flow and sediment transport in either the positive

or negative x direction (see Appendix C). In a natural river,
qs is combined with an intermittency, I , which is equal to
the fraction of the time that the discharge is geomorphically
effective; smaller discharges are assumed to carry negligible
bed-load sediment (Paola et al., 1992).

To formulate the differential equation for long-profile evo-
lution of a transport-limited gravel-bed river of arbitrary
width, we combine our transport relationship (Eq. 27) with
our statement of volume balance (Eq. 25). In the following
equation, we again consider only flows in which τ ∗

b > τ ∗
c ; to

use it in practice, one would first run a check as to whether
τ ∗

b > τ ∗
c . If true, the bed would evolve as shown; if false,

∂z/∂t = 0.

∂z

∂t
=3

2

kb,Bφg1/2I

1 − λp

(

ρs − ρ

ρ

)1/2

(28)

(

1
ρs−ρ

ρ

0.345

g3/10S7/10

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10 1

D9/10

Q3/5

b3/5
− τ ∗

c

)1/2

D1/2

[

Q3/5D1/10

b3/5

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10(3

5

1

Q

∂Q

∂x
− 3

5

1

b

∂b

∂x

+ 7

10

1
∣

∣

∂z
∂x

∣

∣

∂2z

∂x2
− 9

10

1

D

∂D

∂x

)

+
(

1
ρs−ρ

ρ

0.345

g3/10S7/10

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10 1

D9/10

Q3/5

b3/5
− τ ∗

c

)

∂D

∂x

]

+ U.

When b is set such that Eq. (7) for an equilibrium-width
gravel-bed channel holds true and b = B, Eq. (28) becomes
equal to Eq. (20).

In addition to the variable space–time dependencies listed
in Eqs. (21)–(24), we include the following two for Eq. (28):

b = b(z(x, t), t) = B(z(x, t), t) (29)

D = D(x, t). (30)

3 Analytical solutions

Two analytical solutions are presented here to help build in-
tuition into the shape of gravel-bed river long profiles. The
most generally applicable of these, for an equilibrium-width
gravel-bed river that is neither aggrading nor incising in an
area with no tectonic activity, is presented first. This solu-
tion is a power law that relates measurable hydrologic and
landscape parameters to river long-profile shape. The second
analytical solution is for a fixed-width river that adds the ad-
ditional assumptions that width, discharge, and grain size are
held constant. This solution provides an equilibrium trans-
port slope.
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3.1 Relationships between width, discharge, drainage

area, and downstream distance

In order to analytically solve special cases of the provided
equations for river channel long-profile evolution, we need
a way to write Eq. (20) in terms of only z and x, meaning
that we should rewrite Q and B in terms of x. For any real
river, there is a measurable relationship between discharge
and distance downstream. Such relationships, and others in
this paper, have a power-law form. In order to write these in
a consistent and intuitive way, all power-law coefficients are
designated k and all exponents (“powers”) are designated P .
Each coefficient and exponent is given a two-letter subscript
where the first letter indicates the variable from which one
is converting (right-hand side) and the second letter indicates
the variable to which one is converting (left-hand side).

Based on observations (Hack, 1957; Costa and O’Connor,
1995)

Q = kA,QAPA,Q (31)

A = kx,AxPx,A . (32)

Q in Eq. (31) refers to the discharge of a geomorphically ef-
fective flood – in our case, this is one that applies a shear
stress τ ∗

b ≈ (1 + ǫ)τ ∗
c (Wolman and Miller, 1960; Parker,

1978; Sullivan and Lucas, 2007). Px,A ≈ 4/7 in the inverse
of the Hack exponent (Gray, 1961; Maritan et al., 1996;
Birnir et al., 2001). Substituting A in Eq. (31) with Eq. (32)
provides the needed transfer function between Q and x:

Q = kA,Qk
PA,Q

x,A xPx,APA,Q (33)

= kx,QxPx,Q . (34)

These equations are continuum idealizations of a river
with a tributary network. Real rivers experience discrete
jumps in water discharge at tributary junctions. The smooth
curves of water discharge vs. down-valley distance produced
by these relationships, in contrast, are beneficial for building
intuition.

Solutions to Eq. (20) also depend on how valley width, B,
changes with distance downstream. Following Snyder et al.
(2000) and Tomkin et al. (2003), who formulated a power-
law relationship between valley width and drainage area, we
propose that B is also a power-law function of x:

B = kx,BxPx,B . (35)

3.2 Equilibrium-width river

In order to develop an analytical solution to Eq. (20), we first
replace Q and B using Eqs. (31)–(35):

∂z

∂t
= kQsI

S7/6
(

1 − λp
)

[

7

6

1
(

∂z
∂x

)

∂2z

∂x2
+ Px,Q

x
− Px,B

x

]

(36)

kx,QxPx,Q

kx,BxPx,B

(

∂z

∂x

)∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

1/6

+ U.

One useful analytical solution to this equation would be that
for the steady-state case, in which

∂z

∂t
= 0. (37)

However, no analytical solution exists for this form of the
equation when tectonic uplift or subsidence is present. As a
close substitute, and one that can greatly simplify Eq. (36),
we choose the case in which the river is neither aggrading nor
incising. Therefore, its only vertical motion is as it passively
rides up or down on the Earth’s surface:

∂z

∂t
= U. (38)

For the special case in which there is no uplift, Eq. (37) holds.
It is important to note that this case implies a continuous ex-
ternally sourced sediment supply in order to maintain a fixed
topography without relative uplift across the stream profile.

For such a no-uplift steady-state condition to persist over
geologic time requires a constant input of sediment from the
hillslopes. This may be reasonable for a river that reaches
an equilibrium long profile much more rapidly than the sur-
rounding landscape evolves and its relief changes. It is also
useful as a benchmark for numerical solutions (Fig. 2).

Applying Eq. (38) to Eq. (36) yields a second-order non-
linear ordinary differential equation that is analytically solv-
able:

0 = 7

6

1
(

dz
dx

)

d2z

dx2
+ Px,Q − Px,B

x
. (39)

Its solution is a power law, solved using two known points
along the long profile – (x0,z0) and (x1,z1). Practical choices
for these points are the upstream and downstream boundaries
of the river segment being studied:

z = (40)

(z1 − z0)

(

x(1+6(Px,B−Px,Q)/7) − x
(1+6(Px,B−Px,Q)/7)
0

x
(1+6(Px,B−Px,Q)/7)
1 − x

(1+6(Px,B−Px,Q)/7)
0

)

+ z0.

The tunable parameter in this power-law solution is Px,B −
Px,Q. As Px,B may be measured from the landscape, the
value of the fit should be able to be related directly to the
exponent that describes the downstream increase in geomor-
phically effective stream discharge.

3.3 Fixed-width river

In order to generate an analytical solution for a fixed-width
gravel-bed river, starting from Eq. (28), we assume that three
key variables are constant (i.e., both steady and uniform):
width (b = B, so kb,B = 1), water discharge (Q), and grain
size (D). As a result, q = Q/b is also steady and uniform.
This may be considered to be a short reach of an incised river
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with no significant tributaries or a portion of an engineered
canal for which discharge varies extremely gradually. Ap-
plying these assumptions, as well as assuming that τ ∗

b ≥ τ ∗
c ,

produces the following nonlinear diffusion equation with a
source/sink (uplift/subsidence) term:

∂z

∂t
= 21

20

φg1/2I

1 − λp

(

ρs − ρ

ρ

)1/2

(qD)3/5
(

− ∂z

∂x

)−3/10

(41)

(

1
ρs−ρ

ρ

0.345

g3/10S7/10

(

− ∂z

∂x

)7/10
q3/5

D9/10
− τ ∗

c

)1/2
∂2z

∂x2
+ U.

Solving this equation for the case in which any vertical mo-
tion is provided by uplift or subsidence (Eq. 38) is a general
case of a steady-state long profile (∂z/∂t = 0) with no uplift
or subsidence (U = 0). Applying this assumption defines a
channel with a uniform slope, where (x0,z0) is a point along
the channel long profile,

z = z0 − 4.57g3/7
S

(

ρs − ρ

ρ

)10/7
τ ∗

c
10/7D9/7

q6/7
(x − x0). (42)

Slope adjusts to the driving force required to maintain a
uniform bed-load sediment discharge. Increasing submerged
specific gravity, (ρs − ρ)/ρ, and grain size, D, resist sedi-
ment motion by increasing the weight of the grains; there-
fore, the equilibrium fluvial transport slope is also increased.
Increasing discharge per unit width (q), in contrast, decreases
the equilibrium fluvial transport slope, as this provides more
power to move the bed-material sediment.

4 Numerical solutions

To solve more general cases of Eqs. (20) and (28), we derive
numerical solutions described in Appendix D. The solution
to Eq. (20) (D3) is solved semi-implicitly by constructing
equations with a diffusive component that can be solved di-
rectly in a tridiagonal matrix and a set of nonlinear terms
that require Picard iteration. This solution method improves
numerical stability and reduces computation times. Python
code to solve for the shapes of river long profiles is avail-
able online at https://github.com/awickert/grlp (last access:
10 December 2018, Wickert, 2018). This library includes
functions to analytically solve for the long profile shape as
well (Eq. 40), and with the proper inputs, this can match the
analytical solution (Fig. 2).

5 Discussion

5.1 Parameterizing stream-power-based sediment

discharge

Whipple and Tucker (2002, Eq. 4) posited that sediment dis-
charge should follow the power-law relationship

Qc = KtA
mt Snt , (43)

Figure 2. When dz/dt = U , the analytical solution for an
equilibrium-width river (Eq. 40) matches the numerical solution for
an equilibrium-width river (Eq. 36). Equation (36) is derived from
the general equation for an equilibrium-width river, Eq. (20), to in-
clude power-law downstream relationships for valley width and wa-
ter discharge (Eqs. 31–35). Here, the slope at the upstream bound-
ary condition is S0 = 0.015; this is set to produce an input bed-load
sediment discharge of Qs0 = 3.48×10−4 m3 s−1. Water discharge,
Q = 1.43 × 10−5x49/40 m3 s−1; drainage area, A = x7/4 m2, and
valley width, B = 25x1/5 m.

where Qc is the bed-load sediment-transport capacity and is
equal to Qs for transport-limited rivers, Kt is a coefficient, A
is drainage area, and mt and nt are exponents. Howard and
Kerby (1983) and Willgoose et al. (1991) present arguments
for mt = nt = 2 for sand-bed rivers, and Whipple and Tucker
(2002) posit that nt = 1 for gravel-bed rivers.

The sediment-transport formulation that we present in
Eq. (18), when combined with the discharge–drainage-area
relationship of Eq. (31) and dropping references to direction-
ality, can be rewritten in a way that is analogous to the above
equation for Qc:

Qc = kQskA,QIAPA,QS7/6. (44)

This relationship provides a value for nt , based on our above
derivation, which is grounded in sediment-transport experi-
ments and morphodynamic theory (Meyer-Peter and Müller,
1948; Parker, 1978; Wong and Parker, 2006). It also provides
a likely range of values for mt based on empirical studies
that relate drainage basin area to geomorphically effective
discharge. Furthermore, it defines a starting point towards
quantifying the free parameter Kt : kQs = 0.041 is known
(Eq. 19), I relates to the variability of the hydrograph, and
kA,Q must relate to precipitation patterns across the drainage
basin. Therefore, we focus on understanding the power-law
drainage area–discharge scaling (kA,Q and PA,Q), as solv-
ing this would constrain or define the remaining constants in
Eq. (44) and allow us to relate slope and drainage area, easily
measured from digital elevation models (DEMs), directly to
gravel transport capacity.

The appropriate value of PA,Q depends on the flow of in-
terest. For mean flow in a basin that experiences uniform
precipitation, it is 1 (given catchment-wide water balance).
For rarer flows, PA,Q < 1. This is because smaller basins
may be completely covered by a storm event, leading to a
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catchment-wide response to a unit hydrograph, but larger
basins may not have coherent storms across the whole basin,
leading to attenuation of flood peaks and a decreased like-
lihood of a flood that is as large a ratio of the mean flow
as in the small basin (Aron and Miller, 1978; Snow and
Slingerland, 1987; Milly and Eagleson, 1988; Huang and
Niemann, 2014). Aron and Miller (1978) found that, for an-
nual flood peaks in ∼ 50 streams in Pennsylvania and New
Jersey (USA), PA,Q ≈ 0.7; such annual floods are generally
also those that move gravel. Whipple and Tucker (1999) sug-
gest values of 0.7–1.0 for bedrock erosion, and Sólyom and
Tucker (2004) find that 1/2 ≤ PA,Q ≤ 1, which is in agree-
ment with field data from Strahler (1964, p. 50). The lower
limit from Sólyom and Tucker (2004) is for a single storm
whose duration is much less than the time it takes for the
water from the storm to travel through the basin. O’Connor
and Costa (2004) used the entire U.S. Geological Survey
gauging history (Slack and Landwehr, 1992) to compute
that, on average, PA,Q = 0.57 for 90th-percentile floods and
PA,Q = 0.53 for 99th-percentile floods.

We normalize A to a characteristic footprint area of storms
that occur across the catchment over the timescale of interest,
AR, and assume that A ≥ AR for transport-limited gravel-bed
rivers:

Qc = kQsIqRAR

(

A

AR

)PA,Q

S7/6. (45)

This definition applies the power PA,Q to a dimensionless
ratio, thereby ensuring that the coefficients can be framed
in terms of rainfall. Here, we define a new coefficient that
is the rainfall rate (i.e., flux) during a specific set of coin-

cident rainfall events, qR; kA,Q = qRA
1−PA,Q

R . For simplic-
ity, we do not consider inefficiencies in rainfall-to-discharge
conversion, although factors could be added to an analogous
expression to represent evapotranspiration and/or groundwa-
ter loss to other catchments.

From this relationship, we can assign values to the follow-
ing parameters from Whipple and Tucker (2002):

Kt = kQsIqRA
1−PA,Q

R (46)

mt = PA,Q (47)

nt = 7/6. (48)

For example, picking a characteristic storm footprint of
100 km2, PA,Q = 7/10 (after Aron and Miller, 1978), and
qR = 1 cm h−1, we find that Kt ≈ 2 × 10−5 m2/7 s−1, mt =
7/10, and nt = 7/6. This provides a set of reasonable values
for values that were left as free parameters in earlier deriva-
tions (Whipple and Tucker, 2002), demonstrates the relative
importance of slope vs. drainage area in setting sediment dis-
charge, and in Sect. 5.2 demonstrates how mt = PA,Q and
nt = 7/6 set the concavity index of transport-limited gravel
bed rivers.

5.2 Concave-up long profiles require weathering and/or

downstream fining

Whipple and Tucker (2002) proposed that at steady state,
sediment discharge should be proportional to uplift times
contributing area by a constant, 0 ≤ β ≤ 1. β = 0 indicates
that all eroded material is removed as wash load or dissolved
load. β = 1 indicates that all eroded material becomes bed-
load (i.e., gravel-sized) sediment.

We make the modification that contributing area must be
raised to a power, 0 ≤ Pβ ≤ 1, that we term the “gravel per-
sistence exponent”. This describes the persistence of gravel-
sized particles as they are weathered through hillslope pro-
cesses (Attal et al., 2015; Sklar et al., 2017) and/or fine down-
stream to sizes that are smaller than gravel (Sternberg, 1875;
Attal and Lavé, 2009; Dingle et al., 2017). If Pβ = 1, every
piece of eroded material on the landscape becomes gravel
that reaches the stream. If Pβ = 0, the amount of gravel
reaching the stream is independent of drainage area. Inter-
mediate values of Pβ indicate that some combination of hill-
slope weathering and downstream fining reduce the gravel
supply to a nonzero fraction of the initially eroded material.

Qs = βAPβ U. (49)

By assuming that channels are transporting sediment at
capacity and that most transport-limited gravel-bed rivers
should have gravel banks and therefore exist with an equi-
librium width (following Eq. 7, i.e., Qs = Qc), we can set
Eqs. (44) and (49) equal to one another, and rearrange the
terms to create a slope–area relationship:

S =
(

βU

kQskA,Q

)6/7

A(6/7)(Pβ−PA,Q). (50)

For a river at steady state to have a concave long profile,
meaning that channel slope decreases as drainage area in-
creases (as is observed in nature), the exponent to which
drainage area (A) is raised must be negative. This slope–area
exponent, multiplied by −1, is defined as the concavity in-
dex, θ , (Whipple and Tucker, 1999):

S = ksA
−θ . (51)

Here, ks is the channel steepness index (Moglen and Bras,
1995; Sklar and Dietrich, 1998; Whipple, 2001). Together,
steepness (coefficient) and concavity (exponent) define the
power-law relationship for slope. Because slope is the x

derivative of elevation, this also implies that the channel long
profile should be described by a power law, which is consis-
tent with the analytical solution (Sect. 3.2).

In the case of Eq. (50), θ = −(6/7)(Pβ −PA,Q). If Pβ = 1,
as assumed by Whipple and Tucker (2002, Eq. 7b), and
0.5 ≤ PA,Q ≤ 1.0, as prior work has demonstrated (Aron
and Miller, 1978; Snow and Slingerland, 1987; Whipple and
Tucker, 1999; O’Connor and Costa, 2004), then the expo-
nent to which A is raised would become positive. Such a
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Figure 3. Steady-state numerical model outputs with steady up-
lift (base-level fall), subsidence (base-level rise), or neither. These
numerical solutions are formulated following Eq. (D3), which
is a finite-difference discretization of the general equation for
an equilibrium-width transport-limited gravel-bed river, Eq. (20).
Power-law relationships describe downstream increases in water
discharge (Q) and valley width (B), following Eqs. (31)–(36).
(a) Long profiles. All channels are plotted such that they are pinned
to the same downstream point. (b) Slope–area plots: concavities in-
crease with increasing subsidence. Model input parameters other
than uplift are the same as those given for the long profiles dis-
played in Fig. 2.

river would be required to have a constant-to-downstream-
increasing slope in order to transport the sediment that it is
supplied. This would result in a straight-to-convex steady-
state long profile, which runs contrary to common observa-
tions of natural channels.

These assumptions produce a convex long profile because
as drainage area increases, sediment supply increases more
strongly than water discharge. A straightforward solution is
to adjust Pβ , which describes the attenuation rate of gravel-
sized particles with increasing drainage area. As drainage
area increases, so does the mean transport distance of a par-
ticle that reaches the corresponding point on the stream. As
transport distance increases, so does the possibility of signif-
icant weathering on the hillslope or breakdown in the chan-
nel (Sklar and Dietrich, 2006; Attal and Lavé, 2009; Attal
et al., 2015; Sklar et al., 2017; Dingle et al., 2017). This com-
bination of weathering and downstream fining can signifi-
cantly reduce the amount of gravel-sized sediment supplied
to a channel cross section as drainage area increases, thus
producing a concave channel, as similarly noted for incising
detachment-limited rivers by Sklar and Dietrich (2008).

An approximate value for the gravel persistence expo-
nent, Pβ , can be calculated by noting that in most natural

rivers θ ≈ 0.45 to 0.5. Combining this with the observation
that 0.5 ≤ PA,Q / 0.7 leads to the result that Pβ / 0.2. This
low gravel persistence exponent implies rapid attenuation of
gravel-sized sediment as drainage area increases: doubling
of the drainage basin area would produce a < 15 % increase
in the volume of gravel-sized sediment supplied to a chan-
nel cross section. For breakdown of clasts within the fluvial
system, this is qualitatively consistent with the work of Din-
gle et al. (2017), who observed that most gravel produced
in the Himalaya is converted into sand within 100 km travel
distance.

Figure 3, with long profiles calculated using Eq. (20), in-
dicates that uplift can act to reduce the concavity in the
downstream direction. The range of applicable solutions is
bounded by practical limitations: uplift rates must be appro-
priate for the channels to remain transport-limited, and subsi-
dence rates must be low enough that they do not overwhelm
the sediment supply and cause internal drainage to develop.
Uplift also impacts sediment supply by increasing the steep-
ness of the hillslopes, which increases hillslope sediment-
transport rates and hence decreases the time available for
weathering and soil formation (Attal et al., 2015), resulting in
increased hillslope gravel supply. As increasing rates of up-
lift (or base-level fall) force the channel long profile towards
a constant slope (concavity θ → 0), Eq. (50) demonstrates
that the gravel persistence exponent, Pβ , increases until it
equals the drainage-area–discharge exponent, PA,Q.

The small value of Pβ significantly increases the critical
drainage area for the transition from a detachment-limited
channel to a transport-limited channel (Whipple and Tucker,
2002). This is because increasing drainage area does not in-
crease sediment supply as rapidly as assumed by (Whipple
and Tucker, 2002). Therefore, a relatively larger portion of
the landscape may be assumed to be detachment-limited than
previously thought.

5.3 Concave-up long profiles may require valley

widening

Equation (39) for a steady-state river with neither uplift nor
subsidence can be rewritten with dz/dx replaced by S and
Px,Q replaced by its constituent components Px,A and PA,Q:

7

6

1

S

dS

dx
= Px,B − Px,APA,Q

x
. (52)

In order to solve this equation, we rely on the fact that at the
upstream boundary condition, x = x0 and S = S0. Here, the
slope is set to prescribe the input sediment discharge, Qs0 , in
a way that is independent of the water discharge (see Eq. 18).
We solve Eq. (52) to obtain a slope–distance relationship,

S = S0

(

x

x0

)(6/7)(Px,B−Px,APA,Q)

(53)
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Figure 4. The slope–area concavity index defined in Eqs. (51)
and (54) limits the range of possible powers for discharge–drainage
area and width–distance relationships. The light gray field includes
all concave long profile solutions, and the dark gray area indicates
where the concavity index is in a commonly observed range for
rivers in the field, between 0.4 and 0.5. The hatched area on the
left is below the theoretical lower limit for the exponent that relates
drainage area to water discharge, PA,Q = 0.5, which exists in the
limit where storm duration is much less than the time taken for water
to pass through the catchment (Sólyom and Tucker, 2004). This ex-
ample is given for an equilibrium-width river for which dz/dt = U ,
which corresponds to the analytically solvable case in Eqs. (39)
and (40).

We then substitute drainage area, A, for x based on an inver-
sion of Eq. (32):

S = S0
k

(6/7)(PA,Q−Px,B/Px,A)
x,A

x
(6/7)(Px,B−Px,APA,Q)
0

A(6/7)(Px,B/Px,A−PA,Q). (54)

Based on Eq. (54), the concavity index (Eq. 51) is θ =
(6/7)(PA,Q−Px,B/Px,A), and the steepness index, ks is equal
to the terms forming the coefficient before the A term. For a
characteristic inverse Hack exponent (Px,A = 7/4) and range
of likely concavity index values, 0.4/ θ / 0.5, a tight bound
exists on the possible values of PA,Q and Px,B (Fig. 4). These
values span the range of observed (Aron and Miller, 1978;
Howard and Kerby, 1983; Whipple and Tucker, 1999) and
theoretical (Sólyom and Tucker, 2004) steady-state river con-
cavity index values. Furthermore, this formulation demon-
strates that a downstream-widening valley can be necessary
to produce rivers of observed concavity index values for
common values of PA,Q. Insofar as valley widening can be
recognized in the field, this observation can be used in areas
of little to no uplift to connect geomorphic form directly to
the area scaling relationship for a dominant river discharge
(Fig. 4, dark gray diagonal region).

5.4 Signatures of change in the sediment-to-water

supply ratio (climate) and/or base level (tectonics)

Transport-limited river-channel long profiles evolve in re-
sponse to water and sediment inputs (e.g., Parker et al., 1998)
and relative base-level change (Hilley and Strecker, 2005).
Water and sediment inputs can occur both at the upstream
boundary and throughout the catchment, and changes in rel-
ative base level occur at the downstream boundary. We find
by applying the above derivation for an equilibrium-width
gravel-bed river (Sect. 2.1) that such rivers adjust their steep-
ness to the sediment-to-water input ratio (Sect. 5.4.1) and ad-
just their concavities to the rate of relative base-level change,
such as that due to tectonic uplift or subsidence (Sect. 5.4.2).
Increasing sediment supply dampens the magnitude of the
concavity response by decreasing the relative contribution of
the uplifting or subsiding valley floor to the sediment budget.

These distinct modes of response can help us to distin-
guish whether the river is responding primarily to changes
in water and/or sediment supply, or to changes in base level.
This may help to disentangle the effects of climate – often
related to water and sediment supply (Tucker and Slinger-
land, 1997; Simpson and Castelltort, 2012) – and tectonics,
which can change relative base level. However, tectonics may
also affect sediment supply and grain size by modifying to-
pographic relief (Attal et al., 2015; Sklar et al., 2017). Over
longer timescales, tectonics may also increase or reduce wa-
ter inputs by influencing orographic precipitation (e.g., Pin-
gel et al., 2014). Other non-climatic factors – including hu-
man, biological, and (bio)geochemical activity – may also
impact water and/or bed-material sediment delivery to rivers
(e.g., Liébault and Piégay, 2001; James, 2013; Pelletier et al.,
2015; Acosta et al., 2015; Sklar et al., 2016; Garcin et al.,
2017). Furthermore, non-tectonic changes in base level, such
as those caused by sea-level change, glacial isostatic adjust-
ment, reservoir construction, dam removal, or climatically
driven aggradation or incision of the main-stem river into
which the study tributary flows, could contaminate a “tec-
tonic” signal (Cantelli et al., 2004; Faulkner et al., 2016;
Wickert, 2016). An important caveat to this is that many
such natural base-level changes also change the horizontal
position of the river outlet, and the overall river response is
due to both horizontal and vertical changes in outlet position,
even though we discuss only an idealized vertical base-level
change here.

5.4.1 The sediment-to-water discharge ratio determines

channel steepness

Uniform changes in the input sediment-to-water discharge
ratio, in the absence of changes in the uplift rate (or equiva-
lently, the rate of base-level change), determine the steepness
index of a channel, but do not affect its concavity (Eqs. 51
and 54). As the input sediment-to-water discharge ratio in-
creases, the channel steepens in order to transport the ad-
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Figure 5. As the sediment-to-water discharge ratio increases, a
steeper channel is required to mobilize the sediments, and as a re-
sult, the channel steepness index (ks, Eq. 51) increases.

ditional sediment load out of the system at the rate that
it is supplied (Figs. 5 and 6d). This increase in steepness
and the associated aggradation is sourced at the upstream
boundary and propagates downstream: all sediment within
the computed long profile is transported at capacity, follow-
ing Eq. (18); therefore, perturbations to the sediment supply
must be sourced by either changing the input boundary con-
dition, as we do here, or by adding sediment along the chan-
nel using the “uplift” source/sink term (U in Eq. 20). Con-
versely, a decrease in the input sediment-to-water discharge
ratio causes a downstream-propagating decrease in steepness
(Fig. 6e). Changing the sediment-to-water discharge ratio re-
quires adjusting the virtual slope at the upstream boundary
(S0). Thus, this steepening can also be viewed as the natural
result of requiring the solution to the equation for the long
profile to accommodate a steeper upstream gradient bound-
ary condition.

5.4.2 Tectonic uplift and subsidence modulate river

concavity

Changes in the rate of base-level rise or fall, including those
caused by tectonic subsidence or uplift, modify the concavity
but not the steepness of a transport-limited gravel-bed river
long profile (Fig. 3), for a given input sediment-to-water dis-
charge ratio. Rivers experiencing tectonic subsidence (base-
level rise) will have more concave steady-state long profiles
than those with no uplift or subsidence, and those experi-
encing uplift (base-level fall) will have straighter (less con-
cave) long profiles (Fig. 3). This can be understood as fol-
lows: base-level rise “pushes” the bottom of the river profile
upwards, bending it, while base-level fall “pulls” the bottom

of this curve downwards, straightening it. Sklar and Dietrich
(2008) similarly note a decrease in expected concavity for
detachment-limited rivers with increasing uplift rate.

The analytical solution (Eq. 40) provides a long profile in
the absence of uplift or subsidence (dz/dt = 0). This solution
follows the black line in Fig. 3 and can be a useful reference
case against which to compare numerical solutions of long-
profile shape. Numerical solutions, in contrast, demonstrate
deviations in long-profile shape from this reference case in
response to nonzero uplift and/or subsidence.

Even though uniform changes in the water-to-sediment
discharge ratio cannot impact long-profile concavity on their
own, they can (through volume balance) influence the degree
to which rates of uplift (or subsidence) changes do. Uplift or
subsidence add or remove material from the bed of the river,
and changes in concavity are the river’s response to redis-
tribute sediment discharge to balance these local sources or
sinks of sediment. If the sediment discharge of the river is
large compared to the amount of material moved by uplift or
subsidence, then only a small adjustment of concavity is nec-
essary to balance this source (uplift) or sink (subsidence) and
maintain steady-state topography. A river carrying very little
sediment, however, will have to dramatically change its long-
profile concavity in order to reach steady state. Therefore,
the steady-state long-profile concavity (Fig. 8) results from
a competition between tectonics and sediment discharge, in
which a channel-concavity change is induced by a tectonic
(or base-level) forcing, but is dampened by increasing sedi-
ment input.

In order to compare both sediment discharge and uplift us-
ing a dimensionless parameter, we define a characteristic al-
luvial response rate (A) as a velocity scale to compare against
the uplift rate. The alluvial response rate is the ratio of the
incoming sediment discharge (Qsin ) to the area of the valley
floor, which in turn equals the mean valley width (B) multi-
plied by the length of the study river segment (L). This is the
maximum rate at which sediment- transport processes can
cause the valley to aggrade, and also scales with the power
of the river to export sediment and incise.

A = Qsin

LB
. (55)

Using SI units of length, 1/A is the time that it takes the river
to aggrade 1 m if no sediment is exported from the catch-
ment.

We note that Qsin is only equal to the incoming sediment
discharge at the upstream boundary condition, Qs0 , for the
case in which Px,Q = Px,Q = 0, indicating that there are no
tributaries. When implicitly considering tributary inputs of
water and sediment, as we do for any nonzero Px,A and
Px,Q, the total sediment input can be calculated by impos-
ing a steady-state assumption with no uplift, which requires
that the total sediment output must equal the sediment in-
put. This can be calculated using Eq. (18), with discharge at
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Figure 6. Transient long profiles from numerical model runs and their response times to external forcings. Each fine gray line in panel sets 1
and 2, corresponding to black dots on panel set 3, represents 30 000 years with an intermittency of I = 1 (i.e., constant geomorphically effec-
tive discharge conditions). Thick gray lines on panel sets 1 and 2 are the initial long profile; thick black lines are the final long profile. In the
slope–area plots (panel set 2), the slope of the line is the negative of the concavity index and the y intercept is the normalized steepness index
(Whipple and Tucker, 1999). Transient response times (right) are quantified by the ratio of catchment-wide sediment input (Qs,in) to output
sediment discharge (Qs,out). We quantify response times using exponential decay functions and e-folding timescales, but note that this does
not describe the changes in sediment discharge immediately following the perturbation. All base-level changes are purely vertical, and can
consequently represent steeply dipping faults or sea-level change across a steep coastline. Base model boundary conditions and parameters
are as follows: S0 = 0.01; 10 km ≤ x ≤ 100 km; Q = 1.43×10−5x49/40 m3 s−1; A = x7/4 m2; and B = 79.06x1/10 m. (a) An instantaneous
100 m base-level fall causes a transient response and a sudden increase in sediment output but eventually produces the same channel long
profile, albeit translated downward. (b) The onset of 1 mm yr−1 steady base-level fall (or tectonic uplift) reduces channel concavity; this
allows the river to transport the additional bed-derived sediment as it incises and causes sediment output to rise as a result. (c) The onset of
0.5 mm yr−1 steady base-level rise (or subsidence) increases concavity due to increasing deposition rates that are required to fill the accom-
modation space created, and reduces sediment output accordingly. (d) Doubling the input sediment discharge (Qs0 ), facilitated by adjusting
S0 according to Eq. (18), increases channel steepness proportionally (Eq. 54); this increase in steepness propagates downstream and gradu-
ally leads to an increase in output sediment discharge. (e) Doubling the water discharge (Q) decreases channel steepness proportionally; this
decrease in steepness propagates downstream more rapidly than that due to doubling sediment input because an increase in water discharge
increases sediment-transport capacity; output sediment discharge increases until the slope decreases, returning sediment output to its initial
rate.

the downstream boundary known, and the slope at the down-
stream boundary calculated using Eq. (53).

Dividing the tectonic uplift (or subsidence) rate (U ) by the
alluvial response rate (A) provides a dimensionless number
that defines the relative importance of sediment discharge vs.
tectonics in determining the concavity of transport-limited

gravel-bed rivers:

U

A
= LBU

Qs
. (56)

As this ratio becomes more positive, concavity decreases;
as it becomes more negative, concavity increases. Uplift (or
subsidence) rate determines the existence and sign of the

www.earth-surf-dynam.net/7/17/2019/ Earth Surf. Dynam., 7, 17–43, 2019



32 A. D. Wickert and T. F. Schildgen: Long-profile evolution of transport-limited gravel-bed rivers

Figure 7. Concavity changes uplift (or subsidence) rates increase
when compared to a characteristic alluvial response rate. (a) As in
Fig. 3, increasing uplift rates decrease the channel concavity in-
dex. Here we vary channel width, sediment discharge, and uplift,
and demonstrate how channel concavity change follows the ratio of
uplift rate, the external driver, to the internal system response rate
(Eq. 56). We disallow solutions that produce adverse slopes (these
occur with high subsidence) or negative concavity indices (these
occur with high uplift rates), as the former break the assumptions
of our equations and the latter are not observed steady-state forms
in nature. Changes in the valley-width exponent, Px,B , change the
shape of this curve by modifying the downstream distribution of val-
ley widths and therefore altering the local alluvial response rates;
all calculations for both panels were performed using Px,B = 1.
(b) For a single mean valley width (177 m), we compare the con-
cavity index against the ratio of sediment discharge to uplift rate.
It is important to note that with no uplift, concavity is constant at
θ = 0.5 regardless of sediment discharge.

concavity change, whereas the ratio of uplift rate to the al-
luvial response rate determines the magnitude by which con-
cavity deviates from a reference value for a river that experi-
ences no uplift; in Fig. 7, this reference value is 0.5.

Rivers also exhibit a transient response to changes in base
level at a rate that is proportional to the alluvial response
rate, A (Eq. 55). A single sudden change in base level gen-
erates a diffusive wave of incision (Fig. 6a1) or aggradation.
This wave propagates upstream until the channel achieves
the same slope and concavity as it did prior to the incision or
aggradation event (Fig. 6a2), just at a different absolute ele-
vation. A change in the rate of base-level change over time
(through, for example, a change in tectonic uplift or subsi-

Figure 8. Covarying tectonic uplift (or base-level fall) and the in-
put sediment-to-water supply ratio produces a range of channel long
profiles (a) and steepness and concavity indices (b). Changes in the
tectonic uplift rate impact channel concavity indices, θ , whereas
changes in the water-to-sediment discharge ratio mainly impact
channel steepness indices, ks. A higher sediment supply dampens
the effect of uplift on concavity. While these drivers and responses
are distinct, tectonic uplift may increase sediment supply by steep-
ening hillslopes; therefore, the variables controlling both the up-
stream (sediment supply) and downstream (base level) boundary
conditions may change at the same time.

dence rate) propagates upstream and changes the concavity
of the river (Fig. 6b, c). We characterize the timescale of this
response in terms of the ratio of the input vs. output sedi-
ment flux. When this ratio is less than unity, the river valley
is storing sediment, and when it is greater than unity, it is re-
leasing sediment. This change in sediment storage produces
a disequilibrium change in the long-profile shape. Following
the initial change, an exponential decay function can describe
the approach to a new equilibrium state. This behavior allows
us to define an e-folding response time that approximates the
time required for a river system to respond to a perturbation
(Fig. 6a3–e3).

5.4.3 Feedbacks between sediment supply and

tectonics

In the above section, we have separated the effects of tec-
tonics and climate as concavity and steepness responses, re-
spectively. Our concavity changes derived from theory and
their causes are generally consistent with the broad range
of concavities and causes thereof synthesized by Whipple
(2004, p. 161), albeit for bedrock rivers. However, such ob-
servations do not preclude a potential feedback by which in-
creasing tectonic uplift rates may also increase gravel-sized
sediment supply to the channel (Sklar and Dietrich, 2008).
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In other words, the simplified approach of “climate = water-
to-sediment supply, tectonics = base level” may be over-
simplified.

Section 5.2 indicates that as uplift rates increase, the land-
scape surrounding the channel system steepens and erodes
(Roering et al., 1999). Our above solutions for changes in
tectonic uplift rates (Fig. 6b and b3) require only that the
channel excavates the additional sediment from the bed of its
valley. This excavation does not include additional sediment
from the surrounding hillslopes, and steeper landscapes (of-
ten resulting from tectonic uplift) may be expected to pro-
duce a larger fraction of coarse material through landsliding
and a shorter residence for weathering in the shallow sub-
surface (Attal et al., 2015; Carretier et al., 2015; Schildgen
et al., 2016; Sklar et al., 2017). Changing gravel supply can
dramatically alter river long profiles (Savi et al., 2016); there-
fore, an increase in the tectonic uplift rate may lead to both
an increase in channel steepness that is unrelated to climate
and a dampened decrease in concavity due to the increase in
incoming bed-load sediment discharge that increases the al-
luvial response rate, A (Fig. 8). This tight channel–hillslope
linkage challenges the paradigm that channel incision rates
control hillslope morphology and motivates future work into
models of landscape evolution that track and conserve sedi-
ment (Shobe et al., 2016; Sklar et al., 2017).

5.5 Concavity and downstream fining required for

b ∝ Q1/2

It has long been recognized that river channel width scales
with discharge to the 1/2 power,

b ∝ Q1/2. (57)

This observation has been confirmed by a century of field
studies (Lacey, 1930; Leopold and Maddock, 1953; Hey and
Thorne, 1986; Singh, 2003). It has also been the subject
of theoretical approaches to determine the static shape of a
river channel (Savenije, 2003; Millar, 2005). Here we de-
rive a physically based reason for this observation for an
equilibrium-width gravel-bed river.

Equation (16) relates the width of an equilibrium-width
gravel-bed river to discharge, slope, and grain size. Start-
ing with Eq. (16), a slope–area relationship of S = ksA

−θ

(Eq. 51), and the discharge–drainage-area relationship from
Eq. (31), one can write that

b = kbk
7/6
s k

(7/6)θ/PA,Q

A,Q

Q1−(7/6)θ/PA,Q

D3/2
. (58)

This equation demonstrates that channel width is controlled
by water discharge, channel concavity (through the concav-
ity index), and downstream fining. Assuming a tight bound
on channel concavity, as is generally assumed and has been
observed in bedrock channels in the field (Duvall, 2004), al-
though not universally (Whipple, 2004), two main drivers of

Figure 9. In an equilibrium-width self-formed gravel-bed river
channel, the common field observation that river channel width is
proportional to the square root of water discharge may be explained
by a combination of the direct impact of river discharge on channel
width and by downstream fining of bed-material sediment.

channel width remain: water discharge and downstream fin-
ing of gravel-sized sediment (Fig. 9). Increasing water dis-
charge can cause the channel to widen by requiring more
space for the water to flow. Decreasing bed-material grain
size reduces the critical Shields stress for the initiation of mo-
tion, and in order for an equilibrium-width channel to main-
tain a constant ratio of applied to critical Shields stress, the
channel slope must become gentler and/or the channel itself
must become wider. Due to the aforementioned tight bounds
on the concavity index, the rate at which the channel slope
decreases is also fixed, and any additional channel response
to downstream fining must occur through channel widening.

Combining Eqs. (57) and (58) and simplifying the re-
sult produces a solution for a power that relates grain size
to discharge, PD,Q. This demonstrates how grain size must
vary downstream in order to maintain the observed channel-
width–discharge relationship:

D ∝ Q(3−7θ/PA,Q)/9; (59)

therefore,

PD,Q = 3

9
− 7

9

θ

PA,Q

. (60)

The range of physically permissible values for the expo-
nent that relates drainage area to discharge, PA,Q, is 0.5–
1.0 (Costa and O’Connor, 1995; Sólyom and Tucker, 2004).
Combining this range of values with a typical concavity in-
dex of θ = 0.5 produces bounds on the exponent in Eq. (59)
of −4/9 ≤ PD,Q ≤ −1/18: all plausible solutions require
downstream fining to occur in order to reproduce the ob-
served channel-width–discharge relationship (Lacey, 1930).

Using standard values of θ = 0.5 and PA,Q = 0.7, which
is representative for a 1-year flood (Aron and Miller, 1978),
one finds that b ∝ Q1/6D−3/2. In this case, in order to re-
cover the empirical b ∝ Q0.5 relationship, D must be pro-
portional to Q−2/9. Testing this prediction against down-
stream fining data, requires that we convert discharge (Q) to
distance downstream (x). While Sternberg (1875) provides
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reasoning to expect an exponential decay of grain size due
to abrasion with distance downstream from a source area,
this may be approximated by a power-law function (Sklar
and Dietrich, 2006), and downstream fining may also result
from selective deposition (Whittaker et al., 2011). Multiply-
ing PA,Q = 0.7 by the inverse Hack exponent Px,A = 7/4
(Eq. 34) produces the multiplier to convert the grain-size–
discharge relationship to a grain-size–downstream-distance
relationship: D ∝ x0.27. We have not performed a rigorous
analysis of this result, but data from Gomez et al. (2001) from
the braided Waipaoa River in New Zealand are broadly con-
sistent with this exponent.

6 Conclusions

We have produced equations to describe the long-profile evo-
lution of transport-limited gravel-bed rivers by combining
the Exner equation for conservation of volume, the Wong and
Parker (2006) modification of the Meyer-Peter and Müller
(1948) formulation for gravel transport, a Manning-style flow
resistance equation (Parker, 1991), the normal-flow approx-
imation for basal shear stress, the channel-width closure of
Parker (1978), and the continuity equation. The key equa-
tion of this paper is Eq. (20), which captures the dynamics
of a gravel-bed river whose bed shear stress is a multiple
of the critical shear stress for initiation of motion; such sys-
tems are ubiquitous in nature (Phillips and Jerolmack, 2016;
Pfeiffer et al., 2017). Furthermore, bedrock rivers can be-
have as transport-limited systems (Johnson et al., 2009), ex-
tending the applicability of our approach. Transport-limited
gravel-bed river long profiles evolve more rapidly when they
are steeper and/or experience a greater water discharge, and
more slowly when their valleys are wider, as this requires
that they fill more space. We solve Eq. (20) analytically for
the special case in which dz/dt = U – that is, that the river
neither incises nor aggrades and does not respond to tectonic
or base-level forcings. Both this solution and numerical so-
lutions of steady-state rivers with constant uplift (or subsi-
dence) rates have a power-law form, meaning that a power
law can be appropriately fitted to transport-limited river long
profiles.

Our derivation brings to light several significant relation-
ships that may aid further efforts to understand river long pro-
files: (1) the sediment-transport formula for an equilibrium-
width (τ ∗

b /τ ∗
c = constant) gravel-bed river has the stream-

power form proposed by Whipple and Tucker (2002). We
quantify the values of its coefficient and exponents. The slope
exponent is 7/6, and the other exponents relate to the scal-
ing between the drainage area and the geomorphically ef-
fective discharge. (2) Gravel supply to rivers scales with up-
lift rate times contributing drainage area to a power that is
less than 1, significantly modifying the implicit assumption
of Whipple and Tucker (2002) that a uniform fraction of
the sediment that is generated by rock uplift must be trans-

ported as bed load; this moves the expected position of the
transition between detachment- and transport-limited long-
profile evolution farther downstream. (3) Maintaining the ob-
served slope–area scaling often requires that valleys widen
downstream. (4) The water-to-sediment discharge ratio af-
fects channel steepness, while the rate of base-level change
affects channel concavity. This separation may allow the im-
pacts of climate and tectonics to be separately inferred from
channel long profiles, but increases in the uplift rate are often
accompanied by increases in gravel-sized sediment supply
via erosional processes (e.g., landsliding) associated with in-
creasing landscape relief. Therefore, tectonic uplift can drive
changes in long-profile shapes by inducing both base-level
fall (reducing concavity) and an increase in sediment sup-
ply (increasing steepness). (5) The long-observed relation-
ship that channel width increases as the square root of dis-
charge (Lacey, 1930; Leopold and Maddock, 1953) can be
explained through a combination of the direct effect of in-
creasing discharge on equlibrium channel geometry and by
downstream fining, which decreases the critical shear stress
required to mobilize gravel on the channel bed and banks.

In this paper, we have derived a physics-based expression
for the long-profile evolution of transport-limited gravel bed
rivers, whose parameters are determined by theory, experi-
mentation, and field work. We hope that this approach to un-
derstanding gravel-bed rivers provides forward momentum
towards a more formal treatment of sediment transport and
fluvial morphodynamics in river long-profile analysis and
landscape evolution. Furthermore, by combining our deriva-
tion with other observations, we predict relationships among
valley morphology, coarse-sediment production and evolu-
tion, and the power-law scaling between drainage area and
geomorphically effective floods. While rivers are complex,
we hope that these connections with broader pieces of the
geomorphic puzzle can provide a path to build a better the-
ory of fluvial system change and landscape evolution.

Code availability. The GitHub repository at https://github.com/
awickert/grlp (last access: 10 December 2018, Wickert, 2018) con-
tains the “grlp” Python module, which holds functions for both the
analytical and numerical solutions presented here, as well as ex-
ample implementation code to evolve transport-limited gravel-bed
river long profiles.
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Appendix A: Notation

α Angle of water surface and river bed with respect to horizontal degrees or radians
β Gravel production coefficient m3−2Pβ s−1

ǫ Excess bed shear stress at bank-full flow (≈ 0.2) –
γ Angle between down-channel flow direction and down-valley direction degrees or radians
λp Porosity (≈ 0.65) –
λr Roughness length scale (for flow resistance) m
φ Sediment-transport rate coefficient (= 3.97) –
ρ Water density (= 1000) kg m−3

ρs Sediment density (= 2650) kg m−3

τb Bed shear stress Pa
τ ∗

b Dimensionless bed shear stress (i.e., Shields stress) –
τ ∗

c Dimensionless critical shear stress (i.e., critical Shields stress) –
θ Channel concavity index (slope–area space) –
A Drainage area m2
A Alluvial response rate m s−1

AR Rainstorm footprint area m s−1

b Channel width m
bx Distance across valley cross section that is occupied by channel m
B Valley width m
Cz Chézy coefficient (for flow velocity) –
D Grain size
g Acceleration due to gravity (= 9.807) m s−2

h Flow depth m
I Intermittency: fraction of time at geomorphically effective discharge –
kA,Q Coefficient to relate drainage area to water discharge m3−2PA,Q s−1

kb Threshold river width coefficient (≈ 2.61) –
kb,B Ratio between channel and valley width –
kqs Specific sediment-discharge coefficient (≈ 0.0157) –
kQs Sediment-discharge coefficient (= kqskb ≈ 0.041) –
ks Channel steepness index (slope–area coefficient) m2θ

kx,A Coefficient to relate distance downstream to drainage area mPx,A−1

kx,B Coefficient to relate distance downstream to valley width m1−Px,B

kx,Q Coefficient to relate distance downstream to water discharge m3−Px,Q s−1

Kt Sediment-discharge capacity power-law coefficient (= kQsqRA
1−PA,Q

R ) m3−2mt

L River segment length m
mt Drainage area to sediment-discharge capacity exponent (= PA,Q) m3 s−1

nt Slope to sediment-discharge capacity exponent (= 7/6) m3 s−1

Pβ Gravel persistence (resistance to weathering/fining) exponent –
PA,Q Power to relate drainage area to water discharge –
PD,Q Power to relate bed-material grain size to water discharge –
Px,A Power to relate distance downstream to drainage area (Hack exponent) –
Px,B Power to relate distance downstream to valley width –
Px,Q Power to relate distance downstream to water discharge –
q Water discharge per unit channel width (= uh) m2 s−1

q0 Down-channel discharge per unit width (dummy variable: = q or qs) m2 s−1

qR Rainfall flux m s−1

qs Sediment discharge per unit channel width m3 s−1

qs,x̂ Down-valley sediment discharge per unit width m2 s−1

Q Water discharge (= qb) m3 s−1

Qc Sediment-discharge capacity (= Qs if not supply-limited) m3 s−1

Qs Sediment discharge (down-channel) (= qsb) m3 s−1
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Qsin Combined sediment input from all tributaries m3 s−1

Qs0 Upstream boundary condition sediment input m3 s−1

Qs,x̂ Down-valley sediment discharge (= Qs) m3 s−1

S Slope of water surface and river bed (= tanα) –
S Sinuosity (river length/valley length) –
S0 Upstream valley slope boundary condition; sets sediment input –
t Time s
u Mean flow velocity m s−1

U Uplift (or subsidence) rate m s−1

x Down-valley distance m
x0 First (or only) known downstream distance for analytical solution m
x1 Second known downstream distance for analytical solution m
x̂ Down-valley unit vector –
z Valley floor elevation m
z0 Bed elevation at x0 m
z1 Bed elevation at x1 m

Appendix B: River valley width, channel sinuosity,

and sediment balance

B1 Width-resolving Exner equation

In the canonical Exner equation, the one-dimensional nega-
tive divergence in sediment flux is stated to be proportional
to aggradation or incision, as given in Eq. (25). This one-
dimensional form implies that the channel and valley width
are the same (Fig. B1a) and that the valley walls are vertical
and infinite. Such an approximation may not be bad in an ar-
tificial canal or for a rapidly incising river that consistently
cuts a valley that is exactly one channel width. However, the
former case is of less interest to geomorphologists and the
latter case is more common in rapidly incising bedrock land-
scapes, where the rate of vertical incision greatly outpaces
that of lateral erosion and valley widening.

In order to understand the evolution of a valley, one can
first rewrite Eq. (25) through the definition of qs (Eq. 2) as
follows:

∂z

∂t
= − 1

1 − λp

∂(Qs,x̂/b)

∂x
. (B1)

Here, Qs,x̂ is sediment discharge in the down-valley direc-
tion, which is always parallel to the down-channel direction
when the valley and channel widths are the same. Explicit
inclusion of channel width, b, provides a space to substitute
the valley width, B, as the scale for the amount of material
that must fill or be emptied from a cross section in order for
the river to aggrade or incise:

∂z

∂t
= − 1

1 − λp

∂(Qs,x̂/B)

∂x
(B2)

= − 1

1 − λp

(

1

B

∂Qs,x̂

∂x
− Qs,x̂

B2

∂B

∂x

)

.

This equation corresponds to Fig. B1b. For simplicity, this
figure is drawn with a constant valley width, meaning that the
second term on the right-hand side becomes 0 and the amount
of time required to aggrade or incise is linearly dilated from
that in Eq. (B1) (Fig. B1a) by the ratio B/b.

In order to solve this equation, we require a relation-
ship that links the down-valley sediment discharge, Qs,x̂ ,
to the downstream sediment discharge, Qs. Both are ob-
viously identical where the channel and valley are aligned
(Fig. B1a, b). In the next section, we demonstrate that Qs,x̂ =
Qs for any arbitrary channel path that starts at the upstream
end of a valley segment and ends at its downstream end. This
is necessary for the final step to convert Eq. (B2) into Eq. (1).

B2 The equivalence of downstream and down-valley

discharge

Our main goal is to understand the evolution of valley net-
works, as channels perform the geomorphic work but val-
leys are the geomorphic units that evolve and constitute the
broader landscape. In alluvial systems, valley geometries are
not always identical to those of the channel networks that oc-
cupy them (Fig. B1), although they follow the same network-
scale structure and connectivity. This possibility for non-
alignment requires us to abandon the convenient choice of
a channel-aligned coordinate system, typically used when
solving for water or sediment discharge, and instead define
our x and y coordinates to be down- and cross-valley, re-
spectively (Fig. B2).

For an angle γ between the down-valley and down-
channel directions, a trade-off exists between the channel
width occupying that cross section and the amount of sed-
iment per unit down-valley width crossing it. Sediment dis-
charge per unit width – which in map view can be represented
by a vector – is reduced when the flow does not align directly
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Figure B1. Our equations for sediment transport follow the river,
but geomorphic evolution occurs along valley networks. In some
cases (a), these are perfectly aligned and have the same width. How-
ever, if the river is aggrading and the valley walls are not vertical,
and/or the river is eroding its valley walls at a rate that is comparable
to or faster than its rate of vertical incision, (b) the river may carve
a valley that is wider than its channel. (Here, the channel is pictured
in the center, but it need not be positioned there.) In creating a wide
valley, the river may move laterally, leading to (c) downstream and
down-valley flow directions that are not aligned. While this depicts
a single-thread channel, this same differentiation between channels
and valleys is applicable to multi-thread channels.

Figure B2. Down-valley discharge of water and sediment in each
cross section is equal, and equals the down-channel discharge. Here,
this is demonstrated geometrically, and results from discharge per
unit width decreasing as the flow becomes more oblique to the val-
ley cross section line, but the fraction of the total cross-valley line
occupied by river channel increases in an inversely proportional
manner. This remains true even for up-valley flow, which must be
balanced with down-valley flow for water to be able to move from
the upstream to the downstream ends of the valley. The direct down-
valley discharge of water or sediment per unit width is given by q0.
In this schematic, discharge is given by a set of boxcar-function ap-
proximations (mean discharge across width) for the sake of simple
illustration. While we use a single-thread river for simplicity, this
same relationship holds for partitioning of flow and sediment trans-
port across a multi-thread channel.

with the valley.

qs,x̂ = qs cosγ. (B3)

For the same angle γ , the width of channel across the valley
cross section increases:

b
x̂

= b

cosγ
. (B4)

Through continuity, Qs = qsb (Eq. 2). The cosγ terms in the
above two equations cancel out, thus demonstrating that

Qs,x̂ = qs cosγ
b

cosγ
= qsb = Qs. (B5)

If the channel crosses the valley multiple times (Fig. B2, top
two and bottom plots), the total sediment discharge is simply
the sum of that in these cross sections, and this can be solved
by summing across y, the cross-valley direction. Similarly,
partitioning of flow and sediment across the branches of a
multi-thread channel may be accounted for by summing qs,x̂
across y.

This geometric argument contains one mathematical
caveat. Where a channel flows directly across the valley (i.e.,
in the y direction), the solution for Qs is undefined. We ad-
dress this problem by assigning a value of 0 to this undefined
solution, based on our physical knowledge that flow that is
neither up-valley nor down-valley will produce no discharge
in the along-valley orientation.

By considering a continuity solution rather than a geomet-
ric one, it is possible to reason that our treatment of the above
caveat is correct. In a system at steady state, each valley cross
section must transmit downstream as much discharge as it is
provided by the cross section immediately upstream. There-
fore, discharge through every cross section must be equal,
regardless of channel orientation. If this is the case, then a
channel segment directed in line with the valley must trans-
mit just as much water and sediment as a channel segment
that is at an oblique angle to the valley axis. As a result,
Qs,x̂ ≡ Qs.

Finally, while sediment (or any) discharge remains path-
independent, the magnitude of this discharge is path-
dependent. A more sinuous river course decreases channel
slope (Eq. 5), and thus the driving stress for sediment trans-
port. Therefore, the overall magnitude of both sediment dis-
charge (Eqs. 18 and 27) and valley long-profile evolution
(Eqs. 20 and 28) decrease with increasing sinuosity.

Appendix C: Directionality

The full Meyer-Peter and Müller (1948) equation, with di-
rectionality included, is as follows:

qs =















0 if |τ ∗
b | ≤ τ ∗

c

−sgn
(

dz
dx

)

φ
(

ρs−ρ
ρ

)1/2

g1/2
(

|τ ∗
b | − τ ∗

c

)3/2
D3/2 if |τ ∗

b | > τ ∗
c .

(C1)
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Here, sgn is the signum function (Eq. C2), and all other vari-
ables are described in Sect. 2.1 add Appendix A. The signum
function, sgn, is defined as

sgn([value]) =











−1 if [value] < 0,

0 if [value] = 0,

1 if [value] > 0.

(C2)

One additional difference between Eqs. (C1) and (3) is that
Eq. (C1) incorporates the magnitude of τ ∗

b as an additional
result of relaxing the assumption that the river slopes down-
wards in the positive x direction.

Including explicit directionality is not common when rep-
resenting fluvial geomorphology mathematically. Slope, S,
is typically used as a convenient shorthand for both its mag-
nitude and direction. While we follow this convention in
the main text to streamline the explanation, we include this
explanation here because we have incorporated the signum
function into the more general derivation, which accounts for
directionality. This inclusion has allowed us to (1) relax the
assumption that the downslope direction is known; (2) write
the numerical model to self-consistently handle changes in
flow direction; and (3) separate the sign and magnitude of
the slope in equations that include a slope term raised to a
power, thereby preventing a spurious imaginary part of the
solution.

Appendix D: Numerical solutions

D1 Threshold-shear-stress river

Equation (20) has the form of a nonlinear advection–
diffusion equation that can be rewritten for a numerical im-
plementation as follows:

∂z

∂t
= kQsI

S
(

1 − λp
)

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

1/6

(D1)

[

7

6

Q

B

∂2z

∂x2
+ 1

B

∂Q

∂x

∂z

∂x
− Q

B2

∂B

∂x

∂z

∂x

]

+ U.

For arbitrary Q–x relationships and valley cross-sectional
geometries (B(z(x, t))), and for solutions in which the val-
ley geometry or discharge change with time (B(z(x, t), t)),
a numerical solution becomes necessary. The above form of
Eq. (20) can be solved semi-implicitly as

zi,l = (D2)

− 1t

4(1x)2

kQsI

S
(

1 − λp
)

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

21x

∣

∣

∣

∣

1/6

[

14

3

(

Qi,l + Qi,l+1

Bi,l(zi,l) + Bi,l+1(zi,l∗ )

)

(

zi+1,l+1 − 2zi,l+1 + zi−1,l+1
)

+
(
(

Qi+1,l + Qi+1,l+1
)

−
(

Qi−1,l + Qi−1,l+1
)

Bi,l(zi,l) + Bi,l+1(zi,l∗ )

)

(

zi+1,l+1 − zi−1,l+1
)

−
(Bi+1,l (zi+1,l )+Bi+1,l+1(zi+1,l∗ ))

−(Bi−1,l (zi−1,l )+Bi−1,l+1(zi−1,l∗ ))
(

Bi,l(zi,l) + Bi,l+1(zi,l∗ )
)2

(

Qi,l + Qi,l+1
)(

zi+1,l+1 − zi−1,l+1
)

]

+ zi,l+1 − U1t.

Here, i is the x index, l is the t index, and 1x and 1t are the
spatial step and time step, respectively, assuming a uniform
grid in space. The subscript l∗ of z indicates that this term
will be part of a Picard iteration: that is, it starts at l and
approaches l+1 as multiple iterations of the solution provide
sequentially better estimates of zl+1.

Time-averaged values of B and Q are chosen to approx-
imate conditions during the solution to the given time-step.
Each of these can be simplified if Q is known (as it typically
is) or varies gradually in t and/or B varies gradually in both
z and t . Using notation that they are constant in time

zi,l = (D3)

− 1t

4(1x)2

kQsI

S
(

1 − λp
)

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

21x

∣

∣

∣

∣

1/6

[

14

3

(

Qi

Bi

)

(

zi+1,l+1 − 2zi,l+1 + zi−1,l+1
)

+ Qi+1 − Qi−1

Bi

(

zi+1,l+1 − zi−1,l+1
)

− Bi+1 − Bi−1

B2
i

Qi

(

zi+1,l+1 − zi−1,l+1
)

]

+ zi,l+1 − U1t.

This equation may be further simplified by moving one of
the (1/Bi) terms outside of the square brackets.

For an implicit solution, the terms inside the square brack-
ets, plus zi,l+1, constitute the stencil. The slope to the 1/6
power term outside of the stencil is a weak nonlinearity, and
nonlinearities may also be introduced by changes in B with z

and/or t . The uplift term modifies a Dirichlet boundary con-
dition at the downstream end, and is analogous with base-
level rise and/or fall.

A Neumann boundary condition of sediment-discharge in-
put is used to set the slope at the upstream boundary using a
“ghost-point” approach. This is solved for a defined Qs by
rearranging Eq. (18) to define an upstream-boundary valley
slope:

S0 = sgn(q)

(

S

kQsI

Qs

Q

)6/7

. (D4)

This equation demonstrates that slope increases with increas-
ing sediment to water supply ratio, in agreement with the
general principle of Lane’s balance (Lane, 1955). For a do-
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main that begins at 0,

S0 = − dz

dx

∣

∣

∣

∣

x0

≈ z1 − z−1

21x
. (D5)

This equation can be rearranged to solve for the outside-
domain elevation, z−1 in terms of values inside the domain,
and both the stencil and the right-hand-side column vector
for the tridiagonal matrix solution can be updated accord-
ingly.

D2 Valley-width-controlled river

The general discretization of Eq. (28) for the long-
profile evolution of a valley-width-confined transport-limited
gravel-bed river is as follows:

zi,l = (D6)

− K01t

(

K1

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

21x

∣

∣

∣

∣

7/10 1

D
9/10
i

Q
3/5
i

b
3/5
i

− τ ∗
c

)1/2

D
1/2
i

[∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

21x

∣

∣

∣

∣

−3/10
(

3

5

D
1/10
i

Q
2/5
i b

3/5
i

(

Qi+1 − Qi−1

21x

)(

zi+1,l+1 − zi−1,l+1

21x

)

− 3

5

Q
3/5
i D

1/10
i

b
8/5
i

(

bi+1 − bi−1

21x

)(

zi+1,l+1 − zi−1,l+1

21x

)

+ 7

10

Q
3/5
i D

1/10
i

b
3/5
i

(

zi+1,l+1 − 2zi,l+1 + zi−1,l+1

(1x)2

)

− 9

10

Q
3/5
i

D
9/10
i b

3/5
i

(

Di+1 − Di−1

21x

)(

zi+1,l+1 − zi−1,l+1

21x

)

)

+
(

K1

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

21x

∣

∣

∣

∣

7/10 1

D
9/10
i

Q
3/5
i

b
3/5
i

− τ ∗
c

)1/2

(

Di+1 − Di−1

21x

)]

+ zi,l+1 − U1t.

Here, K0 and K1 are constants standing in for sets of
sediment-transport-related terms in Eq. (28). This relation-
ship is more nonlinear than that for the threshold-shear-stress
river, above.
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