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Long-range-corrected hybrids including random phase
approximation correlation
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We recently demonstrated a connection between the random phase approximation �RPA� and
coupled cluster theory �G. E. Scuseria et al., J. Chem. Phys. 129, 231101 �2008��. Based on this
result, we here propose and test a simple scheme for introducing long-range RPA correlation into
density functional theory. Our method provides good thermochemical results and models van der
Waals interactions accurately. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3090814�

I. INTRODUCTION

We recently demonstrated that the ground state correla-
tion energy associated with the random phase approximation
�RPA�1–8 is connected with an approximate ring coupled
cluster doubles �rCCD� approach. The RPA excitation prob-
lem requires the solution of

� A B

− B − A
��X

Y
� = �X

Y
�� , �1�

where the matrices A, B, X, and Y are of dimension ov
�ov, with o and v being the number of occupied and unoc-
cupied spin-orbitals, respectively. The plasmonic formula2

for the RPA ground state correlation energy is

Ec
RPA = 1

2Tr�� − A� . �2�

As shown in our previous paper,8 Eq. �1� is equivalent to

B + AT + TA + TBT = 0, �3�

an approximate coupled cluster doubles equation with exci-
tation amplitudes T=YX−1. Further, the RPA correlation en-
ergy can be evaluated from the CC-like expression

Ec
rCCD = 1

2Tr�BT� = 1
2Tr�� − A� . �4�

The excitation amplitudes T imply the existence of an
underlying wave function in RPA. This lets us follow Stoll
and Savin9 and Savin10 and introduce range separation be-
tween density functional theory �DFT� and wave function
theory with RPA for the long-range �LR� correlation. Range
separation is a powerful technique11–19 that can improve
upon both standard wave function methods and semilocal
exchange-correlation �xc� functionals. Range-separated DFT
partitions the electron-electron interaction operator into short
range �SR� and LR components as

, �5�

and typically �but not always; see Refs. 13 and 19� treats the
SR �LR� component with semilocal �wave function� approxi-
mations.

Toulouse et al.20 recently proposed a range-separated
treatment of RPA via the adiabatic connection fluctuation-
dissipation theorem,3,5,21 combining a SR semilocal xc func-
tional with LR full RPA. Consistent with other works,17,18

they found that their LR correlation energy has a relatively
weak basis set dependence. They also removed some arti-
facts of full-range RPA, including a “bump” in the
symmetry-restricted singlet Be2 dissociation curve.

II. THEORY

We propose a simpler LR RPA based on the connection
to CC theory discussed above, which avoids a costly adia-
batic connection integral. We evaluate LR RPA as a one-shot
correction to a self-consistent generalized Kohn–Sham22

�GKS� calculation combining LR exact �Hartree–Fock-type
�HF�� exchange and SR local spin density approximation
�LSDA� xc. Our xc energy is

Exc = Exc
SR-LSDA + Ex

LR-HF + cRPAEc
LR-RPA. �6�

We evaluate Ec
LR-RPA with Eqs. �3� and �4� and build A and B

from the LR two-electron integrals and the GKS spin-
orbitals and orbital energies. The coefficient cRPA is dis-
cussed below.

In this work, we focus on what we will refer to as direct
RPA. In the �real� canonical spin-orbital basis we use
throughout this paper, the direct RPA matrices are

Aia,jb = ��a − �i��ij�ab + �ib�aj	 , �7a�

Bia,jb = �ij�ab	 . �7b�

Here � is a GKS orbital energy. Indices i and j indicate
occupied spin-orbitals, a and b indicate virtual spin-orbitals,
and �ij �ab	 is a two-electron integral in Dirac’s notation. For
real orbitals, note that �ib �aj	= �ij �ab	. What we refer to as
full RPA uses antisymmetrized two-electron integrals in
Eq. �7�.

For practical calculations, direct RPA has the great ad-
vantage that the correlation energy is guaranteed to be real ifa�Electronic mail: guscus@rice.edu.
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the orbitals obey the Aufbau principle. This is not true of full
RPA, where instabilities in the reference determinant23 can
produce a complex correlation energy.3 In cases such as Be2

where the reference has triplet instabilities,24 one may have
to limit full RPA to singlet excitations, while with direct RPA
no such restriction is needed.

An additional advantage of direct RPA is that it reduces
the dimension of the problem compared to full RPA �rCCD
with antisymmetrized two-electron integrals�. Consider the
block of B corresponding to spatial orbitals �I, �A, �J, and
�B and spin ordering ��, ��, ��, and ��. The B matrix for
full RPA and closed shells becomes

BIA,JB = 

J − K J 0 0

J J − K 0 0

0 0 0 − K
0 0 − K 0

� , �8�

with J= �IJ �AB	 and K= �IJ �BA	. For open shells �unre-
stricted�, the J and K entries in different blocks will gener-
ally differ. Direct RPA �K=0� zeros the “spin-flip” block of
B containing only −K, reducing the dimension by a factor of
two compared to full RPA. For both closed and open shell
systems, we can diagonalize the remaining upper block of B
with the unitary transformation

Q =
1
�2

�1 1

1 − 1
� . �9�

For closed shells, Q is a spin-adaptation operator. The result-
ing 2�2 diagonal matrix for direct RPA has only one non-
zero eigenvalue, corresponding to singlet excitations. Since
only the singlet block of B is nonzero, we only need the
singlet part of T to evaluate the correlation energy of Eq. �4�.
Additionally, in blocks where B=0 the ring CCD equation
�Eq. �3�� becomes

AT + TA = 0 . �10�

Because the direct RPA A is positive definite,8 the only so-
lution is T=0. Thus the spin-flip components of T vanish,
and in the closed shell case all triplet components of T van-
ish. Triplets do not contribute to direct RPA.

A third advantage of direct RPA is that the correlation
energy expression is well defined, unlike in full RPA.1 While
in both direct and full RPA, we have Tr�BT�=Tr��−A�,8

only in direct RPA is the prefactor in the correlation energy
unambiguously 1/2. For full RPA, the plasmonic formula
suggests the prefactor should be 1/2, while the connection to
CC theory suggests that the prefactor should be 1/4. Moszyn-
ski et al.25 presented another alternative full RPA energy ex-
pression that uses the plasmonic prefactor of 1/2 but sub-
tracts the second-order MP2 correlation energy.

The elimination of exchange integrals in direct RPA may
appear artificial from a wave function perspective, and in fact
the wave function underlying direct RPA can violate the
Pauli exclusion principle. However, direct RPA can be rigor-
ously derived by applying the adiabatic connection
fluctuation-dissipation theorem to the Kohn–Sham noninter-

acting reference system.3,5 On balance, LR direct RPA from
the GKS reference appears to be a practical ansatz for LR
correlation.

III. COMPUTATIONAL DETAILS

We have implemented our expressions into the develop-
ment version of the GAUSSIAN suite of programs.26 Matrices
A and B are evaluated in the full spin-orbital basis set with-
out symmetry adaptation. We use the range-separated LSDA
correlation functional of Paziani et al.27 In what follows,
“LC-�LDA” denotes GKS calculations using SR LSDA xc
and LR HF exchange. �Note that in our previous papers, this
acronym denoted SR LSDA exchange, LR HF exchange, and
full-range LSDA correlation.� Adding LR direct RPA corre-
lation as described above results in “LC-�LDA+dRPA.”
The “dRPA” acronym by itself denotes conventional, full-
range �i.e., not range-separated� HF exchange and direct RPA
correlation; this dRPA energy is evaluated from self-
consistent Kohn–Sham orbitals and orbital energies calcu-
lated with the Perdew–Burke–Ernzerhof �PBE� generalized
gradient approximation �GGA� xc functional.28 Open shell
systems are treated spin unrestricted. Equation �3� is solved
iteratively using direct inversion in the iterative subspace
�DIIS�29,30 for coupled cluster. Correlated calculations use
frozen core electrons.
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Like other workers,9–19 we select the range separation
parameter � empirically. Our standard LC-�LDA+dRPA
calculations set cRPA=1 in Eq. �6�. We also explore treating
cRPA as an empirical parameter.

IV. NUMERICAL RESULTS

Figure 1 shows the basis set dependence of LC-�LDA
+dRPA for the total energy of N atom �top� and the disso-
ciation energy of N2 �bottom�. As in previous work,17,20,32

the LR correlation has a much weaker basis set dependence
than full-range correlation. Calculations at the relatively
large �=1.2 bohr−1, which incorporate a larger fraction of
direct RPA correlation, converge more slowly with basis set
size.

Figure 2 shows counterpoise-corrected dissociation
curves of van der Waals dimers He2, Ne2, and Ar2, evaluated
in the large aug-cc-pV5Z basis set.33 Accurate curves are
from Ref. 34. LC-�LDA and LC-�LDA+dRPA use �
=1.2 bohr−1. Rescaling the LR dRPA correlation with cRPA

=1.5 significantly improves the results, suggesting that the
rescaling primarily corrects for beyond-dRPA correlation ef-
fects rather than basis set incompleteness. The weak He2

binding of standard �full-range� dRPA is increased by using
BP86 rather than PBE orbitals and orbital energies, consis-
tent with Ref. 5 �not shown�.

Table I shows mean absolute errors in the small AE6 and
BH6 sets of 6 atomization energies and 6 reaction barrier
heights,35 the G2/97 set of 148 heats of formation36 and the
HTBH38/04 and NHTBH38/04 sets of 38 hydrogen-transfer
and 38 non-hydrogen-transfer barrier heights.37,38 Calcula-
tions use the 6-311+G�2d ,2p� basis set. G2/97 calculations
use B3LYP /6-31G�2df , p� geometries and vibrational
frequencies;39 other geometries and reference values are
taken from Refs. 35–38. Results are presented for the ther-
mochemically optimal �. LC-�LDA+dRPA is quite accu-
rate for thermochemistry and kinetics, particularly with the
empirical rescaling cRPA=1.5. It improves upon the underly-
ing LC-�LDA, giving results comparable to the accurate
LC-�PBE combination of range-separated GGA exchange
and full-range GGA correlation.31 Adding LR dRPA to
LC-�PBE appears to give significant double-counting of cor-
relation �not shown�. However, combining LR dRPA with a
SR GGA �as in Ref. 20� may provide further improvements.

One of our goals is to apply range-separated dRPA to
metallic systems. This is possible because dRPA is robust as
the band gap closes. Figure 3 illustrates LC-�LDA+dRPA
in one such prototypical system. The figure plots the energy
of spin- and symmetry-restricted aug-cc-pVTZ H2 as a func-
tion of H–H bond length. The MP2 correlation energy di-
verges as the bond length increases and the HOMO-LUMO
gap approaches zero. Full RPA �not shown� yields nonreal
correlation energies for bonds stretched beyond the Coulson–
Fischer point. In contrast, the LC-�LDA+dRPA energy is
real and finite at all bond lengths. LR dRPA does not capture
all of the nondynamical correlation present in stretched sym-
metric singlet H2, and the dissociation limit is thus predicted
too high in energy. The functional also overestimates the
energy near equilibrium, especially with the empirical cRPA

rescaling. However, there is a definite improvement over
both LC-�LDA and MP2.

TABLE I. Mean absolute errors �kcal/mol� in AE6 atomization energies,
G2/97 heats of formation, BH6 and HTBH38/04 hydrogen-transfer reaction
barrier heights, and NHTBH38/04 non-hydrogen-transfer barrier heights.
6-311+G�2d ,2p� basis set. � in bohr−1.

Method � AE6 G2 BH6 HT NHT

LC-�PBEa 0.4 5.5 4.2 1.2 1.3 2.0
LC-�LDAb 0.5 5.8 7.0 2.3 3.0 4.4
LC-�LDA+dRPA 0.7 5.6 6.2 1.8 2.3 3.5
LC-�LDA+dRPAc 1.2 4.0 4.4 1.2 1.6 3.5

aReference 31.
bSR LSDA xc.
ccRPA=1.5.
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The addition of LR RPA correlation to range-separated
hybrid density functionals is a promising route to systemati-
cally incorporating nonlocal correlation effects into DFT.
LC-�LDA+dRPA can be evaluated in O�N4� time via
Cholesky decomposition of A and B. It is robust to unstable
and degenerate reference states and shows promise for sys-
tems from metals to covalent bonds to van der Waals com-
plexes.
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