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1. Introduction



Adapting C.K. Peng’s convention [R1] we assigned

A DNA sequence mapped in this way resembles a walker staggers along a one 
dimensional path randomly and whereupon the second moment of the

fluctuations of the random walk can be calculated.

u(i) = +1 for purines       (A, G)

u(i) = －1 for pyrimidines (C, T)

The DNA sequence “AGGCTTGAACTTAGGATTCG…..” is mapped into
“1, 1, 1, -1, -1 ,-1, ,1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, 1,….”.

2. Long range correlation measurement in a DNA sequence



Define the “net displacement” y as:
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we may get the following landscape structure:
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We may then calculate the root-mean-square fluctuations of various 
nucleotide distances l as:
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where the quantity Δy(l) is defined as 
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When F(l) is plotted against l the diagram is seen to 
be linear on the logarithmic scale. αllF ~)(

α > 0.5

There shows long range correlation 
in a sequence.

α = 0.5

There shows a random sequence 
without correlations 

α > 0.5

α = 0.5
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► As it was suggested by Stephan Roche et al. [R2] Hurst’s analysis was argued 
to be more reliable in the determination of the precise rescaling coefficients. 

► Hurst’s analysis manages to diminish “patchiness” structure [1,2] in a much
more sophisticate fashion.

Nn ≤≤1

With a given sequence of size N the net displacement x(n) of 
the random walker after n steps in a row is 
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The net displacement difference between the two occasions 
when the random walker is either on the position m or on 
(m+k) is defined as

Δx(m,k) = x(m+k)–x(m) 

Rescaled variables X(m, k) can thus be defined as the following

(5)
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By doing such kind of an overall subtraction a general trend of asymmetrical 
concentration of purines and pyrimidines is greatly diminished. The next step is to 
find the maximum and minimum values of the rescaled value X(m, k) within the 

range 1 ≤ k ≤ n and calculate the difference, S(m, n), between them.
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Average values obtained from these differences, S(m, n) for 
1 ≤ m ≤ N–n, is calculated for different window length n. 
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Finally the Hurst’s exponent H is defined in the equation (9), 
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where σ2 (n) is the standard deviation of u(i) over steps of length n and 
R(n) is known as the rescaled range function. 



Sequences generated from the ordinary Brownian motion show H = 0.5, a 
typical value for sequences without long-range correlations. Whereas H > 0.5 
is expected for a long range correlated sequence. 

a random sequence without long range correlation.H = 0.5

H > 0.5 a sequence with long range correlation.

Rescaled range function R(n) versus n. The 
measured Hurst exponents are 0.61, 0.52, and 
0.03 respectively for sequences taken from the 

first chromosome of Saccharomyces 
cerevisiae, a random sequence and a periodic 

array. Both the random sequence and the 
periodic sequence are of the length 100000 bp. 

In this figure the curve for Saccharomyces 
cerevisiae is drawn in pink color, the curve for 

the random sequence in black color, and the 
curve for the periodic sequence in blue color.



Number of S.C. 
chromosome Length (bp) Hurst 

exponent
DFA 

exponent
1 230208 0.61

0.62
0.60
0.63
0.60
0.62
0.63
0.60
0.59
0.61
0.63
0.61
0.63
0.61
0.61
0.60

0.67
2 813178 0.66
3 316616 0.67
4 1531916 0.67
5 576869 0.66
6 270148 0.69
7 1090946 0.67
8 562642 0.67
9 439885 0.68
10 745666 0.66
11 666454 0.68
12 1078174 0.67
13 924429 0.67
14 784331 0.68
15 1091287 0.67
16 948062 0.66

Hurst exponents and 
DFA exponents 
calculated from S.C. 
chromosome.



3. Charge Transfer in DNA

The primary structure of a 
DNA duplex with four 

nucleotides. The elliptical 
loops show the overlap of 

the πbonds along the base 
stacking direction.

Backbone Backbone

Nucleotide

Hydrogen 
bonds



1. In a sense we are not able to construct a sensible model of physics at this 
stage in order to explain the real physical conduction mechanism but 
rather we are here to provide various presentations of data analysis
according to the tight-binding model which has been extensively utilized 
for many authors. [R3, R4, R5].

2. This type of research should be regarded as a gateway to the real physics.
3. Many averaged quantities obtained through the application of the tight-

binding model can in principle be regarded as characteristic quantities of 
various DNA sequences. 

Factors that affects charge transfer through a DNA chain:
1. Mechanical stress when a DNA chain is fastened between two 

electrodes for measurements.
2. The order of complexities in a sequence.
3. Local density distributions of different nucleotides.
4. The presence of neighboring water molecules and counter ions.
5. Temperature.
6. Many others.

Our application with the tight-binding model:



Tight-binding model

The simplest effective Hamiltonian describing the propagation of a 
hole in the DNA chain is [R3, R6, R7] :
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1. We made the same choice with reference [R3] for the hole site 
energies εn which are the energies required to excite an electron 
from corresponding nucleotide bases ,εA = 8.24 eV,εT = 9.14 eV,
εC = 8.87 eV, and εG = 7.75 eV (A = adenine, T = thymine, C = 
cytosine, and G = guanine). 

2. The hopping integral t, simulating the π－π stacking between 
adjacent nucleotides and is the hopping probability amplitude 
between the neighboring sites, is taken to be 1 eV in all calculations. 



By proper rearrangement the Schrödinger equation can then be transformed 
into the following equation.
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The function is the projection of a eigenstate wave function 

on the nth site and can be written as 

These projected functions are related through the following equation:
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The transmission coefficient TN(E) which shows the probability of tunneling 
electrons through the N-site DNA chain is defined as 

(15)

with P = MNMN-1∙∙∙M1 and Mn’s are 2 × 2 matrices as 
defined in the equation (14). 

The energy εm is the boundary energy assumed on the 
edge connecting points of two electrodes. It is taken to be 
the ionization energy of the guanine base, εm = εG. 
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(a) Transmission coefficients TN(E) as the function of energy E are calculated 
from two sequence chains taken from the first chromosome of Saccharomyces 
cerevisiae. Their lengths are N =60 and 120. 

(b) Transmission coefficients TN(E) as the function of energy E calculated from a 
random sequence with N = 60 and 120 are shown here for comparison.

(a) (b)



For each sequence of length L we calculate TN(E,i) for every piece of segment 
chain with width N and starting from the site i. Calculations were carried out from 
i = 1 to (L-N+1). In a sense the whole DNA sequence on a chromosome is taken to 
be a complete statistical ensemble. Afterward an integrated value, S[TN(E, i)], over 
an energy range E = 5.75~9.75 eV (ΔE = 4 eV) is computed [R5].
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An averaged characteristic quantity can thus be defined as
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where M = L – N + 1 

a well-defined energy range for a complete DNA sequence from a chromosome. 
The value avNT defined in the Eq. (17) is an aggregated average quantity over



Averaged quantity avNT calculated from 16 chromosomes of Saccharomyces cerevisiae are

shown in the figure. Much better conductivity of all sixteen chromosomal DNA chains are 
observed over a wide range of N when compared with values calculated from a random 
sequence.  



4. Electronic wave functions in a DNA sequence

Charge conduction in DNA chains based on the tight binding model is shown a 
promising approach for discussion. It is then profitable to reveal in some detail 
patterns of electronic wavefunctions which might provide some indications or 
clues for further interpretations. 

In order to simplify our calculation we take the same strategy as 
adopted in the [R4]. Site energies εn are assigned 0.5 eV for purines
and -0.5 eV for pyrimidines. This kind of oversimplification trims 
away detailed energy variations on all sites along a sequence chain 
but retain the feature of complexities on sequential order of two 
different types of nucleotide bases.

εn = 0.5 eV for purines A and G

εn = - 0.5 eV for pyrimidines C and T



In order to calculate electronic wave functions in a DNA sequence of length N bp we 
transform the equation (5) into a matrix equation
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010 == +NψψElectrons are assumed to be bound in the sequence so that on two

boundary end sites are set. 

ψ

with length N are thus obtained. 

All component values of the wave function on all sites for a sequence chain
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Example patterns of electronic eigenstate wave functions Nψ

eigenenergies,
for two different

E = -1.271 eV and E = -0.033 eV, are shown in this figure.

A sequence chain of length N = 300 is taken from the first chromosome for

the calculation of Nψ



SC1 sequence 
E = -1.57940 MeV

random sequence 
E = -1.567070 MeV



Eigenstate wave function patterns are seen quite sensitive to the eigenenergy. 

electronic probability distribution 

By computing the absolute square values of Nψ on all sites we can have the

2)( nnP ψ=

which characterizes charge conduction through the chain. 

Appearances of these probability distributions are so diverse that 
averaged characteristic quantities are needed for comparisons of

segment chains from different DNA sequences. 

For each probability distribution obtained with an eigenenergy E
we define a mean radius

∑
=

=
N

n
EP EnnPr

1
),(

(19)

(20)

to show an overall central position of a distribution function P(n,E). 



This quantity, P(n,E), is then used to calculate
the second moment of the distribution D2(E) . 

( )
2

1

2 ),()( ∑
=

−=
N

n
EPrnEnPED (21)

D2(E) is the measure of distribution dispersion which characterizes the 
conductivity behavior along the chain on an eigenstate of energy E. 

More dispersed distributions denote more delocalized wave functions 
and implies better ability of electronic conductions.

The square root values of the second moment D2(E) are averaged 
through all eigenenergies and all segment chains from a complete
DNA sequence to define an averaged value Dave. 

Subsequently values of standard deviation σ for all 
chromosomes are also calculated.



Data Dave [bp] σ [bp]

S.C.1 22.81 14.80

S.C.2 23.46 15.21

S.C.3 22.50 14.65

S.C.4 23.27 15.07

S.C.5 22.87 14.74

S.C.6 23.32 15.14

S.C.7 23.22 15.13

S.C.8 22.75 14.49

S.C.9 23.35 15.37

S.C.10 22.98 14.94

S.C.11 23.26 15.00

S.C.12 23.38 15.14

S.C.13 23.19 14.95

S.C.14 23.18 14.92

S.C.15 23.13 14.88

S.C.16 23.15 14.96

Random 20.14 13.17

Period 72.50 14.15

List of averaged second moment 
Dave and its standard deviation (σ)
are shown here. According to the 

data shown in this table long range 
correlated sequences from living 
cells indeed bear slightly better 

ability of charge conduction than a 
random sequence. A periodic 

sequence is expected to be the best 
conductor in this case.





5. Conclusions
1. It is profitable to design as many as possible methodologies to probe DNA’s 

for further understandings on life phenomena as well as the natural 
evolution of life forms on the earth.

2. Base upon the Hurst exponent analysis and the detrend fluctuation analysis
(DFA) we have confirmed long range correlations on DNA sequences from
the Saccharomyces cerevisiae genome. 

3. Base upon the transmission coefficient analysis and study of overall 
averaged dispersion of wave functions we conclude that DNA sequences 
from the Saccharomyces cerevisiae genome do indeed manifest better 
ability of charge conduction statistically when compared with a random 
sequence. 

4. Data presented in this talk are from real DNA sequences that survived from 
harsh natural evolution process. Charge conduction ability is strongly 
affected by order arrangement of four different types of nucleotide bases. 
Better charge conductivity promises better damage recognition efficiency 
and may be better chance of survival through cruel natural environment. 
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