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Abstract. Ultrafine smoke particles stick together to form chain-like aggregates. We find 
that the particle density has long-range correlations of the same form in iron, zinc or silicon 
dioxide aggregates. The correlation data suggest a power-law spatial dependence giving a 
Hausdorff dimension between 1.7 and 1.9. We discuss the consistency of these results with 
a model based on percolation. We also compare our results with a random-walk model, 
which has a nominal Hausdorff dimension of 2. 

1. Introduction 

Certain extended physical systems (Fisher 1974) such as a fluid near its critical point 
have a fluctuating density p ( r )  whose spatial correlations extend to arbitrarily long 
distance. In such cases the correlations typically obey a characteristic power law 

(P ( r )P (0 ) ) - (p (0 ) )20Cr -A  (1) 

over a large range of r. The exponents A in such power laws often have two striking 
features. First, in contrast to most power laws one encounters, A is usually not a simple 
fraction arising from dimensional considerations: it is ‘anomalous’. Second, A is 
typically unaffected by a continuous alteration of the parameters of the system: it is 
‘universal’. 

Recently ‘anomalous’ exponents like A have been discovered in a remarkably broad 
range of physical systems. The best known examples are extended matter at a 
second-order phase transition such as the liquid-gas critical point mentioned above. 
Here the observed power laws are manifestations of a symmetry known as the 
renormalisation group. This is a type of covariance of the system under spatial dilation. 
Long polymers (McKenzie 1976), the spin glass (Harris et a1 1976) and connected 
clusters in a system near its percolation threshold (Kasteleyn and Fortuin 1969) appear 
to have ‘critical’ correlations in complete analogy to second-order phase transitions. 
Critical-point behaviour of a more general sort is thought (Mandelbrot 1977) to occur 
in the velocity autocorrelations of strongly turbulent fluids (Nelkin 1975, Abarbanel 
1978), in the star density profile within star clusters and even in the spatial conformation 
of coastlines (Mandelbrot 1977). 

We have observed that aggregates of ultrafine smoke particles can have long-range 
density correlations. Further, these correlations appear to have a characteristic 
exponent A which is both ‘anomalous’ and ‘universal’. In the systems we have studied, 
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the smoke particles condense from the vapour produced by a hot filament or flame in a 
cool, dense gas (Wada 1967). The particles-approximately 40 A in radius-stick 
together to form chain-like aggregates containing several thousand particles. Figure 1 
shows an electron micrograph of a typical aggregate of Fe particles. Such particle 
aggregates have been observed in many studies of small metal particles (see, for 

Figure 1. (a) Transmission electron micrograph 
of the iron aggregate used for image 2. The 
actual aggregate is many times larger than the 
segment shown. Constituent particles are 
roughly 35 8, in radius. The box corresponds to 
the outer box on the digitised image (6) .  (6) A 
segment of the digitised image of (a) .  The series 
of boxes used to generate the data of (c) are 
shown. The boxes do not appear as squares 
because of the format of the computer printer. 
(c) Result of a typical point count. Each data 
point corresponds to a box in Fig. lb,  where N is 
the number of 1’s counted in a box of side 1. The 
line, of slope D = 1.51 f 0.05, is a least squares fit 
to the data weighted according to the number of 
1’s in a given box. Several similar sets of counts 
are made at random starting locations on the 
image to determke the D quoted in table 2. The 
error bars (= JN) indicate the relative weight 
given to the various data points in fitting to a 
straight line. The broken line represents a least 
squares fit of the data to the form: N = 

AID e-‘’‘O+B12 where D =  1.90*0.05 and l o -  
100. 
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example, Granqvist and Buhrman 1976). By measuring the density of particles as a 
function of position, we may determine the density autocorrelation function ( p  ( r ) p ( O ) ) .  
In several samples of iron, zinc and silicon dioxide aggregates produced under widely 
different conditions we found that the density profiles had power correlations as in 
equation (1) with A between 0.1 and 0-3. 

In the analysis of our smoke-particle aggregates we employ the language of the 
Hausdorff dimension (Hausdorff 1919, Mandelbrot 1977) which is a convenient 
method of describing physical systems having dilation symmetry (Stanley et a1 1976). 
An infinite set of points in space is said to have Hausdorff dimension less than or equal 
to D if it can be covered by O ( a D )  balls of radius a in the limit a + O .  Such a set (in 
d-dimensional space) has density correlations of a power-law type with the exponent A 
equal to d -D.  

2. Experimental results 

We have analysed the density distribution in five different samples of aggregates, 
numbered 2-6. Samples 2-5, containing iron or zinc particles, were made in our 
laboratory by the procedure outlined below. Micrograph 6, obtained from a Cabot 
Corporation brochure (Cubot Corporation 1975 t) showed aggregates of their 'Cab-O- 
Sil' powder. This commercial substance consists of SOz particles produced in a flame 
process. 

Figure 2 shows the apparatus used to make the iron and zinc aggregates. A 
0-013 cm daimeter tungsten wire electroplated with iron or zinc is rapidly heated by a 
short (250 ms) current pulse so that the plated metal vaporises. A dense gas to 
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Figure 2. Schematic diagram of experimental apparatus used for production of metallic 
particle aggregates. The assembly is contained in a metal can with plumbing to admit helium 
gas. The can may be immersed in liquid nitrogen or helium. 

t Cabot Corporation, 125 High Street, Boston, MA 02110, USA. 
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lo-’ of atmospheric number density) of helium confines the metal vapour so that it 
condenses into crystallites in a region close to the filament. These crystallites are the 
particles which make up our aggregates. They are roughly spherical and uniform in size, 
the mean radius being 35 A, with a standard deviation of 15 A, as determined via 
electron microscopy measurements. 

The hot particles at first move rapidly away from the filament, but they soon come to 
rest in the gas ambient due to collisions with the gas atoms. The stopping distance for 
the different particles is nearly the same, and thus a thin spherical shell region with a 
high density of crystallites forms roughly 1 cm from the filament. The radius of the 
shell, or ‘puff-ball’ depends on the gas density: higher density makes a smaller puff -ball. 
It is in the puff-ball region that the particles stick together to form the aggregates we 
observe. The aggregates tend to be larger for higher gas temperature, and also when the 
puff-ball is smaller. Once formed, the aggregates settle slowly onto an electron 
microscope grid, which we later examine. 

By placing electron microscope grids at various distances from the filament, we have 
determined that most of the aggregation occurs in the high-density puff -ball region, and 
that the aggregates do not change noticeably in size or shape even when allowed to fall 
distances of 3 cm or more. We have studied aggregates produced at widely varying 
temperatures and gas densities. We find that both iron and zinc have an equal ability for 
form chains under all conditions, in disagreement with observations made by Granqvist 
and Buhrman (1976). Thus magnetic forces do not play a dominant role in aggregate 
formation in our experiments. 

Table 1 lists the five micrographs we have analysed in this study, along with the 
conditions under which they were made. The silicon dioxide is produced by the 
hydrolysis of silicon tetrachloride vapour in a flame of hydrogen and oxygen (Cubot 
Corporation 1975). The resulting aggregates are then allowed to cool and settle. We 
produced the first four samples under conditions favourable for forming many large 
aggregates; indeed, the connected aggregates extended far beyond the boundaries of 
the photographs. Only those that tended to lie flat on the microscope grid were 
photographed, as the depth of field of the transmission electron microscope is severely 
limited. 

Next, each photograph was digitised by hand to produce a matrix of ‘ones’ and 
‘blanks’ as shown in figure 1(6), the ‘ones’ (‘blanks’) corresponding to the presence 
(absence) of a particle. We analysed the digitised images with a computer in two 
different ways. The first method was motivated by the Hausdorff dimension approach 
of Mandelbrot (1977). A centre point on the image was picked at random, and then a 

Table 1. Sample preparation. 

Image Material Gas density Gas Area of 
matrix ( ~ m - ~ )  temperature electron 

(K) micrograph 
(w-3 

2 Fe 8.1 x 1 0 ’ ~  295 9 . 2  
3 Fe 7 . 3  x 10l6 11 3.1  
4 Zn 3 .2  x 1 0 ’ ~  11 1.7 
5 Zn 3 .2  x 10” 11 1 . 7  

1.2 6 SiOz - - 
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series of nested squares of different sizes was placed around it and the number of 'ones' 
in each square counted. This analysis, performed on a set of points with a Hausdorff 
dimension, would yield a power-law relationship between the length 1 of the square and 
the number of points N within it, namely N CC I D .  For our images, we also obtained a 
power-law relation, with D varying in the range 1.5 to 1.6 with 1 varying over a 
factor-of-forty range in most cases. We found that our results were most reproducible 
when squares were chosen whose centres of mass coincided with their geometric 
centres. A typical series of such squares is shown in figure l(b).  Thus the computer 
would begin by defining at random a large square on the image, finding the centre of 
mass of the points within it, and moving the square until the centre of mass and the 
geometric centre coincided. Then the number of points inside was counted. Next a 
slightly smaller square was chosen concentric with the previous one. It was moved until 
its geometric centre and its centre of mass coincided, and so on. If the process resulted 
in a square being moved off the image or outside the previous square, the series was 
terminated. A value of D was computed for each series by least-squares fitting In N 
against In 1 to a straight line. In this weighted fit we assumed that as N increased, the 
relative uncertainty in N decreased roughly as N-'12. We verified the accuracy of this 
procedure by analysing a mathematical Hausdorff set known as a Koch curve (see, e.g., 
Mandelbrot 1977) with D = in 3/ln 2 .  Our measuring method gave the correct D to 
within 1%-well within our statistical uncertainty (see table ). We also analysed an 
image of points placed at random, and obtained the expected exponent, D = 2 ,  to the 
same order of precision. 

The accuracy of our method is limited by the finite total number of points in the 
image analysed; we have verified that the statistical variations in our measured 
exponents decrease when there are more points in the image. Another limitation on 
our precision arises from the finite size of our image. It is because of this finite size that 
our data span only a limited range of 1. 

We obtained results comparable with these by our second method of analysis, in 
terms of the density autocorrelation function. In this method we found the average 
density of occupied points in the digital image at a distance r from each occupied point, 
and this was done for all values of r (see figure 3(a)). In a set of points with a Hausdorff 
dimension, this average density should fall off with distance as rD-d .  Values of D for 
each image were found by plotting the logarithm of the average density against In r. 
Then D was obtained from the initial slope, as determined by equally weighted 
least-squares fitting. The errors quoted in table 2 give the range of D values whose ,y2 
lay within a factor two of the minimum. 

We verified the accuracy of this method using Koch curves and random images, as 
with our first method. We found that our results were reliable for distances r less than 
about a third of the image size. For larger distances the correlation function varied 
widely and depended sensitively on, for example, the size and location of the region 
sampled. These variations are due to the large, strongly correlated statistical fluctua- 
tions commonly encountered in correlation functions sampled over a region not much 
larger than the distance r (Jenkins and Watts 1968). We verified this idea by analysing a 
series of images, each with a Koch curve in a random position and orientation. These 
images were approximately the same size as our smoke images, and the Koch curves had 
D = In 3/ln 2 = 1-59, If these images had been infinite, all would have had identical 
correlation functions. In the actual images the measured correlations fluctuate some- 
what from image to image, and this gives a crude measure of the statistical uncertainties 
inherent in the sampling method. As in our smoke images, these fluctuations were 
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Figure 3. ( a )  Log-log plot of density autocorrelation 
divided by average density against distance r for the 
digitised image of figure l (b) .  Unit of length is array 
element length in figure l (b ) .  The curve is of the form 

+B, where the exponent, A and B were 
adjusted for a least-squares fit to the first four data 
points to obtain the initial slope. Error bars shown were 
obtained from the Koch curve study (see text). ( b )  
Deviation of the data points from the line in ( a )  
(horizontal line at 0). The full curve is of the form 

exp(-r/15.8)+B, where A and B were 
adjusted for a least-squares fit to the first 14 points. The 
broken curve is of the form AKo(r/15.8)+ B, where KO 
is the modified Bessel function. 

Arl.695-2 

Arl  695-2 

highly correlated from point to point, so that one cannot infer the statistical uncertain- 
ties from the scatter of the data in a single image. We have assigned errors to our data 
points assuming that the relative error for a given distance r was the same as the relative 
spread of the data at that r in the Koch curve series. The error bars in figure 3 were 
drawn using this rough estimate. 

We have summarised the results of these two methods in table 2. For each image we 
have listed the measured exponent D, with its statistical uncertainty, as obtained by 
each method. We have also indicated the approximate range of distance r sampled in 
each case. The exponent D for all these cases lies in the range 1.5 to 1.7.  The 
exponents obtained by the point-counting method are systematically lower than those 
obtained from the density correlation method. We believe this is due to the breakdown 
of our power-law correlations in favour of an exponential decrease at large distances. 
Indeed, some type of exponential decrease is expected in an extended matter system for 
sufficiently large r (see, e.g., Duneau et a1 1974). The effect of the exponential is to 
reduce the apparent D at large distances. The square-counting method weights the 
larger distances more heavily than does the correlation function method. Thus any 
exponential fall-off effects would cause the counting method to result in a smaller D, as 
we observe. We also see evidence for a more rapid fall-off at large distances by looking 



Letter to the Editor L115 

Table 2. Measurements of D. 

Apparent D 

Point counting* Density auto- 
correlationb 

Dimensions No of ‘ones’ 
Image digitised in digitized N LD N LD D Range of 
matrix image matrix image x exp( - U r d  r fitted 

Real images 
2 70 X 96 1419 1.52*0.04 1.90*0.05 1‘69~t0.02 1-12 
3 97 x 120 2149 1.56 * 0.02 1.90*0.05 1’68*0.01 1-12 
4 96 x 120 1797 1.50*0.04 1.85 *0.05 1.67 * 0.02 1-7 
5 94x119 2934 1.60*0.04 1.85*0.05 1.68*0.02 1-13 
6 50x49 523 1.55 k0.06’ 1.85 f 0.05 1.55*0.02 1-5.5 
Test images 
Koch 79 x 77 2375 1.57*0.02 1.55*0*02 1-13 
( D  = 1.5850) 
Random 100 x 100 2020 2.06*0.02 2.00*0.01 1-30 
( D  = 2) 

a Uncertainties are the standard deviations of fits to counts originating at several random sites on the image. 
The range of 1 in these fits was roughly 2-80. 

Obtained by least-squares fit to a straight line on a log-log plot. The points spanning the range of r values 
indicated were equally weighted. Errors quoted are the nominal statistical errors of the fitted slope. 
E Range of 2 samples was 2-50. 

at our power-law fits. There is often a slight downward curvature in our log-logplots. If 
we include exponential fall-off effects in our fitting, the fit to the data improves and the 
D values increase as expected. For fitting the correlation data we chose the functional 
form ( p ( r ) p ( O ) )  = ArD-* exp( - r/ro)  + B where A, B, D and ro are fitted parameters. A 
corresponding form for the point count N as a function of the box size 1 is N = 
A’ID exp(l/lo) + B’1*. Here B and B’ reflect the magnitude of the random background 
on our data, and ro and lo are characteristic length scales. Column 5 of table 2 reports 
the D values obtained using this fitting in the point-counting method. The nominal 
errors are based on the variations in D noted when several sets of data on a given image 
were approximately fitted. The broken line in figure l ( c )  illustrates the improvement of 
the fits when the exponential fall-off was included. The lo values were typically about 
double the largest 1 value for each set of data. Evidently these data suggest an 
exponential fall-off, but they are also compatible with no such fall-off. The D values 
vary significantly depending on which functional form is chosen. The range of D values 
thus obtained overlaps the values from the correlation function method. The cor- 
relation function data may also be treated assuming exponential fall-off, as figure 3 ( b )  
illustrates. In this figure, we plot the residuals of the data from the line in figure 3 ( a ) .  
The full curve is the fit when exponential fall-off is included. Again the fit improves for 
large r, but the D values, taken from the initial slope, do not change significantly. 

3. Discussion 

Our results, though not conclusive, suggest that the particle distribution in these 
random aggregates arises from some type of critical process. For comparison we list in 
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table 3 the D values which emerge in some model systems. One possible model for our 
system is based on percolation. In this model we imagine that the particles are ejected in 
random directions from a point source, and that they all slow to a stop in the same 
distance. In the spherical region where the particles stop, some will be close enough to 
touch. These touching particles stick together to form the aggregates we observe. If the 
particle density were large enough, percolating clusters would form. Under the right 
conditions one might preferentially observe these large clusters. The density cor- 
relations one measured would then be those within a percolating cluster. These 
correlations are known to have power-law behaviour (Kasteleyn and Fortuin 1969), 
and the exponent D is estimated (Stanley 1977) to lie near 1.8. 

Table 3. Nominal D values for model systems. 

Model Field p ( r )  d = 2  d = 3  
(see equation (1)) 

- 1.96 Ising model spin density z 

Self-avoiding walk step density - T  - 3  

Percolation sites in percolating - 1.8 - 2  

(Brezin et a1 1976)" 

(McKenzie 1976)b 

(Stanley 1977)" cluster 

a D is taken to be equal to 2 - 7, using 7 values from this reference. 

4 5 

D is taken to be equal to l / v  from this reference. 

While our results are consistent with the above power-law picture, they are not good 
enough to rule out other interpretations. In fact, we have found a simple model with no 
critical exponent which fits our data nearly as well as the percolation model does. This 
model treats the aggregates as simple two-dimensional random walks. We assumed 
that the random walks consisted of nearest-neighbour steps on a hypothetical square 
lattice, and that the number of steps was notfixed, but exponentially distributed. The 
average density of points at a distance r from some step of such a walk is given by the 
modified Bessel function Ko(2r/R) (Feller 1966), where R is the RMS average distance 
between any two steps (for r and R much larger than the lattice spacing). As with any 
two-dimensional random walk, the density has a logarithmic divergence for small 
distance. At large distances the density of these walks varies as r-"* exp( - 2r/R).  The 
result is that the apparent exponent D changes very slowly from 2 at small r to 1.5, 
before dropping rapidly at large r as a result of the exponential. We find (figure 3 ( b ) )  
that our data fit this random-walk model nearly as well as they fit the power law. 

The above discussion shows that the correlations we have observed need not imply a 
critical exponent. Of the two models we have proposed, though, the percolation model 
with its critical exponent seems the more plausible. In any case, it appears from our data 
that these random particle aggregates have density distributions of a general and 
long-range form. It is likely that these correlations can be explained by means of a 
simple model such as the ones we have proposed. Or it may be that these correlations 
are of a new type not previously seen. An experiment with larger samples and better 
statistics would settle the question. A wider range of materials and conditions should be 
studied to explore the generality of our finding. 
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