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Abstract
We present a recursion relation for the explicit construction of integrable spin
chain Hamiltonians with long-range interactions. Based on arbitrary short-
range (e.g. nearest neighbor) integrable spin chains, it allows us to construct
an infinite set of conserved long-range charges. We explain the moduli space
of deformation parameters by different classes of generating operators. The
rapidity map and dressing phase in the long-range Bethe equations are a
result of these deformations. The closed chain asymptotic Bethe equations
for long-range spin chains transforming under a generic symmetry algebra
are derived. Notably, our construction applies to generalizations of standard
nearest neighbor chains such as alternating spin chains. We also discuss relevant
properties for its application to planar D = 4,N = 4 and D = 3,N = 6
supersymmetric gauge theories. Finally, we present a map between long-range
and inhomogeneous spin chains delivering more insight into the structures of
these models, as well as their limitations at wrapping order.

PACS numbers: 75.10.Pq, 02.30.Ik, 11.25.Tq
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List of symbols

L local (homogeneous) operator, (2.4)
Le/o local operator L acting on even/odd sites of the spin chain only
|L| interaction range of the local operator L
〈L〉 ferromagnetic vacuum expectation value of L, (3.20), (3.29)
〉L〈 number of elementary permutations contained in L, (5.31)
[a1, . . . , ak] permutation that acts homogeneously on the spin chain, (2.9)
Ja Lie-symmetry generator, section 3.6
Ya Yangian generator, section 3.6
Qr conserved charge/observable, (2.5)
QNN

r = Q(0)
r = Qr (0) undeformed nearest neighbor charges, (2.14)

Q(k)
r coefficient of λk in the expansion (2.17)

H Hamiltonian, H = Q2, section 2.2

�

�

spectator leg, (2.6)
I identity operator, (3.20)
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N length operator, (3.20)
X general deformation operator, (3.1)
B[L] boost of the local operator L, (3.12)
Pk boost of the conserved charge Qk , (3.15)
P̃k modified boost operator, (5.5), (5.15)
[Lk|L�] bilocal operator composed of the two local operators Lk,L�, (3.24)
Yr,s bilocal operator composed of the two charges Qr ,Qs , (3.27)
Q vector of conserved charges Qr , section 3.5
Ek basis vector in the space of conserved charges Qr , section 3.5
Gr,s generator of changes of the basis of conserved charges, (3.36), (5.6)
� = �kξk general connection that generates deformations, (4.8)
	 = Pk	k connection that generates boost deformations, (4.3), (4.8)
	̃ = P̃k	̃k modified boost connection, (5.5), (5.9)
ϒ = Yr,sϒr,s connection that generates bilocal deformations, (4.3), (4.8)
� = Gr,s�r,s connection that generates changes of basis, (4.3), (4.8), (5.3)
� = Lkdεk connection that generates local similarity transformations, (4.3),

(4.8)
D covariant derivative in moduli space, (4.7)
x(u) rapidity map, inverse of u(x), (5.10)
αk moduli parametrizing boost deformations, (5.9)
βr,s moduli parametrizing bilocal deformations, (5.14)
γm,n moduli parametrizing a basis change of the charges, (5.25)
εl moduli parametrizing local similarity transformations, (5.14)
Q[k1,...,km,r1|s1,...,rn|sn]

r coefficient of αk1 . . . αkm
βr1,s1 . . . βrn,sn

in (5.23)

1. Introduction and overview

Much progress has been made in the last few years toward a verification of the proposed
duality [1] between planar N = 4 super Yang–Mills theory (SYM) and type IIB string theory
on AdS5 × S5. In this venture, integrability turned out to be an important feature of the spin
chain structure underlying both theories in the planar limit [2–5]. A novel class of long-
range spin chains had to be considered to reflect the complexity of the proposed dual theories
[3, 5, 6]. A similar class of integrable chains [7] appears to be the key to rapid progress within
the recently conjectured duality [8] between N = 6 superconformal Chern–Simons theory
(SCS) and type IIA string theory on AdS4 × CP

3.
It is remarkable that the only well-studied examples of long-range spin chains come from a

completely different branch of physics: the condensed matter models described by Haldane–
Shastry [9] and Inozemtsev [10] incorporate interactions of well separated as opposed to
nearest neighbor sites of the chain. These interactions, however, involve only two spins at
a time, while the more general long-range operators arising from gauge/string duality act
on several sites at the same time. Extensions of the Haldane–Shastry chain to multi-site
interactions were also studied [11]. Their nature, however, is different from the gauge/string
theory inspired interactions. Nevertheless, intersections among the condensed matter and
high-energy spin chain models are inherent and give rise to a fruitful overlap of interests.

In this work we investigate integrable long-range spin chain models from a general point
of view. Our class of models includes as special cases the above-mentioned spin chains. The
structure of the models can be motivated best by its origin in gauge theory: trace operators
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providing a basis for all local gauge-invariant operators of N = 4 super Yang–Mills theory,
are mapped to spin chain states, e.g.

Tr[φ1φ2φ2φ1φ1φ2] → | ↑↓↓↑↑↓〉. (1.1)

That is, fields transforming under some spacetime symmetry are mapped to spins transforming
under the same symmetry algebra. It was shown that the one-loop Hamiltonian of planar
N = 4 SYM is equivalent to a nearest neighbor spin chain Hamiltonian [2, 12]. The spectral
problem of the gauge theory therefore becomes equivalent to the spectral problem of the spin
chain. Excitingly the Hamiltonian turns out to be integrable [2, 5] leading to remarkable
simplifications in the computation of the spectrum. Similar observations were made for
N = 6 SCS theory [7, 13]. For several subsectors of N = 4 SYM, the correspondence was
generalized to higher loop orders [3, 14, 15]. Higher powers of the ’t Hooft coupling constant
λ arising from vertices in planar Feynman diagrams indicate an increasing interaction range
of the spin chain Hamiltonian:

(1.2)

While the nearest neighbor Hamiltonian H(λ = 0) only acts on two neighboring spin
sites at a time, a contribution at order λk is allowed to have interactions among at most k + 2
spins. For finite coupling λ, the Hamiltonian would actually be of infinite range which led to
the notion of long-range spin chains. This class of chains can be considered as a long-range
deformation of the prime example of a spin chain, the Heisenberg model [16].

Generally, the integrability of a spin chain system manifests itself in the existence of an
infinite tower of local conserved charges Qr , the first of which is usually the Hamiltonian
Q2(λ) = H(λ)

[Qr (λ),Qs(λ)] = 0, r, s = 2, 3, . . . . (1.3)

In the magnon excitation picture around the ferromagnetic vacuum this implies the factorization
of multi-magnon scattering into two-magnon scattering. Admissible eigenstates of the
Hamiltonian on a finite periodic chain of length N can then be constructed by means of
the Bethe ansatz [17], which was first introduced in 1931 for the Heisenberg model with
su(2) symmetry [16]. It represents a periodicity condition on the magnon momenta pk or
rapidities uk = 1

2 cot
(

1
2pk

)
, in terms of the two-magnon scattering factor SNN(uk − uj ) =

(uk − uj + i)/(uk − uj − i) which altogether quantizes the spectrum(
uk + i

2

)N(
uk − i

2

)N
=

M∏
j=1
j �=k

SNN(uk − uj ), k = 1, . . . ,M. (1.4)

Similar to the spin chain charges, this ansatz was perturbatively generalized to the class of long-
range chains by deformations in the coupling constant [6, 18]. The two-magnon scattering
factor was deformed by the so-called dressing phase θ(uk, uj ; λ) and a rapidity map x(u; λ)

deforming the term uk ± i
2 was introduced. The resulting long-range su(2) equations read

x
(
uk + i

2

)N

x
(
uk − i

2

)N
=

M∏
j=1
j �=k

SNN(uk − uj ) exp(2iθ(uk, uj )), k = 1, . . . ,M. (1.5)

They were later extended to the complete spectrum of N = 4 SYM [19] and N = 6 SCS [20].
These asymptotic Bethe equations describe the spectrum of the Hamiltonian for long chains.
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For finite chains the interaction range of the Hamiltonian necessarily exceeds the length of the
spin chain at some order of the coupling λ. Beyond this order it is not known if or how the
Bethe ansatz can be modified to incorporate these so-called wrapping interactions. For recent
progress on the understanding of the wrapping problem in the special context of gauge/string
duality see [21–23].

Recently, a first step was taken toward a more general exploration of long-range integrable
spin chains. In [24] a study of the gl(K) chain incorporating the gauge theory su(2) sector
as a special case was presented: starting with a generic ansatz for the first two integrable
charges and imposing (1.3) on this ansatz, the form of the charges was determined up to
some perturbative order in the coupling. The moduli space for closed chains was found to be
characterized by four different types of parameters: the parameters αk govern the degrees of
freedom corresponding to deformations of the dispersion relation by means of the rapidity map
x(u). The parameters βr,s account for deformations by means of the dressing phase θ(uk, uj ),
cf (1.5). The additional moduli γm,n and εl correspond to linear combinations of commuting
charges and similarity transformations of the integrable system, respectively, and have no
impact on the spectrum. The most general integrable Hamiltonian H = H(αk, βr,s , γr,s , εk)

then takes the schematic form

(1.6)

Generalizing the long-range gauge theory model to this chain, the single deformation parameter
λ was replaced by four different sets of moduli with different physical interpretations. A certain
choice of the new parameters as functions of λ results in the special expansion (1.2). While
the assumption of integrability of the gl(K) chain in [24] was based on the existence of two
commuting charges, a perturbative proof for its integrability up to O(λ3) was later presented
in [25] by the construction of a Yangian representation. However, a formal setting for the
understanding of the all-order integrable long-range spin chain is still lacking. A rigorous
mathematical construction might provide a scenery for the understanding of wrapping effects
in a general context.

In this work we develop a framework for the construction of long-range integrable spin
chains of arbitrary Lie (super)algebra symmetry. We present a recursion relation for the charges
Qt (αk, βr,s , γr,s , εk) whose solutions are manifestly integrable to all orders in the deformation
parameters and cover the whole moduli space explored in [24]. This proves the all-order
existence of an integrable long-range model on infinite spin chains. Furthermore the recursion
allows the explicit construction of the integrable charge operators. The four different types of
moduli are related to four different types of deformation operators. Analyzing their impact on
short-range spin chains explains the emergence of the dressing phase and the rapidity map in
the long-range Bethe equations. This work is an extension of the considerations sketched in
the paper [26]. The paper is structured as follows:

Section 2: We introduce the framework of integrable long-range spin chains of infinite extent.

Section 3: A recursion relation is defined which induces a set of manifestly integrable long-
range charges as deformations of a short-range system. Four different kinds of deformation
generators corresponding to the four different moduli discussed above are presented.
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Section 4: The geometry of the moduli space is analyzed. We investigate the curvature
associated with the generating equation and derive flatness conditions for the deformations.

Section 5: We present a parametrization that minimizes the interaction range of the charges
at each order of the deformation moduli and at the same time renders the space of deformed
charges flat. This parametrization yields integrable charges as they occur in the gauge/string
correspondence.

Section 6: It is demonstrated how the four different types of generators deform the nearest
neighbor Bethe ansatz. Most notably, the appearance of the rapidity map as well as the dressing
phase is explained by classes of so-called boost and bilocal operators, respectively. The result
is given by the well-known form of the asymptotic Bethe equations for finite periodic chains.

Section 7: We demonstrate how to apply the recursion relation to alternating spin chains.
The alternating su(2) × su(2) long-range Bethe equations as well as the first orders of the
gl(Ke) × gl(Ko) long-range Hamiltonian are explicitly given.

Section 8: Finally and somewhat outside the main theme of this paper we present a map relating
homogeneous long-range chains without dressing phase to inhomogeneous chains. The latter
can be defined consistently even beyond wrapping order, however, in almost arbitrary ways.

Most parts of the paper focus on deformations of operators on spin chains with infinite
extent. In section 6, parts of sections 7 and 8, we consider implications of these deformations
on finite chains.

2. Integrable spin chain models

2.1. Integrable spin chains and local operators

A spin chain is a physical model based on a Hilbert space H which is a tensor product of
identical vector spaces Va = V:

H = · · · ⊗ Va ⊗ Va+1 ⊗ Va+2 ⊗ · · · , Va = V. (2.1)

The vector spaces Va are labeled by consecutive integers a describing the position along the
chain; neighboring sites of the chain have adjacent integer positions. The chain can be finite
and have open or periodic boundary conditions. Alternatively, it can have infinite extent which
is the case we shall consider in the first half of this paper. A basis of the Hilbert space H

is given by states for which the spin at each site a has a definite orientation va being a basis
vector of V:

| . . . , va, va+1, va+2, . . .〉 ∈ H. (2.2)

Typically, there is also a Lie symmetry algebra g which can be represented on the vector space
V, i.e. V can be considered as a (generalized) spin of g.

The physical model is furthermore defined by a set of observables which are linear
operators A acting on the Hilbert space

A : H → H. (2.3)

Typically, the operators have some well-defined transformation properties under the symmetry
algebra g, i.e. they may be invariant or transform in a certain representation.
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n. . .1

Lk

Figure 1. A local operator Lk acting on a spin chain. Its position on the chain is summed over,
see (2.4).

We are mainly interested in operators that act locally and homogeneously on the spin chain
and are invariant under the symmetry g. We call these simply local operators and denote
them by

Lk :=
∑

a

Lk(a), Lk(a) : Va ⊗ · · · ⊗ Va+n−1 → Va ⊗ · · · ⊗ Va+n−1. (2.4)

Here Lk(a) is some linear operator which acts on several consecutive spins starting with site
a, cf figure 1. The number n of interacting sites is called the interaction range of the operator
Lk and will be denoted by |Lk| = n. These operators furnish the basic framework for the
following considerations.

An integrable spin chain model is defined by an infinite tower of commuting charges
acting locally and homogeneously on an infinite chain

[Qr ,Qs] = 0, r, s = 2, 3, . . . . (2.5)

Integrability can also be defined for finite chains, cf sections 6 and 8, but for the time
being we shall restrict ourselves to infinite chains. Integrable spin chains are generally based
on some Lie algebra g or a quantum deformation thereof. The algebra is a symmetry of the
charges Qr . In fact, the symmetry typically extends to an infinite-dimensional algebra of
Yangian or quantum-affine type [27, 28].

Local operator identifications. The definition of homogeneous local operators in (2.4) allows
for identifications of certain operators on infinite chains. For a local operator Lk of range n

define the local operators
�

�

Lk and Lk �

�

of range n + 1 as follows:

�

�Lk(a) := I(a) ⊗ Lk(a + 1), Lk �

�

(a) := Lk(a) ⊗ I(a + n), (2.6)

where I(a) is the identity operator acting on site a. The additional identity operators are called
spectator legs of the local operator because their action is trivial. Clearly, all three operators
are equivalent after the position a is summed over in (2.4), see also figure 2,

�

�

Lk 
 Lk 
 Lk �

�

. (2.7)

Note that on finite chains these operators are equivalent only up to boundary terms.

Example. For illustration purposes we will make a specific choice of the symmetry algebra and
its representation at certain points of the text. We will choose the fundamental representation
of g = gl(K) on the vector space V = C

K . Spin orientations can then simply be denoted by
numbers corresponding to one of the K directions, e.g. a basis vector of the Hilbert space is
given by

| . . . , 3, 2, 4, 1, 2, 4, . . .〉. (2.8)
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1 n + 1. . .2

Lk =

n. . .1

Lk =

n. . .1 n + 1

Lk

Figure 2. On a spin chain without boundaries, local homogeneous operators that differ only by
spectator legs can be identified. The position on the spin chain at which the operators act is
implicitly summed over.

QNN
2 QNN

3 QNN
4 QNN

5
. . .

B[QNN
2 ] B[QNN

2 ] B[QNN
2 ] B[QNN

2 ]

Figure 3. The short-range charges are generated iteratively by the so-called boost operatorB[QNN
2 ],

cf (2.14) and [29].

For this specific choice of algebra and representation, a basis of invariant local operators
Lπ consists of permutations π of nearby spins: a permutation π ∈ Sn of range n, mapping the
spin sites (a + 1, a + 2, . . . , a + n) to the sites (a + π(1), a + π(2), . . . , a + π(n)), is denoted by

Lπ (a + 1) = [π(1), π(2), . . . , π(n)]a+1. (2.9)

The building blocks for gl(K)-invariant operators are then given by permutation symbols
acting homogeneously on the whole chain

Lπ = [π(1), π(2), . . . , π(n)] =
∑

a

[π(1), π(2), . . . , π(n)]a. (2.10)

As an example, the operator [2, 1] = ∑
a Pa,a+1 sums over all pairs of nearest neighbors,

(a, a + 1), and permutes them (Pa,a+1)

[2, 1]| . . . , 1, 2, 3, . . .〉 = · · · + | . . . , 2, 1, 3, . . .〉 + | . . . , 1, 3, 2, . . .〉 + · · · . (2.11)

Adding spectator legs to [2, 1] according to (2.6) yields the following two operators:

�

�

[2, 1] = [1, 3, 2], [2, 1]
�

� = [2, 1, 3]. (2.12)

Note that g = gl(K) only serves as an illustrative example for the following ideas, most
of which are valid for a generic Lie symmetry algebra g and arbitrary spin representations.

2.2. Nearest neighbor models

An ordinary nearest neighbor spin chain is characterized by a Hamiltonian H = QNN
2 , which

acts on two adjacent sites at a time only. The set of commuting charges can then be ordered
by their interaction range starting with the Hamiltonian. The charges are given by some linear
combination of local operators

QNN
r =

∑
k

cr,kLk. (2.13)

The coefficients cr,k can be uniquely fixed by a suitable normalization condition but only
modulo identification of spectator legs (2.7).

Note that there exists an iterative definition of the commuting charges [29]: based on the
nearest neighbor Hamiltonian QNN

2 one can define a so-called boost operator B
[
QNN

2

]
such

that the integrable system is generated by a single equation (cf figure 3)

QNN
r+1 = − i

r

[
B
[
QNN

2

]
,QNN

r

]
. (2.14)
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The precise definition of B[·] will be discussed in section 3.3. The interaction range of the
charges following from this iteration relation reads for a nearest neighbor Hamiltonian with∣∣QNN

2

∣∣ = 2: ∣∣QNN
r

∣∣ = (r − 1)
∣∣QNN

2

∣∣ − (r − 2) = r. (2.15)

Example. For g = gl(K) the first few charges take the form, see, e.g. [24]

QNN
2 = [1] − [2, 1],

QNN
3 = i

2 ([3, 1, 2] − [2, 3, 1]),

QNN
4 = 1

3 (−[1] + 2[2, 1] − [3, 2, 1] + [2, 3, 4, 1]

− [2, 4, 1, 3] − [3, 1, 4, 2] + [4, 1, 2, 3]).

(2.16)

2.3. Long-range models

Perturbatively long-ranged spin chains are formally defined as deformations of the above
nearest neighbor chains. The nearest neighbor charges QNN

r are taken to be the leading order
Q(0)

r in a formal power series

Qr (λ) = Q(0)
r + λQ(1)

r + λ2Q(2)
r + O(λ3), Q(0)

r = QNN
r , (2.17)

such that the interaction range of the charges grows linearly with the perturbative order in λ,
e.g.

∣∣Q(k)
r

∣∣ = r +k [3]. Hence, assuming that λ can take finite values, the charges Qr (λ) would
be of infinite (i.e. long) range.

The long-range charges can still be written as linear combinations of local operators

Qr (λ) =
∑

k

cr,k(λ)Lk, (2.18)

but now with coefficients cr,k(λ) which are formal power series in λ starting at a certain order,
e.g. cr,k(λ) = O(λ|Lk |−r ). The charges have to obey the integrability condition (2.5) order by
order in λ.

It is the aim of this paper to present an equation (similar to the recursion relation (2.14))
that generates the long-range system through deformations of the nearest neighbor charges.
The resulting long-range spin chain model will be manifestly integrable.

Example. For fundamental g = gl(K) chains, the charges take the form [24]

Q2(λ) = [1] − [2, 1] + α3λ (−3[1] + 4[2, 1] − [3, 2, 1]) + O(λ2),

Q3(λ) = i
2 ([3, 1, 2] − [2, 3, 1]) + i

2α3λ(6[2, 3, 1] − 6[3, 1, 2] + [4, 1, 3, 2]

+ [4, 2, 1, 3] − [2, 4, 3, 1] − [3, 2, 4, 1]) + O(λ2). (2.19)

Note that in contrast to the nearest neighbor chain not all coefficients cr,k(λ) are fixed by
integrability but some free parameters ξk = {α3, . . .} remain. The latter are thus moduli of the
long-range integrable system.

3. Algebra-preserving deformations

In the following a general mechanism for the construction of long-range spin chains is
presented. The key idea is a differential equation that generates long-range charges as
deformations of some short-range (e.g. nearest neighbor) charges. We present transformations

9
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of the integrable charges of an infinite short-range spin chain that do not leave the space of
local, homogeneous operators and preserve integrability. Later (section 6), we study finite
chains, i.e. the impact of the presented deformations on the boundary conditions.

The construction is applicable to short-range spin chains, which usually have a Lie
symmetry algebra g under which the integrable charges are invariant. In the present work
we make the assumption that the representation of g on the spin chain remains undeformed.
We shall illustrate the various deformations by means of examples for the specific case of
g = gl(K) with spins transforming in the fundamental representation.

3.1. Generating equation

Consider an algebra of charges Qr (0) (not necessarily abelian) and a deformation Qr (λ) which
obeys the differential equation

d

dλ
Qr (λ) = i[X (λ)Qr (λ)]. (3.1)

Here, X (λ) is some yet-to-be specified operator that has well-defined commutation relations
with the charges Qr (λ) for all λ, in particular in the sense of a formal power series in λ.

The deformation (3.1) leaves the algebra of charges Qr (λ) unchanged: It implies by the
Jacobi identity

d

dλ
[Qr (λ)Qs(λ)] = i [X (λ), [Qr (λ)Qs(λ)]]. (3.2)

For a generic algebra of independent operators Qr , this shows that the structure constants frst

do not change under the deformation

[Qr (λ),Qs(λ)] = frstQt (λ),
d

dλ
frst = 0. (3.3)

In particular, if the algebra of the initial charges Qr (0) is abelian, frst = 0, also the algebra
of the deformed charges defined by (3.1) is abelian for all λ and any X (λ)

[Qr (0),Qs(0)] = 0 �⇒ [Qr (λ),Qs(λ)] = 0. (3.4)

Thus the differential equation (3.1) preserves the existence of commuting charges which
represents the most important property (2.5) of any integrable system. However, for integrable
spin chains including our class of models one requires stronger properties: the charges Qr (λ)

must act locally and homogeneously (2.4) on the spin chain. Hence, if the deformation (3.1)
is to describe such models, the resulting charges Qr (λ) must not violate these properties. That
is, the operators X (λ) must be chosen such that

[X (λ),Qr (λ)] is local and homogeneous (3.5)

for all λ. The possible choices for X (λ) that satisfy these requirements are discussed in the
following subsections.

Before we continue, we will construct a perturbative solution to the generating
equation (3.1). We first integrate it,

Qr (λ) = Qr (0) +
∫ λ

0
dλ′i[X (λ′),Qr (λ

′)]. (3.6)

10
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Expansion into a power series in λ then straightforwardly yields

Qr (λ) = Q(0)
r + λQ(1)

r + λ2Q(2)
r + λ3Q(3)

r + · · · ,
X (λ) = X (0) + λX (1) + λ2X (2) + λ3X (3) + · · · ,
Q(1)

r = i
[
X (0),Q(0)

r

]
,

Q(2)
r = i

2

[
X (1),Q(0)

r

]
+ i

2

[
X (0),Q(1)

r

]
,

Q(3)
r = · · · .

(3.7)

This shows that the higher orders of the charges are completely determined through the lower
orders by iteration. The generating equation is thus a recursion relation for the construction
of an integrable system.

3.2. Local operators

The commutator of two local operators is again local and homogeneous. Hence any local
operator Ll results in an admissible deformation X = Ll (3.1) of the charges

d

dλ
Qr (λ) = i [Ll ,Qr (λ)]. (3.8)

Note that this deformation can be integrated exactly

Qr (λ) = exp(+i λLl )Qr (0) exp(−i λLl)

= (1 + i λLl)Q(0)
r (1 − i λLl) + O(λ2)

= Q(0)
r + i λ

[
Ll ,Q(0)

r

]
+ O(λ2). (3.9)

It thus merely constitutes a similarity transformation of the charges Qr by the operator
exp(i λLl). Importantly, as we shall see in section 6, this deformation does not change
any of the quantities we are ultimately interested in. In the following we shall therefore
disregard transformations by local operators. In any case, one can easily reintroduce them at
the very end through the similarity transformation (3.9).

Degrees of freedom. When counting all degrees of freedom of the system, i.e. the total
number of possible deformation operators X (of a given maximum range), it has to be taken
into account that the conserved charges X = Qr generate trivial deformations due to the
integrability condition (2.5). Moreover, on a spin chain without boundaries, local operators
that differ by spectator legs only (2.6), must be identified, cf (2.7) and figure 2.

Example. As an example of a deformation of the type (3.8), consider the gl(K) spin chain.
As mentioned above (2.9), the only invariant operators on this spin chain are permutations

Lk = [π(1), π(2), . . . , π(n)], (3.10)

which act homogeneously on the chain. Deforming the nearest neighbor Hamiltonian
Q(0)

2 = [1] − [2, 1] of this chain by the local homogeneous operator L = [3, 2, 1] yields
the deformed Hamiltonian

Q2 = Q(0)
2 + λQ(1)

2 + O(λ2),

Q(1)
2 = i

[
L,Q(0)

2

] = i [[3, 2, 1], [2, 1]]

= i ([4, 2, 1, 3] − [3, 2, 4, 1] + [2, 4, 3, 1] − [4, 1, 3, 2]) . (3.11)

11
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Figure 4. Graphical representation of the commutator between a boost operator B[Lk] and a local
operator Ll . The contributions combine into the boost of the commutator [Lk,Ll] between the
two local operators plus local terms, cf (3.13), (3.14). When the local operators commute, only
the local terms remain.

3.3. Boost operators

As mentioned above (2.14), it is well known [29] that a set of mutually commuting charges
Q(0)

r can be generated iteratively, starting from a nearest neighbor Hamiltonian Q(0)
2 . The

higher charges are constructed through commutation with the ‘boosted’ Hamiltonian B
[
Q(0)

2

]
:

Q(0)
r+1 ∼ [

B
[
Q(0)

2

]
,Q(0)

r

]
. We define the boost B[Lk] of a local operator Lk as

Lk =
∑

a

Lk(a) �⇒ B[Lk] :=
∑

a

aLk(a), (3.12)

where the local operator Lk(a) acts on a set of adjacent spins, starting at site a. Boost operators
defined in this way act locally, but inhomogeneously on the spin chain. For the purpose of a
concise notation, we shall reserve the term local operator for local homogeneous operators;
local inhomogeneous operators will be called boost operators.

In general, the commutator of a boost operator with a local operator yields a combination
of boost and local operators (cf figure 4)

[B[Lk],Ll] = B[[Lk,Ll]] + Lr , (3.13)

with Lr some local operator. However, if the underlying local operators commute, the
commutator becomes local

[Lk,Ll] = 0 �⇒ [B[Lk],Ll] = Lr . (3.14)

Therefore, the boosts of the commuting charges themselves are operators that yield admissible
deformations (3.1)

d

dλ
Qr (λ) = i [B[Qk(λ)],Qr (λ)], k = 3, . . . ,∞, (3.15)

which result in charges Qr (λ) that are homogeneous, as desired.
Note that the deformation operator X (λ) = B[Qk(λ)] directly depends on the charges

Qk(λ) which are themselves the solution of the generating equation (3.1). This implies, in
particular, that boost deformations are not simply exponential similarity transformations (3.9)
of the undeformed charges; the dependence on the deformation parameter λ is more involved.
Nevertheless, the equation as well as its recursive solution (3.7) with X (n) = B

[
Q(n)

k

]
remains

perfectly well defined.

Boost operator identifications. As illustrated in figure 2, local operators on an infinitely long
chain that differ only by spectator legs can be identified (2.7). But according to (3.12), the
corresponding boost operators would differ by a local operator. This is related to the fact that

12
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Figure 5. Illustration of the boost operator identifications (3.19) on an infinite chain. As in the
previous pictures, the position of the local operators on the spin chain is summed over. The upper
identification is evident by (3.16): putting a spectator leg to the left of the operator amounts to
shifting the origin (site 0) of the chain by −1. The subtraction of the length operator in the lower
identity is required for a correct normalization and stems from the different action of the two boost
operators at the right boundary of a finite chain. Using the symmetric regularization of the boost
operator (3.17), the identifications become (3.20).

their definition depends on the location of the spin chain origin (site 0). Namely, shifting the
origin by n sites leads to a shift of B[Lk] by the local operator nLk

B[Lk] → B[Lk] + nLk. (3.16)

When deforming with a boosted charge B[Qk] (3.15), the location of the spin chain origin is
irrelevant because Qk commutes with Qr . On an open chain of length N whose leftmost site
is labeled by a = 1, we can thus regularize the boost operator (3.12) as

B[Lk] =
∑

a

aLk(a) − 1
2 (N − |Lk|)Lk, (3.17)

where |Lk| denotes the range of the operator Lk . This choice puts the origin in the middle
of the finite chain such that B[Lk] has exactly opposite parity of Lk . On such an open chain,
spectator legs on local operators yield boundary terms

�

�

Lk = Lk − Lk(1), Lk �

� = Lk − Lk(N − |Lk| + 1). (3.18)

Accordingly, boost operators are modified by spectator legs as (cf also figure 5)∑
a

a(
�

�

Lk)(a) =
∑

a

aLk(a) − Lk,

∑
a

a(Lk �

�

)(a) =
∑

a

aLk(a) − (N − |Lk| + 1)Lk(N − |Lk| + 1).
(3.19)

In the limit N → ∞, we can effectively replace the boundary operatorsLk(1),Lk(N−|Lk|+1)

by their expectation values 〈Lk〉 on a ferromagnetic vacuum. Combining (3.18) and (3.19),
we find that the relation between equivalent boost operators on an infinite chain is given by1

B[
�

�

Lk] = B[Lk] − 1
2 (Lk − 〈Lk〉N ) ,

B[Lk �

�

] = B[Lk] + 1
2 (Lk − 〈Lk〉N ) ,

N :=
∑

a

I(a). (3.20)

1 Without the regularization (3.17), we would have arrived at similar, but less symmetric identifications. For an
elementary permutation Lπ without a prefactor on a gl(K) chain, 〈Lπ 〉 = 1.

13
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Here, the symbol I(a) denotes the identity operator acting at spin site a and N is thus the
operator which measures the length of the chain. The combination (Lk −〈Lk〉N ) is an operator
annihilating the ferromagnetic vacuum.

Degrees of freedom. A deformation with the boost of Q2 only leads to a shift of the charge
Qr by the charge Qr+1 ∼ [B[Q2],Qr ] (2.14). The corresponding degrees of freedom are
accounted for by a different set of deformations (cf section 3.5) and are hence not included in
(3.15).

Moreover, also the charges Qk are defined only modulo identification of spectator legs
(2.7). Consequently, due to the identifications (3.20), also B[Qk] is defined modulo some
local operators. This ambiguity is not a problem though because all degrees of freedom
resulting from deformations through local operators have already been taken into account
in (3.8).

Example. As an example for the deformation (3.15), consider again the gl(K) spin chain with
the nearest neighbor Hamiltonian Q(0)

2 = [1] − [2, 1]. By virtue of (2.14), the next higher
commuting charge Q(0)

3 is given by

Q(0)
3 = − i

2

[
B
[
Q(0)

2 ,Q(0)
2

]]
= − i

2 [B[[1]] − B[[2, 1]], [1] − [2, 1]]

= − i
2 ([2, 3, 1] − [3, 1, 2]) , (3.21)

where for example B[[2, 1]] is the boost of the permutation operator [2, 1]. Now, deforming
Q(0)

2 with B
[
Q(0)

3

]
, yields

Q(1)
2 = i

[
B
[
Q(0)

3

]
,Q(0)

2

]
= 1

2 [B[[2, 3, 1]] − B[[3, 1, 2]], [1] − [2, 1]]

= 1
2 (−2B[[1, 3, 2]] + 2B[[2, 1, 3]] − [2, 3, 4, 1] + [2, 4, 1, 3] + [3, 1, 4, 2] − [4, 1, 2, 3])

= 1
2 (−2[1] + 2[2, 1] − [2, 3, 4, 1] + [2, 4, 1, 3] + [3, 1, 4, 2] − [4, 1, 2, 3]) , (3.22)

where in the last line the two boost operators B[[1, 3, 2]] and B[[2, 1, 3]] were identified
according to the prescription (3.20). Deforming Q(0)

3 in the same fashion results in

Q(1)
3 = i

[
B
[
Q(0)

3

]
,Q(0)

3

]
= i

4

(
[2, 4, 3, 1] + [3, 2, 4, 1] − [4, 1, 3, 2] − [4, 2, 1, 3]

− 2[2, 3, 4, 5, 1] + 2[2, 3, 5, 1, 4] + 2[2, 4, 1, 5, 3] − 2[2, 5, 1, 3, 4]

+ 2[3, 1, 4, 5, 2] − 2[3, 1, 5, 2, 4] − 2[4, 1, 2, 5, 3] + 2[5, 1, 2, 3, 4]
)
, (3.23)

and the deformed Q2(λ) and Q3(λ) indeed commute up to terms of order O(λ2). Reinserting
these expressions into the differential equation (3.15) and further expanding in the deformation
parameter λ recursively yields the higher order terms of the deformed chargesQ2(λ) andQ3(λ).

14
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Lk Ll

a b

Figure 6. A bilocal operator [Lk |Ll ] can be constructed from two local operators by summing
over all positions with Lk acting on the left of Ll , a � b.

, QtQr Qs

Qr Qs

Qt

+

Qr Qs

Qt

=

= local = local

Figure 7. The commutator of a bilocal operator composed of two local charges Qr and Qs with a
local charge Qt gives a local result: when the two parts of the bilocal operator are well separated,
the commutator either vanishes (if the two local charges commute with each other), or yields
a bilocal operator in which one part consists of boundary terms only (if the two local charges
commute up to boundary terms), which on an infinite chain amounts to a local operator. Also
when both parts of the bilocal operator interact with the local charge at the same time, one gets a
nonvanishing local contribution.

3.4. Bilocal operators

Further candidates for deformation generators are bilocal operators, which can be constructed
from any two local operators, see figure 6 2

[Lj |Lk] :=
∑
a,b

�
((

b + 1
2 |Lk|

) − (
a + 1

2 |Lj |
))

1
2 {Lj (a),Lk(b)}. (3.24)

Here, {Lj (a),Lk(b)} denotes the anticommutator of the local operators Lj (a) and Lk(b),
which act starting at spin sites a and b. The bilocal operator [Lj |Lk] is constructed such that
the sum of terms where Lj acts on either side of Lk equals the anticommutator

[Lj |Lk] + [Lk|Lj ] = 1
2 {Lj ,Lk}. (3.25)

Similar to the case of boost operators, commuting a bilocal with a local operator in general
yields a combination of bilocal and local operators

[[Lj |Lk],Ll] = [[Lj |Ll],Lk] + [Lj |[Lk,Ll]] + Lm. (3.26)

However, if the underlying local operators commute, the commutator becomes local, cf
figure 7. Hence, bilocal operators that are constructed from the commuting charges Qr yield

2 We define the step function �(x) = 0, 1/2, 1 for x < 0, x = 0, x > 0, respectively.
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admissible deformations3,
d

dλ
Qt (λ) = i [[Qr (λ)|Qs(λ)],Qt (λ)], s > r = 2, . . . ,∞, (3.27)

which result in deformed charges Qt that are local. As for the boost operators, the deformation
X (λ) = [Qr (λ)|Qs(λ)] directly depends on the charges Qr,s . Here the dependence is even
quadratic and hence

X (0) = [
Q(0)

r

∣∣Q(0)
s

]
, X (1) = [

Q(1)
r

∣∣Q(0)
s

]
+

[
Q(0)

r

∣∣Q(1)
s

]
, X (2) = · · · . (3.28)

Bilocal operator identifications. As is the case for boost operators, bilocal operators are defined
modulo local contributions. Again, this is due to the equivalence of local homogeneous
operators that differ only by spectator legs (2.6), (2.7). More precisely, the following

identifications can be made, where
�

�

again denotes a spectator leg4

[Lj �

� |Lk] = [Lj |Lk] − 1
2

∑
a

1
2

{
Lj (a)Lk

(
a − ⌊

1
2 |Lk| − 1

2 |Lj |
⌋)}

,

[Lj |Lk �

�

] = [Lj |Lk] + 1
2

∑
b

1
2

{
Lj

(
b − ⌊

1
2 |Lj | − 1

2 |Lk|
⌋)
Lk(b)

} − 〈Lk〉Lj ,

[Lj | �
�

Lk] = [Lj |Lk] − 1
2

∑
b

1
2

{
Lj

(
b − ⌈

1
2 |Lj | − 1

2 |Lk|
⌉)
Lk(b)

}
,

[
�

�Lj |Lk] = [Lj |Lk] + 1
2

∑
a

1
2

{
Lj (a)Lk

(
a − ⌈

1
2 |Lk| − 1

2 |Lj |
⌉)} − 〈Lj 〉Lk.

(3.29)

While the first correction terms on the right-hand side of the identifications follow
straightforwardly from the definition (3.24), the addition/subtraction of Lj,k is necessary

for a correct regularization: similar to the case of boost operators, for example, [Lj |Lk �

�

] and
[Lj |Lk] act differently at the right boundary of a finite chain. When the length of the chain is
taken to infinity, the difference becomes the local operator 〈Lk〉 · Lj . Here, 〈Lk〉 are the same
constants as in (3.20).

Degrees of freedom. The identifications (3.29) show that two pairs of local operators that
differ only by spectator legs yield the same bilocal operator, up to local terms,

Li 
 Lk, Lj 
 Ll (up to spectator legs) �⇒ [Li |Lj ] = [Lk|Ll] + Lr . (3.30)

Due to this ambiguity, there remains some arbitrariness in the definition of bilocal operators
(3.24): the ‘overlap’ between the two local operators for instance can be adjusted through the
addition of local operators. As in the case of boost operators, this ambiguity is not troublesome,
since all deformations by local homogeneous operators Lr can be absorbed into the similarity
transformations (3.8). The definition (3.24) is chosen in favor of the identity (3.25), which
immediately implies that

[[Qr |Qs] + [Qs |Qr ],Qt ] = 0. (3.31)

Hence, [Qr |Qs] and [Qs |Qr ] generate only one degree of freedom.

Note on boost operators. Observe that the boost operators (3.17) can formally be written as
particular bilocal operators

B[Lk] = 1
2 [N |Lk] − 1

2 [Lk|N ], (3.32)

3 Note that the commutator of higher multilocal operators with local operators always yields multilocal operators
again. Thus higher multilocal operators cannot be used to generate local structures.
4 The floor and ceiling functions are defined as �x� := max{z ∈ Z : z � x}, �x� := min{z ∈ Z : z � x}.

16



J. Phys. A: Math. Theor. 42 (2009) 285205 T Bargheer et al

where N denotes the length operator as introduced in (3.20). The equivalence is due to the
fact that in [N |Lk] the operator N counts the spin sites to the left of Lk .5 Correspondingly, the
operator identifications in (3.20) and (3.29) are compatible. The identification would allow us
to work with bilocal operators only and thus simplify the framework slightly.

Example. As an example for a deformation through bilocal operators, consider once more
the gl(K) spin chain. As presented in the previous example, the first two commuting nearest
neighbor charges are

Q(0)
2 = [1] − [2, 1], Q(0)

3 = − i
2 ([2, 3, 1] − [3, 1, 2]) . (3.33)

Following (3.27), the first-order deformation of the charge Q2 is given by

Q(1)
2 = i

[[
Q(0)

2

∣∣Q(0)
3

]
,Q(0)

2

]
= 1

2 [[[1] − [2, 1]|[2, 3, 1] − [3, 1, 2]], [1] − [2, 1]]

= 1
4 (−4[[1]|[1, 3, 2]] + 4[[1]|[2, 1, 3]] + 4[[2, 1]|[1, 3, 2]]

− 4[[2, 1]|[2, 1, 3]] + 4[1] − 2[2, 3, 1] − 2[3, 1, 2] − 2[2, 1, 4, 3] − 2[2, 3, 4, 1]

+ 2[2, 4, 1, 3] + [2, 4, 3, 1] + 2[3, 1, 4, 2] + [3, 2, 4, 1] − 2[3, 4, 1, 2] − 2[4, 1, 2, 3]

+ [4, 1, 3, 2] + [4, 2, 1, 3])

= 1
4 (−4[1] + 8[2, 1] − 2[2, 3, 1] − 2[3, 1, 2] − 2[2, 1, 4, 3]

− 2[2, 3, 4, 1] + 2[2, 4, 1, 3] + [2, 4, 3, 1] + 2[3, 1, 4, 2] + [3, 2, 4, 1] − 2[3, 4, 1, 2]

− 2[4, 1, 2, 3] + [4, 1, 3, 2] + [4, 2, 1, 3]), (3.34)

where in the last line the bilocal operators were identified according to the rules (3.29).
Deforming Q(0)

3 in the same fashion, the resulting charges Q2 and Q3 commute up to terms of
order O(λ2). The higher order terms of Q2 and Q3 can be obtained by successive reinsertion
of the deformed charges into (3.27) and further expansion in λ.

3.5. Basis of charges

The operators presented above generate almost all admissible deformations of the form (3.1).
However, taking linear combinations of the charges Qr certainly does not change their algebra
and therefore yields another type of allowed deformations

d

dλ
Qr (λ) = Qs(λ), r, s = 2, . . . ,∞. (3.35)

While the transformations (3.8) describe a change of basis within the space of local
homogeneous operators, this type of deformation represents a change of basis within the
algebra of charges Qr .

In order to analyze all admissible deformations in a common framework, we consider
Qr as the r’th component of a vector Q = ErQr . A rotation generator Gr,s acts on the basis
vector Ek as

[Gr,s ,Et ] = −i δr,tEs . (3.36)

5 For infinite chains this number is infinite. The infinity cancels in the antisymmetric definition in (3.32), but an
unspecified finite shift remains as a regularization parameter. It is related to the freedom of shifting the origin (site 0)
of the chain for the definition of boost operators, cf (3.12), (3.16).
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In other words, Gr,s generate general linear transformations on the space of commuting
charges. The deformation (3.35) can then be written as

d

dλ
Q(λ) = i [Gr,s ,Q(λ)], r, s = 2, . . . ,∞. (3.37)

3.6. Symmetry generators

The charges Q(λ) of a symmetric spin chain should transform in a particular representation
of the symmetry algebra. Assume that the generator Ja is represented on spin chain states by
the operators Ja(λ). It is straightforward to deform the representation by means of the same
differential equation as for the charges

d

dλ
Ja(λ) = i [X (λ),Ja(λ)]. (3.38)

Equation (3.3) guarantees that the structure constants of the commutation relations [Ja,Jb]
and [Ja,Q] are preserved under the deformation. Since (3.38) generates similarity
transformations, Ja(λ) is a one-parameter family of equivalent representations of a single
undeformed algebra.

Let us first consider the symmetry to be a Lie algebra g with commutation relations

[Ja,Jb] = Fc
a,bJc, (3.39)

and invariant charges

[Ja,Q] = 0. (3.40)

Obviously these commutation relations are preserved by the deformation with undeformed
structure constants Fc

a,b. This work focuses on deformations for which (3.38) is trivial: the
deformations discussed above are invariant under the symmetry, [Xk(λ),Ja(λ)] = 0, which
leads to Ja(λ) = Ja(0).

For integrable spin chains the Lie algebra furthermore extends to Yangian symmetry.
Yangian symmetry implies an additional set of generators Ya which transform in the adjoint
representation of the Lie algebra g,

[Ja,Yb] = Fc
a,bYc, (3.41)

and which leave the conserved charges invariant

[Ya,Q] = 0. (3.42)

Additionally, the Yangian generators and the Lie algebra generators Ja have to satisfy the
Serre relations [27]. These are given by

[Ya, [Jb,Yc]] + [Yb, [Jc,Ya]] + [Yc, [Ja,Yb]] = 1
6Adef

abc{Jd ,Je,Jf }, (3.43)

where {. . .} represents the sum over all six permutations of the enclosed generators and the
coefficients Adef

abc are given in terms of the structure constants and the Cartan matrix Ca,b

Adef
abc = 1

4Fd
a,gF

e
b,hF

f

c,jF
j

d,eC
g,dCh,e. (3.44)

Since the deformation (3.1) in general preserves the algebra between the deformed quantities,
the invariance property (3.42) is preserved if the Yangian generators are deformed in the same
way as the charges (4.3)

d

dλ
Ya(λ) = i [X (λ),Ya(λ)]. (3.45)
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Because the change of basis deformation (3.37) only mixes the charges Qr among themselves,
it does not affect (3.42). Since the Lie algebra generators Ja are deformed (3.38) in the same
way as the Yangian generators (3.45), also the Serre relations are preserved by the deformation.

The fact that the generating equation (3.1) preserves any algebra among the deformed
operators Q might be particularly interesting for extending our deformation method to models
in which also the Lie algebra representation Ja(λ) is deformed non-trivially. One such case
was recently studied by Zwiebel [30], who found a differential equation reminiscent of ours.

4. Geometry of the moduli space

In the previous section we have found several admissible deformations Xk which generate
long-range integrable spin chains of infinite extent by means of a simple differential equation.
These are deformations by local operators Ll , boosted charges B[Qk], bilocal charges [Qr |Qs]
as well as changes Gm,n of the basis of local operators. Taking all these operators into account
results in multi-parameter deformations. In this section we shall discuss the dependence of the
charges Qr on the moduli. Qualitatively it will depend crucially on whether the differential
equation obeys a flatness condition.

4.1. Multi-parameter deformations

There is nothing that prevents us from combining the various deformations into a system with
multiple moduli {ξj } = {αk, βr,s , γm,n, εl}. This is done by choosing the deformation X to be
some linear combination6 of the {Xj } = {B[Qk], [Qr |Qs],Gm,n,Ll} (we sum over repeated
indices)

X (λ) = dξj (λ)

dλ
Xj (λ). (4.1)

We shall investigate how the charges Qr depend on the moduli. Substituting the linear
combination of deformation operators (4.1) into the generating equation (3.1) yields the
differential equation

dQ(λ) = i [Xj (λ),Q(λ)] dξj (λ). (4.2)

For later purposes it will be very convenient to use the language of differential forms
� = Xj dξj on moduli space. Including all operators discussed in section 3, we find the
most general generating equation

dQ = i [B[Qk],Q]	k + i [[Qr |Qs],Q]ϒr,s + i [Gm,n,Q]�m,n + i [Ll ,Q]�l. (4.3)

The coefficients 	k,ϒr,s, �m,n,�l are 1-forms on moduli space which parametrize the desired
deformation. They can depend arbitrarily on any of the moduli ξj .

Note that, as before, the generating equation defines merely a one-parameter family of
charges Qr (λ). However, now we have the additional freedom to specify the functions ξj (λ

′)
which define a curve on moduli space. This means that the charges Qr depend not only
on a point ξj (λ) in moduli space, but also on the shape of the curve ξj (λ

′) connecting the
undeformed model at λ′ = 0 to the deformed model at λ′ = λ. In general one cannot expect
the dependence on the shape of the curve to be trivial.

A further complication is that the deformation operators Xj (λ
′) are neither constants

nor proper functions of the moduli ξj : For the boost and bilocal deformations, X =
B[Qk], [Qr |Qs], they actually depend on the solution Qr (λ

′) of the differential equation

6 The linear combination may have λ-dependent coefficients.
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itself. This unusual feature complicates the treatment, but we can at least make use of a
weaker fact: the differential of the deformations dXj (λ

′) (which is what is needed in practice)
can be expressed through the differential of the charges dQk(λ

′) which in turn is determined
through the differential equation (4.2).

One can find a perturbative solution for the generating equation (4.2) with multiple
parameters. The deformation curve ξj (λ

′) is assumed to start at the origin ξj (0) = 0 of the
moduli space with the undeformed charges Q(0)

r . It is furthermore assumed to be confined to
a small neighborhood of the origin. Then one can expand the solution Q(λ) in terms of small
ξj (λ) as follows:

Q(λ) = Q(0) + ξk(λ)i
[
X (0)

k ,Q(0)
]

+
∫ λ

0
dξk(λ

′) i
[
X (1)

k ,Q(0)
]

+
∫ λ

0
dξk(λ

′)ξl(λ
′) i

[
X (0)

k , i
[
X (0)

l ,Q(0)
]]

+ O(ξ 3). (4.4)

Here we have expanded the deformation Xk(λ) = X (0)
k + X (1)

k + · · · in powers of ξ . As
explained above, we actually know the partial derivatives of Xk in all directions of the moduli
space. We can therefore write X (1)

k = ξl(λ)X [l]
k . Splitting the integrals into their symmetric

and antisymmetric part allows us to rewrite the expansion in a more illuminating fashion

Q(λ) = Q(0) + ξk(λ) i
[
X (0)

k ,Q(0)
]

+
1

2
ξk(λ)ξl(λ)

(
i
[
X [l]

k ,Q(0)
]

+ i
[
X (0)

k , i
[
X (0)

l ,Q(0)
]])

+
1

2

∫ λ

0
dξk(λ

′)ξl(λ
′) i

[
X [l]

k − X [k]
l + i

[
X (0)

k ,X (0)
l

]
,Q(0)

]
+ O(ξ 3). (4.5)

4.2. Connection and curvature

The generating equation (4.2) can be interpreted as a parallel transport equation for the vector
of commuting charges Q

DadQ = 0. (4.6)

Here Dad is the covariant derivative D in the adjoint representation

D := d − i�, Dad := d − i ad(�), ad(�)Q := [�,Q]. (4.7)

The operator-valued connection � which includes all the admissible deformations reads

� := Xj dξj = B[Qk]	k + [Qr |Qs]ϒr,s + Gm,n�m,n + Ll�l. (4.8)

This connection may or may not be flat: flatness would imply that the deformed charges Q(λ)

are independent of the shape of the path ξ(λ′) along which they are parallel transported. They
would only depend on the endpoint ξ(λ) of the path and thus they could be defined as proper
functions Q(ξ) on moduli space. In the expansion (4.5) one can observe the influence of
flatness: the terms on the first line exclusively depend on the endpoint ξ(λ) while the term on
the second line requires some integrals over ξ(λ′). Importantly, the latter term is proportional
to the curvature of the connection � and consequently it vanishes for a flat connection.

Let us now calculate the curvature of the connection �. According to (4.7) it reads

iD2 = d� − i� ∧ �. (4.9)

In the following we shall neglect the deformations �l by local operators. This is favorable
for several reasons: First, these deformations turn out to form an ideal, they do not influence
the curvature components associated with boosts, bilocal and basis change transformations.
Second, it allows us to discard local contributions originating from the other deformations at
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most steps of the calculation. These would be hard to treat quantitatively and in full generality.
And last but not least the deformations by local operators are irrelevant in the sense that they
have no impact on the spectrum of finite chains. We are thus left with a connection

� = 	 + ϒ + �. (4.10)

The operator-valued 1-forms 	,ϒ and � are given by

	 := Pk	k, ϒ := Yr,sϒr,s, � := Gm,n�m,n. (4.11)

with the abbreviations Pk,Yr,s for the boost and bilocal charges

Pk := B[Qk], Yr,s := [Qr |Qs]. (4.12)

The curvature is now given by

iD2 = d	 + dϒ + d� − i(	 + ϒ + �) ∧ (	 + ϒ + �). (4.13)

First, consider the bilocal connection ϒ . Given that DadQ = 0, a short calculation shows that
its exterior derivative is given by

dϒ = ([dQr |Qs] + [Qr |dQs]) ∧ ϒr,s + Yr,sdϒr,s

= i([[Yt,u,Qr ]|Qs] + [Qr |[Yt,u,Qs]])ϒt,u ∧ ϒr,s

+ i ([[Pk,Qr ]|Qs] + [Qr |[Pk,Qs]])	k ∧ ϒr,s

+ (δm,rYn,s + δm,sYr,n)�m,n ∧ ϒr,s + Yr,sdϒr,s, (4.14)

where it was used that [Gm,n,Q]r = −iδm,rQn. Similarly, the exterior derivative of the boost
connection 	 reads

d	 = B[dQk] ∧ 	k + Pk d	k

= iB[[Pl ,Qk]]	l ∧ 	k + iB[[Yr,s ,Qk]]ϒr,s ∧ 	k

+ δm,kPn�m,n ∧ 	k + Pk d	k. (4.15)

Because the operators Gm,n that generate basis changes do not depend on the coordinates ξj ,
the exterior derivative of the connection � simply reads

d� = Gm,n d�m,n. (4.16)

Using the Jacobi identity and (3.31), one finds

iϒ ∧ ϒ = i
2 [[Qr |Qs], [Qt |Qu]]ϒr,s ∧ ϒt,u

= −i
(
[[Yt,u,Qr ]|Qs] + [Qr |[Yt,u,Qs]]

)
ϒr,s ∧ ϒt,u, (4.17)

where it was further used that the commutator of two bilocal operators evaluates to (cf
figure 8)

[[Qr |Qs], [Qt |Qu]] = [[Qr , [Qt |Qu]]|Qs] + [Qr |[Qs , [Qt |Qu]]]

+ [[[Qr |Qs],Qt ]|Qu] + [Qt |[[Qr |Qs],Qu]] + local. (4.18)

Similarly, one finds

i	 ∧ 	 = i
2 [B[Qk],B[Ql]]	k ∧ 	l = −iB[[Pl ,Qk]]	k ∧ 	l, (4.19)

i	 ∧ ϒ + iϒ ∧ 	 = − i
2 [Pk,Yr,s]	k ∧ ϒr,s − i

2 [Yr,s ,Pk]ϒr,s ∧ 	k

= (−iB[[Yr,s ,Qk]] + i [Qr |[Pk,Qs]] + i [[Pk,Qr ]|Qs])	k ∧ ϒr,s . (4.20)

Since the generators Gm,n commute with the boost and bilocal operators Pk and Yr,s , the
remaining terms of the curvature (4.13) are
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,Qr Qs Qt Qu =

Qr Qs

Qt Qu

+

Qr Qs

Qt Qu

+

Qt Qu

Qr Qs

+

Qt Qu

Qr Qs

Figure 8. Graphical representation of the commutator (4.18) of two bilocal operators. Since the
local charges commute with each other, the only contributing terms (up to local operators) are
those where both local parts of one bilocal operator overlap with one of the local charges of the
other bilocal operator.

i� ∧ � = i
2 [Gm,n,Gp,q ]�m,n ∧ �p,q = δn,pGm,q�m,n ∧ �p,q,

i	 ∧ � + i� ∧ 	 = −i[Pk,Gm,n]	k ∧ �m,n = 0,

iϒ ∧ � + i� ∧ ϒ = −i[Yr,s ,Gm,n]ϒr,s ∧ �m,n = 0.

(4.21)

Hence, the curvature reduces to

iD2 = Pk(d	k + �p,k ∧ 	p) + Yr,s(dϒr,s + �p,r ∧ ϒp,s + �p,s ∧ ϒr,p)

+ Gm,n(d�m,n − �m,p ∧ �p,n). (4.22)

It is curious to see that the nonlinear components of the curvature are all due to basis change
deformations �m,n. The group structure underlying the connection consists of a general linear
group (�m,n) and two abelian ideals (	k,ϒr,s).

4.3. Flatness

According to (4.22) the covariant derivative defined in (4.7) is flat if

0 = d	k + �p,k ∧ 	p, (4.23)

0 = dϒr,s + �p,r ∧ ϒp,s + �p,s ∧ ϒr,p, (4.24)

0 = d�m,n − �m,p ∧ �p,n. (4.25)

Flatness implies that the charges Qr (λ) depend only on the final position ξ(λ) in moduli space;
they are independent of the shape of the path ξ(λ′). In other words, the charges are single-
valued functions Qr (ξ) on moduli space. An expansion of the charges in the deformation
parameters therefore exists, see figure 9,

Q(ξ) = Q(0) + ξjQ[j ] + 1
2ξj ξkQ[j,k] + O(ξ 3). (4.26)

According to (4.5) the first two expansion coefficients read

Q[k] = i
[
X (0)

k ,Q(0)
]
,

Q[k,l] = i
[
X [k]

l ,Q(0)
]

+ i
[
X (0)

l ,Q[k]
]
.

= i
[
X [l]

k ,Q(0)
]

+ i
[
X (0)

k ,Q[l]
] (4.27)

Note that if the deformation (4.3) does not incorporate a change of basis, i.e. � ≡ 0, exact
boost and bilocal connections 	k = dαk,ϒr,s = dβr,s lead to a flat connection and expansion
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Q(0)
r Q[k]

r

Q[j]
r Q[j|k]

r

Xk

Xk

Xj Xj

Figure 9. The deformed charges are independent of the shape of the path within the moduli space
only if the connection is flat. In this case, first deforming in the direction ξl and then in the direction
ξk yields the same result as first deforming in the direction ξk and then in the direction ξl . Hence,
the charges can be directly expanded (4.26) in the deformation parameters ξj .

P(0)
2 P(0)

2 P(0)
2 P(0)

2Q(0)
2 Q(0)

3 Q(0)
4 Q(0)

5 . . .

P(0)
3 P(0)

3 P(0)
3 P(0)

3

Q[3]
2 Q[3]

3 Q[3]
4 Q[3]

5
. . .

P(0)
4 P(0)

4 P(0)
4

P [3]
3

P(0)
3

P [3]
3

P(0)
3

P [3]
3

P(0)
3

Q[3↪3]
2 Q[3↪3]

3 Q[3↪3]
4Q[4]

2 Q[4]
3 Q[4]

4
. . .

Figure 10. The boost deformations commute among themselves. Thus if for instance � ≡ ϒ ≡ 0
and 	k = dαk , the boost-deformed charges can be directly expanded in the deformation parameters
αk , cf (2.14). The zeroth-order higher charges are generated by the boost P(0)

2 while the coefficient

Q[k]
r of αk is given by the commutator of P(0)

k with the corresponding charge Q(0)
r . Note in

particular that coefficients of higher powers of αk are generated by the higher order terms of the
charge and boost operators drawn in gray, e.g. Q[3,3]

r ∼ [P [3]
3 ,Q(0)

r ] + [P(0)
3 ,Q[3]

r ].

in terms of αk and βr,s , cf figure 10. On the other hand, when � is chosen to be nonzero but
such that it satisfies (4.25), the boost and bilocal connections 	, ϒ must be modified in order
to keep the connection flat, i.e. in order to satisfy (4.23), (4.24). In the following section,
explicit forms 	,ϒ in terms of moduli αk, βr,s will be constructed for a specific, nonzero
choice of �. It will turn out that these forms yield a flat connection 	 + ϒ + �.

5. Interaction range

In this section we will investigate the change of the interaction range of the integrable charges
due to the various deformations. We present a parametrization that leads to a definite, minimal
increase of the range by each deformation. A minimal range is necessary to make a comparison
to earlier studies [24] where this feature is manifest. As previously the interaction range of a
local operator Lk will be denoted by |Lk|.

5.1. First comparison to gl(K) chains

The set of deformation moduli discussed in section 3 qualitatively agrees with the set of
moduli {αk, βr,s , γm,n, εl} of long-range integrable gl(K) spin-chains proposed in [24]7. This

7 Also the deformation of the Yangian generators agrees qualitatively with the results of [25]: The bi-local terms
remain undeformed while there are local deformations of Ya . The Serre relations defining the Yangian algebra are
unmodified.
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is a useful indication that both constructions describe the same system and that we have not
missed any admissible deformations. Nevertheless, the precise form of the deformations, cf
(3.22), (3.34), does not match with those obtained in [24], there are two main differences:

The qualitative comparison suggests that the deformation of the lowest boost P3 should
correspond to the lowest rapidity parameter α0 in [24]. Nevertheless the leading-order
deformation (3.22) does not appear among the deformations in [24]. In particular, each
deformation by P3 increases the range by two units such that

∣∣Q(1)
2

∣∣ = 4 in (3.22) as opposed
to [24] where each power of α0 increases the range by merely one unit. Nevertheless the
explorative study in [24] is complete up to range 6, and therefore our deformation by P3 must
be among the deformations in [24]. The resolution to the puzzle is that α0 deformation in
[24] is a combination of the boost deformations P3 and the change of basis deformation G2,4.
The combination must be chosen such that the range decreases by one step, which will be the
topic of section 5.2. Furthermore higher order deformations should have a consistent pattern
of ranges, see sections 5.3, 5.4. In section 5.5 it will be shown that this actually leads to a flat
connection as discussed in the previous section.

The leading-order bilocal deformation (3.34) indeed agrees literally with the structure
multiplying the coefficient γ2,2β2,3 in [24, 25]. The coefficient γ2,2 appears because in [24]
the final charges Qr are given as linear combinations γr,sQ̄s of normalized charges Q̄s . The
latter contain only the deformation moduli αk, βr,s , εl . Conversely, in our differential equation
the change of basis deformations act at all points of the deformation path and thus mix with
the other moduli. We should therefore aim to reproduce merely the normalized charges Q̄s of
[24] using the moduli αk, βr,s , εl and at the end apply a finite change of basis Qr → γr,sQs .

Finally, as in the previous section, we will disregard deformations by local operators Ll

and the corresponding moduli εl . As mentioned earlier and as to be explained in section 6,
they do not affect the quantities we are interested in and can be reintroduced easily through
the similarity transformation (3.9).

5.2. Boost connection at leading order

First, consider the boost connection alone,

	 = Pk	k = B[Qk]	k. (5.1)

As one would expect, the first-order deformation terms i
[
P(0)

k ,Q(0)
r

]
generically have range∣∣Q(0)

k

∣∣ +
∣∣Q(0)

r

∣∣ − 1. In our examples, however, we observe that the longest contributions of
some boosted charge precisely match with the longest contributions of another, undeformed
charge,

i(s − 1)[Ps ,Qr ] 
 −(s + r − 2)Qs+r−1. (5.2)

Note that according to (2.15) both sides have a coincident range. In appendix A we prove
(5.2) by using the generating equation (2.14). Consequently we can reduce the range by fixing
the connection �m,n to

�m,n = n − 1

n − m
	n−m+1. (5.3)

Up to local similarity transformations, the connection (4.10) and the corresponding general
deformation (4.3) then become

� = 	̃ + ϒ, dQ = i[P̃k,Q]	̃k + i[Yr,s ,Q]ϒr,s, (5.4)

where

	̃ := 	 + � = P̃k	̃k, 	̃k = 1

k − 1
	k, P̃k := (k − 1)Pk + Gk. (5.5)
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The matrix Gk is defined by (cf (3.37))

Gk =
∑

n

(n + k − 2)Gn,n+k−1, that is

[Gk,Q]n = −i(n + k − 2)Qn+k−1.

(5.6)

The factor (k − 1) in the definition of P̃k and 	̃k is introduced for later convenience.
Computationally, we find that the first-order deformation terms for the gl(K) chain agree
with those obtained in [24] and have the range∣∣i[P̃(0)

k ,Q(0)
r

]∣∣ = r + k − 2. (5.7)

In other words, deforming with P̃k(0) increases the range by k − 2. It appears that this is the
minimal range one can achieve by correcting the boost deformation with the connection �.

Example. For the gl(K) chain, the operators of range four in the first-order term Q(1)
2 (3.22)

match the longest terms in the undeformed charge Q(0)
4 (2.16). With the choice (5.3), the new

term Q(1)
2 becomes

Q(1)
2 = 2 · 1

2 (−2[1] + 2[2, 1] − [2, 3, 4, 1] + [2, 4, 1, 3] + [3, 1, 4, 2] − [4, 1, 2, 3])

+ 3 · 1
3 (−[1] + 2[2, 1] − [3, 2, 1] + [2, 3, 4, 1] − [2, 4, 1, 3] − [3, 1, 4, 2] + [4, 1, 2, 3])

= −3[1] + 4[2, 1] − [3, 2, 1]; (5.8)

its range is reduced by one unit. It also agrees literally with the corresponding deformation in
[24, 25].

5.3. Boost connection at higher orders

While the first-order terms of the boost deformation now have minimal range, the range of
higher order terms in the expansion (4.5) can be further reduced. In particular, with the
simplest choice 	̃k = dαk , we find that for a deformation along any path αk(λ), the range of
higher order terms is not additive in the powers of αk(λ). For example the term of Qr=2(λ) of
the gl(K) chain that is of order α3(λ)α4(λ) has range six8; additivity would require it to have
range five (r + 3), since the leading-order terms proportional to α3(λ), α4(λ) have range three
(r + 1) and four (r + 2), cf (5.7).

Experimentally, we find that the following expansion for the connection 	̃k minimizes
the range:

	̃k = dαk +
∞∑

M=1

∞∑
�1,...,�M=3

⎛
⎝ M∏

j=1

(�j − 2)α�j

⎞
⎠ dαk+M−∑

j �j
, (5.9)

where we set dαk<3 = 0. This choice also renders the range of higher order terms additive
in the above sense. While this result appears ad hoc, we also found an equivalent implicit
definition which makes a connection to earlier results: define first the function u(x) as in [24]

u(x) = x +
∞∑

n=3

αn

xn−2
, (5.10)

8 It is possible that a naive application of the recursion relation does not yield the desired range. Note, however, that
we do not display explicitly deformations by local operators, which are required to reduce the length in most cases,
see appendix B.
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and its inverse x(u) = u + O(α). The connection 	̃ is then implicitly defined by the relation

dx(u) = −
∞∑

n=3

	̃n

xn−2
. (5.11)

The relation should be interpreted in the following way: the function x(u) depends implicitly
on the moduli αk and the differential acts on these only. Thus dx(u) is a function of αk, dαk

and u. Replacing the latter by the inverse function u(x) and casting the result in the form on
the right hand side of (5.11) defines the 	̃n.

While the choice (5.11) seems not well motivated at first sight, we observe that the
parametrization (5.9) gives the deformed charges a definite, canonical range pattern: For the
gl(K) chain, we find that with a given path αk(λ) the range of each term in the expansion (4.5)
depends additively on the moduli αk(λ) in its coefficient—for each power of each αk(λ), the
range increases by k − 2, cf (5.7). Furthermore, this range apparently is maximally reduced
by (5.9) and does not depend on the specific path α(λ) in moduli space. As we will see below,
the choice (5.9) moreover guarantees that the connection 	̃ is flat, which turns the deformed
charges into proper functions on moduli space.

5.4. Bilocal connection at higher orders

It remains to consider the bilocal deformations: as long as we restrict to only bilocal
deformations, i.e. 	 = � = 0, the simple choice

ϒr,s = 2dβr,s (5.12)

apparently results in a definite, minimal increase of the charges’ ranges. Here, the factor of
two is introduced for consistency with the existing literature. Our explicit computations for
the gl(K) chain show that with (5.12), as for the boost connection (5.9), the range of each
term in the expansion (4.5) depends additively on the moduli βr,s(λ) in its coefficient. Here,
each power of each βr,s(λ) increases the range by s − 1; at leading order, the range equals∣∣i[[Q(0)

r

∣∣Q(0)
s

]
,Q(0)

t

]∣∣ = t + s − 1. (5.13)

Moreover, the range of all deformation terms is independent of the path β(λ) in moduli space
and apparently cannot be further reduced by a redefinition of Yr,s . As an example, the term of
Q2 proportional to β2,3(λ) is given in (3.34), up to an overall factor.

If we, however, switch on the boost connection 	̃ with the parametrization (5.9) and
include the change of basis (5.3), we find that the range of terms that come with mixed powers
of α’s and β’s is not minimal. Again, the example of the gl(K) chain suggests that the range
of each term is minimized by the choice (with βr,s = −βs,r )

ϒr,s = 2 dβr,s + 2βn,s�n,r + 2βr,n�n,s . (5.14)

With this choice, the range of mixed terms also becomes additive in the powers of each
modulus αk(λ), βr,s(λ). As for the pure α-terms and the pure β-terms, the range increases by
k − 2 for each power of αk(λ) and by s − 1 for each power of βr,s(λ).

Note that since �r,s is parametrized by the moduli αk , the prescription (5.14) changes
(5.5) once more by a non-trivial term. Namely, P̃k becomes

P̃k = (k − 1)Pk + Gk + 2iβr,s[[Gk,Q]r |Qs] + [Qr |[Gk,Q]s]. (5.15)

Examples for higher order terms of the expansion (4.5) are given in appendix B.
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5.5. Flatness

The redefinition (5.3) made in favor of a canonical interaction range spoils the flatness of the
connection (4.8). As discussed in section 4, the boost and bilocal connection 	 + ϒ alone is
flat9, while a change of basis � introduces curvature (4.22). As we will see in the following,
flatness of the connection is restored by the parametrization constructed above.

Boost connection. With the definition (5.3), the flatness condition (4.25) for � becomes

0 = d�m,n + �m,k ∧ �k,n

= (n − 1) d	̃n−m+1 +
∑

k

(k − 1)(n − 1)	̃k−m+1 ∧ 	̃n−k+1, m, n � 2, (5.16)

which is not satisfied for generic 	̃. Note that for m = 1, equation (5.16) becomes the boost
flatness condition (4.23). Thus we can summarize both formulae if we extend the range of m
in (5.16) to m � 1. Setting

n → n + m − 1, k → k + m − 1, (5.17)

the flatness conditions (4.23), (4.25) thus become

0 = d	̃n +
∑

k

(k + m − 2)	̃k ∧ 	̃n−k+1, n � 2,m � 1. (5.18)

If we define the connection 	̃n to be zero for n < 3, we do not have to change the limits of
the sum when shifting the indices. The antisymmetry of the wedge product in (5.18) implies
that under the sum over k the part with a constant coefficient vanishes. Hence, we have shown
that equations (4.23), (4.25) for the choice (5.3) are actually independent of the index m and
reduce to

0 = d	̃n +
∑

k

k	̃k ∧ 	̃n−k+1, n � 2. (5.19)

We now show that this flatness condition is satisfied by the definition (5.11). This can be seen
as follows:

0 = −ddx(u) =
∞∑

n=3

(
d	̃n

xn−2
− (n − 2)

	̃n ∧ dx(u)

xn−1

)

=
∞∑

n=3

(
d	̃n

xn−2
+

∞∑
k=3

(n − 2)	̃n ∧ 	̃k

xn+k−3

)

=
∞∑

n=3

1

xn−2

(
d	̃n +

∞∑
k=3

k	̃k ∧ 	̃n−k+1

)
, (5.20)

where going to the last line we have renamed the indices k ↔ n in the second sum followed by
an index shift n → n − k + 1. We furthermore dropped constant factors in front of the wedge
product due to the antisymmetry and did not change the limits of the sum since 	̃k<3 = 0 by
definition. Now, (5.20) implies (5.19).

Bilocal connection. We now show that the remaining flatness condition (4.24) is satisfied by
the parametrization (5.14), provided that � fulfils (4.25). As we have seen above, this is the
case for the choice (5.3). Plugging (5.14) into (4.24) yields
1
2 (dϒr,s + �p,r ∧ ϒp,s + �p,s ∧ ϒr,p) = dβn,s ∧ �n,r + βn,sd�n,r + dβr,n ∧ �n,s + βr,nd�n,s

+ �p,r ∧ dβp,s + βn,s�p,r ∧ �n,p + βp,n�p,r ∧ �n,s

+ �p,s ∧ dβr,p + βn,p�p,s ∧ �n,r + βr,n�p,s ∧ �n,p = 0, (5.21)

9 For vanishing �, the simple choice 	k = dαk,ϒr,s = 2dβr,s results in a flat connection.
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where we have used equation (4.25). Hence, the definition (5.14) leads to a flat bilocal
connection in the sense that (4.24) is satisfied.

5.6. Summary

To summarize, the parametrization (5.3), (5.11), (5.14),

�r,s = s − 1

s − r
	s−r+1,

∞∑
n=3

	n(αm)

(n − 1)xn−2
= −dx(u),

ϒr,s = 2dβr,s + 2βn,s�n,r + 2βr,n�n,s,

(5.22)

results in deformed chargesQr with a definite pattern of ranges. Moreover, this parametrization
renders the connection (4.8) flat. Hence the charges are proper functions of the moduli space
parameters α, β up to local similarity transformations

Qn = Q(0)
n + αkQ[k]

n + βr,sQ[r|s]
n + αkαlQ[k,l]

n + αkβr,sQ[k,r|s]
n + βr,sβt,uQ[r|s,t |u]

n + · · · . (5.23)

The individual terms Q[...]
n in the gl(K) case agree with those obtained in [24, 25]10. As

discussed in the previous subsections, they have an interaction range

∣∣Q[k1,...,kt ,r1|s1,...,ru|su]
n

∣∣ = n +
t∑

�=1

(k� − 2) +
u∑

�=1

(s� − 1), (5.24)

i.e. each boost deformation P̃k increases the range by k − 2 and each bilocal deformation Yr,s

increases the range by s − 1.
Note that the definition (5.3) fixes a specific change of basis that accompanies the boost

deformation. This specific choice minimizes the ranges of the deformed charges Q and renders
the connection flat. The charges Q thus form a canonical basis of the space of charges at each
point in moduli space. They reproduce the normalized charges Q̄r of [24] and depend only
on the reduced set of moduli {αk, βr,s , εl}. However, nothing prevents us from choosing a
different basis

Q̃m = γm,nQn (5.25)

for the space of charges after the charges have been deformed. For comparison with [24],
note that the symbols {Q, Q̃, αk, βr,s , γr,s} here correspond to the quantities {Q̄,Q, αk−3,

βr,s , γr,s} there.

5.7. Properties of deformations

We have seen that the interaction ranges of the deformed charges obey a certain pattern (5.24).
In this subsection we discuss additional properties of the deformations as well as their relation
to gauge theory.

Parity. We introduce a parity operator P acting on local, boost and bilocal operators. For a
local charge of manifest parity we then have

PQrP
−1 = (−1)prQr , (5.26)

10 Some charge terms Q[...]
n are calculated explicitly in appendix B.
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where pr is even or odd for Qr being even or odd under parity. Since we only consider bilocal
charges within commutators with local charges, we can make use of the fact that due to (3.25)
we have

[[Qr |Qs],Qt ] = −[[Qs |Qr ],Qt ]. (5.27)

Further using that P [Qr |Qs]P −1 = [PQsP
−1|PQrP

−1] due to (3.24), we find

P [[Qr |Qs],Qt ]P
−1 = [P [Qr |Qs]P

−1, PQtP
−1]

= (−1)ps+pr +pt [[Qs |Qr ],Qt ]

= (−1)ps+pr +pt−1[[Qr |Qs],Qt ]. (5.28)

The interpretation (3.32) of boost operators in terms of bilocal operators implies that

P [B[Qk],Qr ]P −1 = (−1)pk+pr−1[B[Qk],Qr ]. (5.29)

Assuming that the undeformed Hamiltonian Q(0)
2 has even parity, equation (2.14) then implies

that the undeformed even and odd chargesQ(0)
2r andQ(0)

2r+1 have even and odd parity, respectively.
According to (5.28), (5.29) the long-range deformations can be classified according to

PQ[k1,...,kt ,r1|s1,...,ru|su]
t P −1 = (−1)n+

∑t
�=1(k�−1)+

∑u
�=1(r�+s�−1)Q[k1,...,kt ,r1|s1,...,ru|su]

t . (5.30)

Number of crossings for fundamental g = gl(K). Considering the fundamental gl(K) spin
chain, the building blocks of invariant operators are given by simple permutations (2.9). One
characteristic quantity of the interaction terms is the number of elementary permutations
(crossings) 〉Lk〈 contained in an operator Lk , e.g.

〉[2, 1] + [2, 1, 4, 3]〈 = 2.

(5.31)

As shall be explained below, these numbers are a relevant quantity for the gauge theory,
because of their relation to the minimum perturbative order at which they may appear [3, 31].
Note that as for the range |Lk| of a linear combination of local operators we define 〉Lk〈 to be
the maximum number of crossings.

In commutators of boost and local operators we add the numbers of crossings of the
boost operator B[Lk] and the local operator Ll . Equation (2.14) implies that the leading-order
charges Q(0)

r have r − 1 crossings〉
Q(0)

r

〈 = r − 1. (5.32)

Consequently, the number of crossings of a boost deformation
[
P(0)

k ,Q(0)
r

]
has r + k − 2

crossings 〉[
P(0)

k ,Q(0)
r

]〈 = r + k − 2. (5.33)

Adding a term proportional to Q(0)
r+k−1 with r + k − 2 crossings for the minimal interaction

range (5.4) apparently does not reduce the crossings. Hence, the structure Q[k]
r multiplied by

αk generically contains r + k −2 crossings. More generally, the number of crossings increases
by k − 1 for each power of αk .

Also for bilocal deformations, the number of crossings of the bilocal operator adds up
with the number of crossings of the deformed structure to give the number of crossings of the
result. The commutator of a bilocal operator

[
Q(0)

r

∣∣Q(0)
s

]
which has r + s − 2 crossings and a

charge Q(0)
t with t − 1 crossings thus has t + r + s − 3 crossings〉[[

Q(0)
r

∣∣Q(0)
s

]
,Q(0)

t

]〈 = t + r + s − 3. (5.34)
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The number of crossings of a general deformation term is therefore given by

〉
Q[k1,...,kt ,r1|s1,...,ru|su]

t

〈 = t − 1 +
u∑

�=1

(r� + s� − 2) +
t∑

�=1

(k� − 1), (5.35)

in full agreement with the prediction of [24].

Number of crossings for g = gl(2). A particularly interesting case is given for gl(2) symmetry
which represents the su(2) sector spin chain of N = 4 SYM theory. We observe that for gl(2)

the anti-symmetrizer of 2 + 1 spins vanishes

0 =
∑

i,j,k∈{1,2,3}
εijk[i, j, k]. (5.36)

This allows us to reduce the number of crossings of boost deformations. Consider for instance
the Hamiltonian structure proportional to α3:

Q[3]
2 = −3[1] + 4[2, 1] − [3, 2, 1]. (5.37)

Here we can replace the term with three vertices by permutations with at most two vertices

[3, 2, 1] = [2, 3, 1] + [3, 1, 2] − 2[2, 1] + [1].

= + − 2 +
(5.38)

Note that we have performed boundary identifications. Hence, the operator structure Q[3]
2 in

fact contains only two elementary permutations [3]. It appears that one can reduce the number
of crossings of other boost deformations in a similar fashion. Also the terms multiplied by
higher powers of αk appear to be regularizable in this way [24]. This observation for g = gl(2)

suggests a modification of (5.35) to

〉
Q[k1,...,kt ,r1|s1,...,ru|su]

t

〈
gl(2)

= t − 1 +
u∑

�=1

(r� + s� − 2) +
t∑

�=1

(k� − 2). (5.39)

The number of crossings for bilocal deformations does not decrease.

Parameter restrictions from the su(2) sector of N = 4 super Yang–Mills theory. Here we
consider gauge theory restrictions on the gl(2) spin chain charges based on their number of
crossings [3, 31]. The integrable Hamiltonian appearing in the su(2) sector of N = 4 SYM
theory obeys a fundamental principle: its number of crossings does not exceed the order of the
coupling due to the correspondence to Feynman diagrams. As we will see, this requirement
can be satisfied if one restricts the starting order of the moduli {αk(λ), βr,s(λ)} as a Taylor
series in λ.

Within a gl(K) invariant operator, an elementary permutation between two spin chain
sites corresponds to a quartic scalar vertex of a Feynman graph in planar gauge theory. The
interaction ∼λ[�i,�j ]2 in the N = 4 Lagrangian (cf [2]) translates to the fact that each
elementary permutation comes with a factor of the coupling

∼ λ .
(5.40)

The number of Feynman vertices in the gauge theory Hamiltonian H(λ) must therefore equal
the corresponding power of the coupling constant in perturbation theory. Translating this to
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the spin chain picture one has to take into account that the Hamiltonian H(λ) is shifted by one
power of λ

H(λ) = H0 + λQ2(λ). (5.41)

Thus, an operator structure with C crossings is allowed to contribute to Q2(λ) at O(λC−1).
Comparison to the formula for the number of crossings of our generated charge terms (5.39)
shows that one has to restrict the parameter functions as in [24]

αk(λ) = O(λk−2),

βr,s(λ) = O(λr+s−2).
(5.42)

With this prescription the ranges of the deformed charges grow by at most one site with each
power of the coupling. The Hamiltonian at order λN acts on no more than N + 1 sites.

The long-range Hamiltonian Q2(λ) for the gl(K) chain in terms of permutation symbols
and the coefficients αk(λ), βr,s(λ) including terms of order O(λ3) is printed at the end of this
paper in table 2.

6. Long-range Bethe ansatz

We will now consider the asymptotic spectrum of a conserved charge on finite periodic chains.
So far, the charges of the integrable model have been defined for infinite chains only. For a
finite chain we demand that a particular charge matches with the integrable charge Qr for all
terms whose range does not exceed the length of the chain. This provides a proper definition
of commuting long-range charges on finite chains up to a certain order in the power series.
The asymptotic spectrum is the spectrum in the form of a power series modulo terms of higher
orders where the operator is not uniquely specified by the above definition. In particular, the
longer the chain, the higher the order at which the asymptotic spectrum truncates.

We will use the asymptotic Bethe ansatz [32, 33] to determine three basic observables of
asymptotic states on the infinite chain: vacuum charge density, magnon dispersion relation and
scattering matrix. These data are sufficient to set up the resulting asymptotic Bethe equations
providing the asymptotic spectrum of conserved charges on finite periodic chains. We shall
use the full set of deformations found in section 3 and the corresponding moduli defined in
section 5, and our result will turn out to agree with the earlier proposal in [24].

In the first parts of this section we shall assume a sl(2) or su(2) spin chain with spin
t/2 representations on all sites, i.e. a long-range Heisenberg XXXt/2 model. Later we will
generalize the results to higher rank symmetry algebras g.

6.1. Ferromagnetic vacuum

The ferromagnetic vacuum |0〉 is a pure state in which all spins are aligned to have an identical
orientation |HW〉 being of highest weight w.r.t. the symmetry algebra

|0〉 = · · · ⊗ |HW〉 ⊗ |HW〉 ⊗ |HW〉 ⊗ · · · . (6.1)

Furthermore this state is assumed to be an eigenstate of QNN
r with vanishing eigenvalue

(density). The latter property can always be achieved by subtracting from QNN
r the length

operator N multiplied by the eigenvalue density.
The long-range spin chain is a deformation of the nearest neighbor model induced by

equation (3.1). This equation is of parallel transport type implying that merely the eigenvectors
are deformed but not the spectrum. Here also the state remains undeformed because the
deformations respect the symmetry and there is only a single highest weight state. Altogether,
the vacuum density of all deformed Qr is zero.
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6.2. One-magnon states and dispersion relations (α)

One-magnon states are excitations of the ferromagnetic vacuum (6.1) where one spin is
replaced by a next-to-highest-weight state |NHW〉. Let the spin at position k be flipped

|k〉 = · · · ⊗ |HW〉 ⊗ |
k

↓
NHW〉 ⊗ |HW〉 ⊗ · · · . (6.2)

The magnon state |p〉 is a state with definite momentum p along the chain

|p〉 =
∑

k

eipk|k〉. (6.3)

Magnons are eigenstates of the charges Qr because the latter are homogeneous local
operators. The eigenvalue of Qr on |p〉 is called the dispersion relation qr(p). We will
now study how the dispersion relation qr(p) changes under the deformation (3.1). Although
the latter does not change the spectrum, it can deform the eigenstate to one with a different
momentum p. Let us therefore act with the various deformations on a magnon state. Local
operators (2.9) acting on this state are equivalent to linear combinations of shift operators

U j : |k〉 �→ |k − j 〉, (6.4)

whose action in momentum space is given by

U j |p〉 = eipj |p〉. (6.5)

Thus local deformations conserve the momentum. Likewise boost operators can be represented
by boosted shift operators B[U j ] which act on one-magnon states as

B[U j ]|p〉 =
∑

k

k eipk|k − j 〉 =
∑

k

(k + j) eip(k+j)|k〉 = −i
∂

∂p
(eipj |p〉). (6.6)

This shows that boost operators change the momentum of a magnon state. Conversely, for
bilocal charges [Qr |Qs] each elementary charge will annihilate the state due to a vanishing
vacuum charge density (see above) unless it acts on the flipped spin. Therefore the only
non-trivial contributions come from where both charges overlap with the flipped spin. This
is equivalent to the action of a local operator and thus it cannot change the momentum of the
magnon state.

Let us now act with the deformation equations (4.6), (4.7), (4.8) on the one-magnon state
|p〉. The only relevant contributions come from boost and change of basis deformations,
which have been combined into P̃k in section 5

dQ = i [P̃k,Q]	̃k =
∞∑

k=3

i [(k − 1)Pk + Gk,Q]	̃k. (6.7)

For [Pj ,Q�] = [B[Qj ],Q�] we need to compute the commutator of a boosted shift with a
shift operator

[B[U j ],U�]|p〉 = i
∂

∂p
(eipj eip�|p〉) − i eip� ∂

∂p
(eipj |p〉) = i eipj

(
∂

∂p
eip�

)
|p〉, (6.8)

such that the commutator of a boosted charge B[Qr ] with a charge Qs acts on a one-magnon
state as

[B[Qr ],Qs]|p〉 = iqr(p)
∂qs(p)

∂p
|p〉. (6.9)

This implies the following differential equation for the one-magnon eigenvalues qr

dqr(p) =
∞∑

k=3

(
−(k − 1)qk

∂qr

∂p
+ (k + r − 2)qr+k−1

)
	̃k. (6.10)
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We now prove that the solution to the above differential equation (6.10) is given by the
well-known form of the one-magnon eigenvalues [6]

qr(t, u) = i

n − 1

(
1

x
(
u + i

2 t
)r−1 − 1

x
(
u − i

2 t
)r−1

)
. (6.11)

The rapidity map x(u) = u + O(αk) was introduced in (5.10). The map between the
momentum p and the rapidity u(p) is implicitly defined through

exp (ip(t, u)) = x
(
u + i

2 t
)

x
(
u − i

2 t
) . (6.12)

Note that t is a constant of integration that can be freely chosen in the above equations11. We
now rewrite the above differential equation using the parameter u instead of the momentum p.
For the differential of qr this implies

dqr(u) = dqr(p) +
∂qr

∂p
dp(u). (6.13)

Here, the differential operator d acts only on the ξj on which the functions qr(u), qr(p)

explicitly depend. That is u is held fixed in dqr(u) while p is held fixed in dqr(p), as is the
case in (6.10). Using the defining equation of 	̃k (5.11) and (6.11), (6.12), we can compute
and simplify dp(u), dqr(u)

dp(u) = −i

(
dx

(
u + i

2 t
)

x
(
u + i

2 t
) − dx

(
u − i

2 t
)

x
(
u − i

2 t
)

)
=

∞∑
k=3

(k − 1)	̃kqk, (6.14)

dqr(u) = −i

(
dx

(
u + i

2 t
)

x
(
u + i

2 t
)r − dx

(
u − i

2 t
)

x
(
u − i

2 t
)r

)
=

∞∑
k=3

(r + k − 2)	̃kqr+k−1. (6.15)

The result for dp(u) can also be obtained from the result for dqr(u) by interpreting the
momentum operator as the first charge p = q1. Plugging (6.15), (6.14) into (6.13) then yields
the differential equation (6.10), which shows that p(u), qr(u) provides the correct long-range
charge eigenvalues.

At this point we can observe and disentangle the effect of the boost and basis rotation in
(6.10): the boosts are responsible for a deformation of the momentum function p(u) while
the deformations of the function qr(u) are caused solely by a change of basis.

To understand the role of the integration constant t, let us turn off the deformation moduli
αk = 0 such that x(u) = u and consider the resulting dispersion relations (6.11), (6.12)

exp(ipNN(t, u)) = u + i
2 t

u − i
2 t

, qNN
r (t, u) = i

r − 1

(
1(

u + i
2 t

)r−1 − 1(
u − i

2 t
)r−1

)
. (6.16)

It is well known that the functions pNN(t, u), qNN
r (t, u) define the dispersion relation for a

Bethe root u where t/2 is the spin label of the spin representation.

6.3. Two-magnon states and scattering (β)

Two-magnon states are states where the spin has been flipped at two positions

|k, �〉 = · · · ⊗ |
k

↓
NHW〉 ⊗ · · · ⊗ |

�

↓
NHW〉 ⊗ · · · . (6.17)

11 Any other linear combination of terms with different values of t is permissible in p, qr as well.
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When the two spins are far enough apart, i.e. when the range of the Hamiltonian is smaller
than their separation, it is safe to assume partial momentum eigenstates

|p < p′〉 =
∑
k��

eipk+ip′�|k, l〉. (6.18)

This state describes two magnons of momenta p, p′ in the asymptotic region where the magnon
with momentum p is to the left of the magnon with momentum p′. A two-magnon scattering
state |p, p′〉 can be written as a linear combination of the two asymptotic regions |p < p′〉
and |p′ < p〉

|p, p′〉 
 A(p, p′)|p < p′〉 + A(p′, p)|p′ < p〉. (6.19)

This expression is valid in the IR, we have not paid attention to UV terms
∑

k≈k′ |k, k′〉 where
the two magnons are nearby. These terms are needed in the computation of the scattering
factor which relates the phase in the two asymptotic regions

S(p, p′) = A(p′, p)

A(p, p′)
. (6.20)

Consequently, the scattering factor summarizes the effect of local interactions between the
spins on IR physics, and it is the quantity that we need to determine.

Before we continue, let us make a change to the labels of magnon states. It is useful to
replace the momentum p by the rapidity u(p) and define a magnon state with definite rapidity

|u〉 = F(u)|p(u)〉, (6.21)

where F(u) is a convenient normalization factor. The main difference between |p〉 and |u〉 is
that the former depends only on p while the latter depends on u and implicitly on the moduli.
We postulate a differential equation for the normalization factor

dF(u)

F (u)
|u〉 = 	k

∂qk

∂p
|u〉 + i�kLk|u〉. (6.22)

Using (6.14), (6.6) one finds a simple differential equation for the state

d|u〉 = dF(u)|p〉 + F(u)dp(u)
∂

∂p
|p〉 = i(	kPk + �kLk)|u〉 = i(	 + �)|u〉. (6.23)

It is useful in so far as to cancel the effect of local, boost and basis change deformations in the
differential equations (4.6)–(4.8) acting upon the eigenvalue equation for Q

0 = d (Q|u〉 − q(u)|u〉) = dQ|u〉 + Q d|u〉 − dq(u)|u〉 − q(u) d|u〉
= i[�,Q]|u〉 − dq(u)|u〉 + iQ(	 + �)|u〉 − iq(u)(	 + �)|u〉
= i[� − 	 − �,Q]|u〉 − dq(u)|u〉
= i[� − 	 − � − �,Q]|u〉 = i[ϒ,Q]|u〉, (6.24)

where in the last line we made use of (6.15). We are thus left with only bilocal deformations
ϒ .

Consider now the two-magnon scattering state with the corresponding eigenvalue equation
(we discard contributions where the two magnons are close)

|u, u′〉 
 A(u, u′)|u < u′〉 + A(u′, u)|u′ < u〉,
Q|u, u′〉 = (q(u) + q(u′))|u, u′〉.

(6.25)
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Differentiating the eigenvalue equation we are led to the following equation:

0 = d[(Q − q(u) − q(u′))|u, u′〉]
= dQ|u, u′〉 − dq(u)|u, u′〉 − dq(u′)|u, u′〉

+ (Q − q(u) − q(u′))(A(u, u′) d|u < u′〉 + A(u′, u) d|u′ < u〉)
+ (Q − q(u) − q(u′))(dA(u, u′)|u < u′〉 + dA(u′, u)|u′ < u〉)

= i[ϒ, ]Q|u, u′〉 + (Q − q(u) − q(u′))(dA(u, u′)|u < u′〉 + dA(u′, u)|u′ < u〉). (6.26)

Here we used the equations

(dq(u) + dq(u′))|u, u′〉 = i[�,Q]|u, u′〉,
d|u < u′〉 = i(	 + �)|u < u′〉,

which are generalizations of equations (6.15), (6.23) and are valid up to UV terms in which
the two magnons are close. Again the effect of the boost, local and basis change deformations
cancels out and we are left with a differential equation for the prefactor A(u, u′) which only
depends on the bilocal deformations

dA(u, u′)
A(u, u′)

|u < u′〉 = iϒ |u < u′〉 = iϒr,sYr,s |u < u′〉. (6.27)

Partial two-magnon states are obviously eigenstates of bilocal charges

[Qr |Qs]|u < u′〉 = (qr(u)qs(u
′) + fr,s(u) + fr,s(u

′))|u < u′〉, (6.28)

where fr,s is a local contribution from both local charges acting on one of the two magnons.
The differential equation for the prefactor A has the simple solution

A(u, u′) = exp[2iβr,s(qr(u)qs(u
′) + fr,s(u) + fr,s(u

′))]A0(u, u′). (6.29)

For the scattering factor S(u, u′) = A(u′, u)/A(u, u′) it implies the deformation

S(u, u′) = exp(−2iθ(u, u′))SNN(u − u′), SNN(u − u′) = u − u′ − i

u − u′ + i
, (6.30)

where SNN(u, u′) is the undeformed scattering factor and θ(u, u′) is an overall scattering
phase, the so-called dressing phase

θ(u, u′) =
∞∑

s>r=2

βr,s(qr(u)qs(u
′) − qs(u)qr(u

′)). (6.31)

The form of the dressing phase as an antisymmetric combination of two-magnon charges
(6.31) was proposed in [34] based on physical intuition. It however remained somewhat
unclear why this form applies to long-range spin chains [35]. In fact one can argue that
θ(u, u′) provides a basis for generic antisymmetric functions which vanish at u = ∞. This
is true because qr(u) is a basis for alike functions of a single variable. In that sense, the
form of the dressing phase is natural, because the phase is antisymmetric by construction.
Nevertheless, it does not take into account that the coefficients βr,s satisfy certain perturbative
bounds [24] which would not hold in an arbitrary basis for antisymmetric functions of u, u′.
Namely, at each order in the deformation parameter λ, only finitely many of the βr,s may be
non-vanishing.

6.4. Basis of charges (γ )

As indicated above in (5.25), we are still free to perform a change of basis of the charge vector
Q after the long-range deformations have been applied. These simply correspond to taking
linear combinations of the long-range charges which do not affect the scattering matrix or the
function p(u) but modify the charge eigenvalues in an obvious way

Qr �→ γr,0 N + γr,sQs �⇒ Qr �→ γr,0N + γr,sQs. (6.32)
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6.5. Higher rank and multiple magnons

Now we wish to generalize the above results to a Lie (super) algebra g of higher rank R.
The Lie algebra has R simple roots, and we shall say that they are distinguished by their
flavor a = 1, . . . , R. The algebra is specified by a symmetric Cartan matrix Ca,b. The spins
transform in a representation of the Yangian Y(g) specified through Dynkin labels ta of a
highest weight representation of g12. The framework for undeformed nearest neighbor chains
was developed in [36].

The generalization to higher rank consists in adding a flavor to each magnon. In a multi-
magnon state the number of magnons of flavor a will be denoted by Ma . Their rapidities will
be denoted by ua,k, k = 1, . . . , Ma . A multi-magnon state is consequently denoted by

|{ua,k}〉. (6.33)

As usual, due to integrability, the multi-magnon eigenvalues Qr of the charges Qr are
given by sums over single-magnon eigenvalues, and similarly for the total momentum P

P =
R∑

a=1

Ma∑
k=1

p(ta, ua,k), Qr =
R∑

a=1

Ma∑
k=1

qr(ta, ua,k). (6.34)

Here the spin label t for the dispersion relation of a magnon of flavor a is the Dynkin label
t = ta corresponding to the same flavor a. This follows from the differential equation for
the dispersion relations (6.10) which still holds in the case of higher rank. The value of the
integration constant t follows from the known result for undeformed models.

The nested Bethe ansatz ensures that scattering of magnons of two flavors is diagonal.
Thus there is only one scattering factor Sa,b(u, u′) for each pair of magnon flavors a, b. The
scattering factor obeys the same differential equation as before and thus the deformation takes
the form

Sa,b(u, u′) = exp(−2iθa,b(u, u′))SNN
a,b (u − u′). (6.35)

The undeformed scattering factor for magnons of flavor a, b reads [36]

SNN
a,b (u − u′) = u − u′ − i

2Ca,b

u − u′ + i
2Ca,b

. (6.36)

The dressing phase is generated by the bilocal deformation and hence we have to use the
relevant charge eigenvalues for each magnon flavor

θa,b(u, u′) =
∞∑

s>r=2

βr,s(qr(ta, u)qs(tb, u
′) − qs(ta, u)qr(tb, u

′)). (6.37)

6.6. Closed chain Bethe equations

In order to go from an infinite spin chain to a closed or open finite chain, one has to impose
boundary conditions on the system. For a long-range system on a closed chain of length N the
periodicity condition for the multi-magnon wavefunction |{ua,k}〉 reads

exp(ip(ta, ua,k)N) =
R∏

b=1

Mb∏
j=1

(b,j) �=(a,k)

Sa,b(ua,k, ub,j ) for a = 1, . . . , R

and k = 1, . . . ,Ma. (6.38)
12 To have one Dynkin label for each flavor is merely the simplest case. In more complicated cases, e.g. tensor product
representations, there can be more than one Dynkin label associated with each flavor. Also the two shifts + i

2 t and
− i

2 t appearing in (6.11), (6.12) can in principle be chosen independently.
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eiφ

Figure 11. The long-range deformations presented in this work can also be viewed as twists of the
boundary conditions.

The momentum function p(t, u) and the scattering factors Sa,b(u) have been given in the
previous subsection.

Note that these Bethe equations are merely asymptotic [18, 32], they are valid only up
to a certain perturbative order in the moduli. This is because the scattering factor is an IR
quantity and the distinction between IR and UV is given by the range of the Hamiltonian. As
long as the range of one of the conserved charges does not exceed the length of the chain
N, the above asymptotic Bethe equations give the correct spectrum for this particular charge.
Otherwise there can be some UV contributions that we have not taken into account in the
above derivation. The range of Qr is discussed in section 5. If one uses the one-parameter
deformation Qr (λ) = ∑

n λnQ(n)
r then the range of Q(n)

r is r + n. Consequently, the Bethe
ansatz gives the correct eigenvalue at order λN−r while the order λN−r+1 is not properly defined.
See also section 8.2 for a different approach, but with similar conclusions on the validity of
the results.

Here we have taken the point of view that the dispersion relation and the scattering matrix
have been deformed. There is another point of view that deserves being mentioned: The
generating equation for our long-range integrable system (4.2) shows that the latter is obtained
by a similarity transformation on a nearest neighbor model

Qr (ξ) = T (ξ)QNN
r T (ξ)−1. (6.39)

It implies that the spectra of the operators must be identical. This is indeed true for
infinite chains where the spectrum is continuous. On a finite system, however, the proposed
deformations need not be defined consistently. For example, the boost operator (3.12) requires
the definition of a spin chain origin. However, the origin is not equivalent to the site shifted by
L steps. In other words, the definition of the boost deformation is not compatible with closed
boundary conditions. We list the various compatibilities between boundary conditions and
deformations in table 1. Whenever a boundary condition is compatible with a deformation, we
can apply the above similarity transformation without deforming the spectrum. For compatible
deformations the corresponding modulus will not appear in the Bethe equations. In particular,
this was observed in [37] for the deformation Y2r,2s on an open chain and led to the discovery
of the generating equation by reversing the argument.

The alternative point of view is that an incompatible deformation twists the boundary
conditions (figure 11). Consequently, a closed long-range spin chain is nothing but a nearest
neighbor model with unusual boundary conditions. For that purpose one would write the

37



J. Phys. A: Math. Theor. 42 (2009) 285205 T Bargheer et al

Table 1. Different types of deformations and their compatibility with the infinite, closed and open
boundary conditions. Incompatibility corresponds to a twist of the boundary conditions. The Bethe
equations remain undeformed for compatible transformations. On an open chain, deformations
by bilocal operators Y2r+1,2s+1 composed of only odd charges violate the boundary Yang–Baxter
equation [37].

Deformation Infinite Closed Open
generator chain chain chain

Pk Compatible Incompatible Incompatible
Y2r+1,2s Compatible Incompatible Incompatible
Y2r+1,2s+1 Compatible Incompatible Not integrable
Y2r,2s Compatible Incompatible Compatible
Gm,n Compatible Compatible Compatible
Ll Compatible Compatible Compatible

above asymptotic Bethe equations (6.38) as the Bethe equations for a nearest neighbor chain
with a twist

exp(ipNN(ta, ua,k)N) = exp(iφa,b({ub,j }))
R∏

b=1

Mb∏
j=1

(b,j)�=(a,k)

SNN
a,b (ua,k, ub,j ). (6.40)

The twist phase depends on all Bethe roots and for the long-range system it reads

φa,k({ub,j }) =
R∑

b=1

Mb∑
j=1

2θa,b(ua,j , ub,j ) − (p(ta, ua,k) − pNN(ta, ua,k))N. (6.41)

Written in this fashion, the above Bethe equation is reminiscent of equations for finite-size
spectra [38], see also [22].

7. Alternating spin chains

The construction of integrable long-range deformations presented in this paper is actually not
limited to standard nearest neighbor spin chains. A possible generalization of these models is
given by alternating spin chain models (cf [39]) which recently attracted notice in the context
of gauge/string dualities following the work [7].

Long-range deformations. An alternating spin chain is given by a tensor product of modules
transforming in alternating representations of the symmetry algebra

| . . . , vk, . . . , vk+�, . . .〉 ∈ · · · ⊗ Ve ⊗ Vo ⊗ Ve ⊗ Vo ⊗ · · · . (7.1)

In fact, such a model can be brought to the form of a standard homogeneous chain by
combining two adjacent modules into a larger one, Ve ⊗ Vo → V. Consequently the nearest
neighbor interactions in terms of V turn into next-to-nearest neighbor interactions in terms of
the alternating modules Ve/o. With regard to our work, we would like to understand the range
of the deformations in the alternating chain.

Particularly interesting is the case when the symmetry algebra splits into two components
g = ge ⊕ go. Then the even spin sites can transform in a representation of ge while the odd
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Table 2. Long-range Hamiltonian Q2 for the gl(K) spin chain at order λ3 printed up to basis
changes and local deformations.

Q2(λ) = [1] − [2, 1] + α3(−3[1] + 4[2, 1] − [3, 2, 1])

+ α2
3(20[1] − 29[2, 1] + 10[3, 2, 1] − [2, 3, 4, 1] + [2, 4, 1, 3] + [3, 1, 4, 2] − [4, 1, 2, 3] − [4, 2, 3, 1])

+ i
2 α4(6[2, 3, 1] − 6[3, 1, 2] − [2, 4, 3, 1] − [3, 2, 4, 1] + [4, 1, 3, 2] + [4, 2, 1, 3])

+ 1
2 β23(−4[1] + 8[2, 1] − 2[2, 3, 1] − 2[3, 1, 2] − 2[2, 1, 4, 3] − 2[2, 3, 4, 1] + 2[2, 4, 1, 3] + [2, 4, 3, 1]

+ 2[3, 1, 4, 2] + [3, 2, 4, 1] − 2[3, 4, 1, 2] − 2[4, 1, 2, 3] + [4, 1, 3, 2] + [4, 2, 1, 3])

+ 1
3 α3

3(−525[1] + 792[2, 1] − 308[3, 2, 1] + 60[2, 3, 4, 1] − 62[2, 4, 1, 3] − 62[3, 1, 4, 2] + 2[3, 4, 2, 1]
+ 60[4, 1, 2, 3] + 44[4, 2, 3, 1] + 2[4, 3, 1, 2] − 5[2, 3, 5, 4, 1] − 2[2, 4, 3, 5, 1] + 5[2, 5, 1, 4, 3]
+ 2[2, 5, 3, 1, 4] + 5[3, 1, 5, 4, 2] − 5[3, 2, 4, 5, 1] + 5[3, 2, 5, 1, 4] + 2[4, 1, 3, 5, 2] + 5[4, 2, 1, 5, 3]
− 5[5, 1, 2, 4, 3] − 2[5, 1, 3, 2, 4] − 5[5, 2, 1, 3, 4] − 3[5, 2, 3, 4, 1])

+ i
3 α3α4(−138[2, 3, 1] + 138[3, 1, 2] + 36[2, 4, 3, 1] + 36[3, 2, 4, 1] − 36[4, 1, 3, 2] − 36[4, 2, 1, 3]

− 6[2, 3, 4, 5, 1] + 6[2, 3, 5, 1, 4] + 6[2, 4, 1, 5, 3] − 6[2, 5, 1, 3, 4] − 3[2, 5, 3, 4, 1] + 6[3, 1, 4, 5, 2]
− 6[3, 1, 5, 2, 4] − 3[3, 2, 5, 4, 1] − 6[4, 1, 2, 5, 3] − 3[4, 2, 3, 5, 1] + 6[5, 1, 2, 3, 4] + 3[5, 1, 3, 4, 2]
+ 3[5, 2, 1, 4, 3] + 3[5, 2, 3, 1, 4])

+ 1
2 α5(10[1] − 18[2, 1] + 10[3, 2, 1] − 6[2, 3, 4, 1] + 6[2, 4, 1, 3] + 6[3, 1, 4, 2] − 6[4, 1, 2, 3]

− 2[4, 2, 3, 1] + [2, 3, 5, 4, 1] − [2, 5, 1, 4, 3] − [3, 1, 5, 4, 2] + [3, 2, 4, 5, 1]
− [3, 2, 5, 1, 4] − [4, 2, 1, 5, 3] + [5, 1, 2, 4, 3] + [5, 2, 1, 3, 4])

+ i
6 β2,4(4[2, 3, 1] − 4[3, 1, 2] − 4[2, 3, 4, 1] + 2[2, 4, 3, 1] + 2[3, 2, 4, 1] − 2[3, 4, 2, 1] + 4[4, 1, 2, 3]

− 2[4, 1, 3, 2] − 2[4, 2, 1, 3] + 2[4, 3, 1, 2] − 2[2, 1, 4, 5, 3] + 2[2, 1, 5, 3, 4] − 2[2, 3, 1, 5, 4]
− 4[2, 3, 4, 5, 1] + 4[2, 3, 5, 1, 4] + [2, 3, 5, 4, 1] + 4[2, 4, 1, 5, 3] + 2[2, 4, 3, 5, 1] − 2[2, 4, 5, 1, 3]
− 4[2, 5, 1, 3, 4] + [2, 5, 1, 4, 3] + 2[3, 1, 2, 5, 4] + 4[3, 1, 4, 5, 2] − 4[3, 1, 5, 2, 4] − [3, 1, 5, 4, 2]
+ [3, 2, 4, 5, 1] − [3, 2, 5, 1, 4] − 2[3, 4, 1, 5, 2] + 2[3, 5, 1, 2, 4] − 4[4, 1, 2, 5, 3] + 2[4, 1, 5, 2, 3]
+ [4, 2, 1, 5, 3] + 4[5, 1, 2, 3, 4] − [5, 1, 2, 4, 3] − 2[5, 1, 3, 2, 4] − [5, 2, 1, 3, 4])

+ 1
12 β3,4(−8[1] + 24[2, 1] − 8[3, 2, 1] − 8[2, 1, 4, 3] + 4[2, 3, 4, 1] − 4[2, 4, 1, 3] − 2[2, 4, 3, 1]

− 4[3, 1, 4, 2] − 2[3, 2, 4, 1] + 8[3, 4, 1, 2] + 4[4, 1, 2, 3] − 2[4, 1, 3, 2] − 2[4, 2, 1, 3] − 8[2, 1, 3, 5, 4]
+ 4[2, 1, 5, 4, 3] + 2[2, 3, 5, 1, 4] − 2[2, 4, 5, 3, 1] + 2[2, 5, 1, 3, 4] + 2[2, 5, 3, 4, 1] − 2[2, 5, 4, 1, 3]
+ 2[3, 1, 4, 5, 2] + 4[3, 2, 1, 5, 4] − 2[3, 4, 2, 5, 1] + 4[3, 4, 5, 1, 2] − 4[3, 5, 1, 4, 2] − 2[3, 5, 2, 1, 4]
+ 2[4, 1, 2, 5, 3] − 2[4, 1, 5, 3, 2] + 2[4, 2, 3, 5, 1] − 4[4, 2, 5, 1, 3] − 2[4, 3, 1, 5, 2] + 4[4, 5, 1, 2, 3]
+ 2[5, 1, 3, 4, 2] − 2[5, 1, 4, 2, 3] + 2[5, 2, 3, 1, 4] − 2[5, 3, 1, 2, 4])

+ 1
2 α3β2,3(52[1] − 112[2, 1] + 26[2, 3, 1] + 26[3, 1, 2] + 8[3, 2, 1] + 36[2, 1, 4, 3] + 26[2, 3, 4, 1]

− 28[2, 4, 1, 3] − 15[2, 4, 3, 1] − 28[3, 1, 4, 2] − 15[3, 2, 4, 1] + 24[3, 4, 1, 2] + 2[3, 4, 2, 1]
+ 26[4, 1, 2, 3] − 15[4, 1, 3, 2] − 15[4, 2, 1, 3] + 2[4, 3, 1, 2] − 2[2, 1, 5, 4, 3] + 2[2, 3, 4, 5, 1]
− [2, 3, 5, 1, 4] − 3[2, 3, 5, 4, 1] − 2[2, 4, 3, 5, 1] + [2, 4, 5, 3, 1] − [2, 5, 1, 3, 4] + 3[2, 5, 1, 4, 3]
+ 2[2, 5, 3, 1, 4] + [2, 5, 3, 4, 1] − [2, 5, 4, 1, 3] − [3, 1, 4, 5, 2] + 3[3, 1, 5, 4, 2] − 2[3, 2, 1, 5, 4]
− 3[3, 2, 4, 5, 1] + 3[3, 2, 5, 1, 4] + 2[3, 2, 5, 4, 1] + [3, 4, 2, 5, 1] − 2[3, 5, 1, 4, 2] − [3, 5, 2, 1, 4]
− [4, 1, 2, 5, 3] + 2[4, 1, 3, 5, 2] − [4, 1, 5, 3, 2] + 3[4, 2, 1, 5, 3] + [4, 2, 3, 5, 1] − 2[4, 2, 5, 1, 3]
− [4, 3, 1, 5, 2] + 2[5, 1, 2, 3, 4] − 3[5, 1, 2, 4, 3] − 2[5, 1, 3, 2, 4] + [5, 1, 3, 4, 2] + [5, 1, 4, 2, 3]
− 3[5, 2, 1, 3, 4] + 2[5, 2, 1, 4, 3] + [5, 2, 3, 1, 4] + [5, 3, 1, 2, 4]) + O(λ4)

sites transform in a representation of go. Hence, we have two independent sets of commuting
charges—one for each of the two subchains13

Q(0)
ne , Q(0)

no . (7.2)

The action of Q(0)
ne and Q(0)

no is restricted to either of the two subchains while the other subchain
remains untouched. The same holds for the corresponding boostsB

[
Q(0)

2e

]
andB

[
Q(0)

2o

]
. Hence,

one obtains two sets Q(0)
ne ,Q(0)

no of mutually commuting leading-order charges via (2.16).

13 In principle nothing prevents us from considering more than two different alternating algebras or representations,
respectively. For illustration purposes we restrict to two different symmetries here. In the general case one finds one
set of conserved charges for each connected component of the symmetry algebras’ Dynkin diagram.

39



J. Phys. A: Math. Theor. 42 (2009) 285205 T Bargheer et al

We can now use the two independent and mutually commuting sets of charges Q(0)
ne ,Q(0)

no
to construct deformations: the boosts again exclusively act on the even/odd subchain, which
in turn implies that even/odd charges can only be deformed by even/odd boosts. Therefore
there are two sets of boost deformation parameters αke, αko that correspond to deformations
by B[Qk,e/o]. Since even/odd boosts commute with odd/even charges, i.e.

[B[Qkx],Qky] = 0, x �= y ∈ {e, o}, (7.3)

all charge terms that are multiplied by mixed powers of the αk coefficients, such as αkeαlo or
αkeαko, vanish. To summarize, all leading-order charges as well as all boost deformations on
the two subchains completely decouple from each other. One obtains two independent sets of
boost-deformed models with symmetry ge and go and corresponding parameters αke and αko.
The same holds for bilocal deformations induced by operators composed of only even or only
odd charges [Qrx|Qsx], x ∈ {e, o}, with parameters βrx,sx. So far the idea of an alternating
spin chain is only a notational issue: two long-range chains of symmetry ge and go are written
as one alternating chain.

New structures appear when we introduce mixed bilocal deformations [Qrx|Qsy], x �=
y ∈ {e, o}, corresponding to new degrees of freedom βrx,sy. These operators deform both, the
even and odd charge terms since bilocal operators that are composed of even and odd charges
generally neither commute with Qne nor with Qno. Therefore they result in structures that
couple the two subchains. Also these new structures are fully described by the construction
in the above sections.

Closed chain Bethe equations. The general Bethe equations (6.38) presented in section 6
also apply to the alternating spin chain. Considering two different alternating symmetries,
the Bethe equations have to be specified to the case of a product group, i.e. to the direct sum
ge ⊕ go. The Cartan matrix Ca,b in (6.36) is then of block diagonal form

C =
(

Ce 0
0 Co

)
, (7.4)

such that (6.38) splits into two sets of Bethe equations. These two sets are only coupled by
the dressing phases θae,bo and θao,be (6.37) with odd and even indices. Boost deformations do
not induce a coupling of the subchains.

One gets two sets of magnons moving on either of the two chains {uae,k, uao,k}. Since the
odd integrable charges do not see magnons on the even spin chain and vice versa,

Qnx =
Rx∑
a=1

Max∑
k=1

qnx(tax, uax,k), x ∈ {e, o}, (7.5)

we have to distinguish two sets of one-magnon charge eigenvalues

qnx(t, u) = i

n − 1

(
1

xx
(
u + i

2 t
)n−1 − 1

xx
(
u − i

2 t
)n−1

)
, x ∈ {e, o}. (7.6)

Here, the rapidity map xe/o(u) is parametrized by the moduli αke or αko, respectively.
As an example consider the alternating spin chain with spins transforming in the

fundamental and anti-fundamental representation of su(2), i.e. ge ⊕ go = su(2) ⊕ su(2)

and (
Ce,e Ce,o

Co,e Co,o

)
=

(
2 0
0 2

)
. (7.7)
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Figure 12. The alternating gl(Ke) ⊕ gl(Ko) spin chain is given by two staggered versions of the
standard gl(K) spin chain. We can use the same operator notation as before if we insert identity
legs at every second position of the permutation operators and let them act on even or odd positions
of the chain only.

The Bethe equations are given by

xe
(
ue,k + i

2

)N

xe
(
ue,k − i

2

)N
=

Me∏
j=1
j �=k

ue,k − ue,j + i

ue,k − ue,j − i
exp(2iθe,e(ue,k, ue,j )

Mo∏
�=1

exp(2iθe,o(ue,k, uo,�)),

xo
(
uo,k + i

2

)N

xo
(
uo,k − i

2

)N
=

Mo∏
j=1
j �=k

uo,k − uo,j + i

uo,k − uo,j − i
exp(2iθo,o(uo,k, uo,j ))

Me∏
�=1

exp(2iθo,e(uo,k, ue,�)).

(7.8)

The mixed dressing phase takes the form

θx,y(u, u′) = −θy,x(u
′, u) =

∞∑
s,r=2

βrx,syqrx(u)qsy(u
′), x �= y ∈ {e, o}. (7.9)

The two sets of Bethe equations are only coupled by this phase.

The gl(Ke)⊕gl(Ko) Alternating Spin Chain. In order to explicitly study the gl(Ke)⊕gl(Ko)

chain (cf. figure 12), we introduce two new types of permutation symbols whose first leg acts
on even/odd spin chain sites only

Le = [π(1), π(2), . . . , π(n)]e, Lo = [π(1), π(2), . . . , π(m)]o. (7.10)

The action of [3, 2, 1]e for instance is given by

[3, 2, 1]e| . . . ,
e

1,
o
2,

e
3,

o
4,

e
5, . . .〉 = · · · + | . . . , e

3,
o
2,

e
1,

o
4,

e
5, . . .〉

+ | . . . , e
1,

o
2,

e
5,

o
4,

e
3, . . .〉 + · · · . (7.11)

The alternating gl(Ke) ⊕ gl(Ko) model has two operators of minimum range 3 being the
standard gl(K) Hamiltonian on the staggered subchains

Q(0)
2e = [1]e − [3, 2, 1]e, Q(0)

2o = [1]o − [3, 2, 1]o. (7.12)

Here we have simply taken the leading order gl(K) Hamiltonian (2.16), stretched it by a
central identity leg and restricted the action of the permutation symbol to even or odd sites,
respectively. For better readability we denote the part acting on the odd subchain in gray. Both
copies of the resulting Hamiltonian commute with each other and thus describe a system of
two staggered nearest neighbor spin chains. The form of the Hamiltonian implies that also all
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leading-order charges generated through (2.14) have such an alternating structure with identity
legs on every other permutation site, e.g.

Q(0)
3e = i

2 ([5, 2, 1, 4, 3]e − [3, 2, 5, 4, 1]e),

Q(0)
3o = i

2 ([5, 2, 1, 4, 3]o − [3, 2, 5, 4, 1]o).
(7.13)

As discussed at the beginning of this section, this is due to the fact that two local operators of
this staggered form (including boosts) acting on either even or odd sites only, commute with
each other, e.g.

[[5, 2, 1, 4, 3]e, [7, 2, 3, 4, 5, 6, 1]o] = 0, [B[[3, 2, 1]o], [3, 2, 5, 4, 1]e] = 0. (7.14)

Considering bilocal operators, we find the new interaction terms described in the previous
paragraphs. These terms do not only act on one of the two staggered spin chains but on both
chains at the same time. Thus we obtain terms like

Q2e = Q(0)
2e + β2e,3oQ[2e|3o]

2e + · · · , with

Q[2e|3o]
2e = 2(−[3, 4, 5, 6, 1, 2]e + [3, 6, 5, 2, 1, 4]e + [5, 4, 1, 6, 3, 2]e − [5, 6, 1, 2, 3, 4]e

− [3, 4, 5, 6, 1, 2]o + [3, 6, 5, 2, 1, 4]o + [5, 4, 1, 6, 3, 2]o − [5, 6, 1, 2, 3, 4]o,

(7.15)

which act non-trivially on both chains. Note, though, that even and odd numbers are always
on even and odd positions of the permutation symbols, respectively. That is, also these
interactions do not interchange sites of the two staggered chains. Similarly, one finds new
structures proportional to mixed αβ coefficients like for instance α3eβ2o,3e.

Interaction range for gl(Ke) ⊕ gl(Ko). All charge terms that emerge from deformations by
boost or bilocal operators acting on either the even or the odd chain exclusively are given by
stretched versions of the corresponding gl(K) terms. Their interaction range is thus given
by (cf (5.24))

∣∣Q[k1x,...,kt x,r1x|s1x,...,rux|sux]
nx

∣∣ = 2

(
n +

t∑
�=1

(k� − 2) +
u∑

�=1

(s� − 1)

)
− 1, x ∈ {e, o} . (7.16)

At leading order, the new interaction terms arising from deformations by bilocal operators
composed of one even and one odd charge apparently have interaction range

∣∣Q[rx|sy]
nx

∣∣ =
⎧⎨
⎩

2n + 2r − 3, r + 1 > s,

2n + 2r − 2, r + 1 = s, x �= y ∈ {e, o} .

2n + 2s − 5, r + 1 < s,

(7.17)

Number of crossings for gl(2)⊕gl(2). Again, a particularly interesting case is the gl(2)⊕gl(2)

chain since it incorporates the su(2)⊕su(2) sector spin chain ofN = 6 superconformal Chern–
Simons theory. The natural building block (cf the Hamiltonian (7.12)) corresponding to the
term ‘crossing’ for the alternating gl(2) spin chain is given by the diagrams

and .
(7.18)

We take a look at the gl(Ke) ⊕ gl(Ko) Hamiltonian printed in table 3 at the end of this paper:
the first interesting operator is given by the permutations multiplied by α3x, x ∈ {e, o}. The
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Table 3. Long-range Hamiltonian for the alternating spin chain printed up to basis changes and
local deformations. The first part gives two stretched copies of the gl(K) Hamiltonian (table 2)
acting on odd and even spin sites, respectively. The second part contains novel interaction symbols
which act non-trivially on the odd and even copy of the chain at the same time. The Hamiltonian of
the integrable spin chain supposedly describing the su(2)×su(2) sector of N = 6 superconformal
Chern–Simons theory is given by a specific choice of the free parameters.

Q2x(λ) = [1]x − [3, 2, 1]x + α3x(−12[1]x + 16[3, 2, 1]x + 4[5, 2, 3, 4, 1]x)

+ 16α2
3x(20[1]x − 29[3, 2, 1]x + 10[5, 2, 3, 4, 1]x − [3, 2, 5, 4, 7, 6, 1]x

+ [3, 2, 7, 4, 1, 6, 5]x + [5, 2, 1, 4, 7, 6, 3]x

− [7, 2, 1, 4, 3, 6, 5]x − [7, 2, 3, 4, 5, 6, 1]x)

+ 4iα4x(6[3, 2, 5, 4, 1]x − 6[5, 2, 1, 4, 3]x − [3, 2, 7, 4, 5, 6, 1]x

− [5, 2, 3, 4, 7, 6, 1]x + [7, 2, 1, 4, 5, 6, 3]x + [7, 2, 3, 4, 1, 6, 5]x)

+ β2x,3x(−4[1]x + 8[3, 2, 1]x − 2[3, 2, 5, 4, 1]x − 2[5, 2, 1, 4, 3]x − 2[3, 2, 1, 4, 7, 6, 5]x

− 2[3, 2, 5, 4, 7, 6, 1]x + 2[3, 2, 7, 4, 1, 6, 5]x + [3, 2, 7, 4, 5, 6, 1]x

+ 2[5, 2, 1, 4, 7, 6, 3]x + [5, 2, 3, 4, 7, 6, 1]x − 2[5, 2, 7, 4, 1, 6, 3]x

− 2[7, 2, 1, 4, 3, 6, 5]x + [7, 2, 1, 4, 5, 6, 3]x + [7, 2, 3, 4, 1, 6, 5]x)

+ 2iβ2x,2y([3, 4, 5, 2, 1]x − [3, 2, 5, 4, 1]x + [5, 2, 1, 4, 3]x − [5, 4, 1, 2, 3]x)

+ β2x,3y(−[3, 4, 5, 6, 1, 2]x + [3, 6, 5, 2, 1, 4]x + [5, 4, 1, 6, 3, 2]x − [5, 6, 1, 2, 3, 4]x

− [3, 4, 5, 6, 1, 2]y + [3, 6, 5, 2, 1, 4]y + [5, 4, 1, 6, 3, 2]y − [5, 6, 1, 2, 3, 4]y)

+ β2y,3x(−2[1]x + 4[3, 2, 1]x − 2[3, 4, 1, 2]x − 2[3, 2, 5, 4, 7, 6, 1]x

+ [3, 2, 5, 6, 7, 4, 1]x + 2[3, 2, 7, 4, 1, 6, 5]x − [3, 2, 7, 6, 1, 4, 5]x

+ [3, 4, 5, 2, 7, 6, 1]x − [3, 4, 7, 2, 1, 6, 5]x + 2[5, 2, 1, 4, 7, 6, 3]x

− [5, 2, 1, 6, 7, 4, 3]x − [5, 4, 1, 2, 7, 6, 3]x − 2[7, 2, 1, 4, 3, 6, 5]x

+ [7, 2, 1, 6, 3, 4, 5]x + [7, 4, 1, 2, 3, 6, 5]x − 2[1]y + 4[3, 2, 1]y − 2[3, 4, 1, 2]y)

+ 2iβ3x,3y(−[3, 4, 5, 6, 7, 2, 1]x + [3, 4, 7, 6, 1, 2, 5]x + [3, 6, 5, 2, 7, 4, 1]x

− [3, 6, 7, 2, 1, 4, 5]x + [5, 4, 1, 6, 7, 2, 3]x − [5, 6, 1, 2, 7, 4, 3]x

− [7, 4, 1, 6, 3, 2, 5]x + [7, 6, 1, 2, 3, 4, 5]x − 2[3, 2, 5, 4, 1]y

+ 2[3, 4, 5, 2, 1]y + 2[5, 2, 1, 4, 3]y − 2[5, 4, 1, 2, 3]y)

+O(λ6) x �= y ∈ {e, o}

term with the highest number of elementary permutations is

[5, 2, 3, 4, 1]x ,

(7.19)

which naively contains seven elementary permutations. This permutation symbol, however,
can be considered as the combination of the two operators

[3, 2, 1] and [1, 2] ,

(7.20)

acting on the two staggered spin chains simultaneously. As for the standard gl(2) chain we can
use the εijk-identity (5.38) for each of the alternating gl(2) symmetries to reduce the number
of crossings

[5, 2, 3, 4, 1]x = [3, 2, 5, 4, 1]x + [5, 2, 1, 4, 3]x −2 [3, 2, 1]x + [1]x .

= + −2 +
(7.21)
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In particular, we now have expressed the permutation symbol (7.19) in terms of the elementary
crossings (7.18). Similarly, it appears to be possible to write the higher αkx as well as the
βrx,sx structures in terms of elementary crossings without additional assumptions.

The new terms corresponding to deformations with mixed bilocal operators [Qrx|Qsy]
composed of charges acting on the odd and even chain are given by the permutation operators
multiplied by βrx,sy (cf table 3). An example is given by the following operator proportional
to β2x,3y :

[3, 6, 5, 2, 1, 4]x .

(7.22)

This structure can be considered as the combination of

[2, 3, 1] and [3, 1, 2] ,

(7.23)

such that using the identity

= ,

(7.24)

we can again explicitly rewrite the diagram in terms of the six-vertices (7.18)

= .
(7.25)

Our experiments with the gl(Ke) ⊕ gl(Ko) Hamiltonian in table 3 therefore suggest a formula
for the number of crossings in analogy to (5.39)

〉
Q[k1,...,kt ,r1|s1,...,ru|su]

tx

〈
gl(2)⊕gl(2)

= t − 1 +
u∑

�=1

(r� + s� − 2) +
t∑

�=1

(k� − 2). (7.26)

Parameter restrictions from the su(2)⊕su(2) sector of N = 6 superconformal Chern–Simons
theory. Considering restrictions from gauge theory, the main difference to the N = 4 case is
the scalar interaction ∼λ2YAY

†
AYBY

†
BYCY

†
C in the N = 6 Lagrangian (cf [7]). Disregarding

other interactions, this translates to the vertex correspondence

or ∼ λ2 .
(7.27)

Accordingly, only even powers of the coupling λ contribute to the integrable charges and the
spin chain and gauge theory Hamiltonian are related by

H(λ2) = H(0) + λ2Q2e(λ
2) + λ2Q2e(λ

2). (7.28)
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We thus find the same gauge theory restrictions on the parameter functions as for the N = 4
chain

αkx(λ
2) = O(λ2(k−2)),

βrx,sy(λ
2) = O(λ2(r+s−2)), x, y ∈ {e, o}. (7.29)

Similar to the N = 4 case, we believe these restrictions to hold also if one includes non-scalar
interactions from the N = 6 Lagrangian.

The staggered gl(Ke)⊕gl(Ko) Hamiltonian including all deformation degrees of freedom
is printed at the end of this paper up to order O(λ6).

8. Inhomogeneous versus long-range spin chains

All of the above considerations were based on the assumption of infinite chains. Even the
Bethe ansatz for the spectrum of closed finite chains in section 6 retains the notion of infinite
extent: it is asymptotic and valid only as long as the range of the interactions does not exceed
the length of the chain, that is only to finite order in the deformations [18, 32] (see also [6, 40]
for explicit considerations of the failure beyond this order).

In the following we reconsider a relation of long range to inhomogeneous integrable spin
chains without dressing phase, i.e. in the absence of bilocal deformations, cf [6]

βr,s = 0. (8.1)

It allows us to formulate consistently a large class of integrable models on finite chains.
Unfortunately, the problem of undefined wrapping interactions enters in this class of models
as well.

For presentation purposes, we will only consider the simplest example of spins
transforming in the fundamental representation of su(2), a Heisenberg XXX1/2 chain. This is
sufficient because only the momentum-carrying Bethe roots of the first level will be important;
the auxiliary levels of the Bethe ansatz for a higher rank symmetry algebra are manifestly
identical on both sides of the relation.

8.1. Bethe equations

The standard Bethe equations of a closed Heisenberg XXX1/2 chain with inhomogeneities are
given by

PN

(
uk + i

2

)
PN

(
uk − i

2

) =
M∏

j=1
j �=k

uk − uj + i

uk − uj − i
, PN(u) =

N∏
k=1

(u − μk). (8.2)

Here PN is a polynomial of degree N incorporating the inhomogeneities μk . A homogeneous
chain is obtained by setting all parameters μk to be the same, conventionally μk = 0. The
above equations are reminiscent of the BDS equations [6] for a closed long-range XXX1/2

chain without bilocal deformations, βr,s = 0,

x
(
uk + i

2

)N

x
(
uk − i

2

)N
=

M∏
j=1
j �=k

uk − uj + i

uk − uj − i
, x(u) = u − α3

u
+ · · · . (8.3)

The boost parameters αk , however, are chosen generically

u = x +
∞∑

k=3

αk

uk−2
, αk = O(λk−2). (8.4)
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Now it has been observed that remarkably x(u)N is a polynomial of degree N in u up to
terms of order O(λN) [6]

PN(u) = x(u)N + O(λN). (8.5)

There is a simple proof for this observation: it is obvious from (8.3) that the expansion of
x(u)N in powers of λ contains only terms uk with k � N . One then needs to show that all the
terms with k < 0 vanish up to O(λN). This is equivalent to showing∮

u=0
x(u)Nf (u) du = O(λN) (8.6)

for all functions f (u) which are analytic at u = 0. We perform a change of variable to x∮
x≈0

xNf (u(x))u′(x) dx
?= O(λN). (8.7)

We note that the transformation (8.4) relates the point u = 0 to two points x = O(λ1/2) as well
as several points x = O(λ) which all lie near x = 0. We can thus expand the integrand around
x = 0 and pick out the residue at x = 0. The transformation (8.4) states that u(x) consists of
terms λk/xk and u′(x) of terms λk/xk+1. Altogether the term xN−N−1 in the integrand must
be of order λN which proves the above statement (8.5).

The Bethe equations for the long-range chain are asymptotic, they yield results which
are valid up to terms of at most O(λN). Therefore it is safe to replace x(u)N by a suitable
PN(u) in (8.3) and obtain exactly the inhomogeneous Bethe equations (8.2). The latter are
completely well-defined equations even for finite chains. For example it is safe to assume that
they are complete, i.e. they have precisely 2N physical solutions reproducing the dimension of
the Hilbert space of a Heisenberg chain of length N. Consequently the map appears to open a
window to finite-size corrections within long-range chains.

8.2. Charge eigenvalues

For a solution of the above inhomogeneous Bethe equations, the eigenvalues of the standard
transfer matrix are given by the relation

T (u) = PN

(
u +

i

2

) M∏
k=1

u − uk − i

u − uk

+ PN

(
u − i

2

) M∏
k=1

u − uk + i

u − uk

. (8.8)

Alternatively this equation can be viewed as a Baxter equation: absence of poles at u = uk is
equivalent to the Bethe equations. Consequently T (u) is a polynomial of degree N encoding
the N independent charge eigenvalues for this state.

As already seen, the eigenvalues of the long-range charges take the form

Qr =
M∑

k=1

qr(uk) + O(λN+1−r ), qr(u) = i

r − 1

(
1

x
(
u + i

2

)r−1 − 1

x
(
u − i

2

)r−1

)
. (8.9)

Unfortunately, these charges make explicit reference to the magnons whereas in standard
integrable spin chains all observable charges follow directly from transfer matrix eigenvalues
T (u). This would also be preferable from the analytic Baxter-type equation point of view.
Indeed we find a way to extract the above Qr directly from T (u) by the following residue
integral:

Qr = ∓ 1

2π i

∮
u=±i/2

i

(r − 1)x
(
u ∓ i

2

)r−1 d log
T (u)

PN

(
u ± i

2

) + O(λN+1−r ). (8.10)
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Here the different signs ± indicate two possible choices yielding the same result. The contour
of the integral is meant to encircle the small branch cut of x

(
u ∓ i

2

) = u ∓ i
2 + O(λ) near

u = ± i
2 . Our curious observation is that (8.10) holds up to wrapping order in λ.

The equality can be proven as follows: there are two terms in T
(
u + i

2

)/
PN(u + i), cf

(8.8). If there was only the first term,

Qr = − 1

2π i

∮
u=0

i

(r − 1)x(u)r−1
d log

M∏
k=1

u − uk − i
2

u − uk + i
2

, (8.11)

the equality of (8.9) and (8.10) follows simply by inverting the integration contour and
summing over the poles at u = uk ± i

2 . The remainder thus takes the form

�Qr = − 1

2π

∮
u=0

1

(r − 1)x(u)r−1
d log

(
1 +

PN(u)

PN(u + i)

M∏
k=1

u − uk + 3i
2

u − uk − i
2

)
. (8.12)

To the order we are working at we can substitute PN(u) = x(u)N which allows us to write

�Qr = − 1

2π

∮
u=0

d log(1 + x(u)NF (u))

(r − 1)x(u)r−1

= − 1

2π

∮
u=0

d(x(u)NF (u))

(r − 1)x(u)r−1(1 + x(u)NF (u))
. (8.13)

Here F(u) is some function analytic at u = 0, a fact we can use to simplify further

�Qr = − 1

2π

∮
u=0

duF(u)x(u)N−rx ′(u)

= 1

2π

∮
u=0

x(u)N+1−r

N + 1 − r
dF(u) = O(λN+1−r ). (8.14)

The point is that xN+1−r (u) is a polynomial (8.5) up to terms of order O(λN+1−r ) and hence
the residue integral must be trivial at this order.

8.3. Charge operators

Above we have seen that the charge eigenvalues Qr for a long-range chain can be obtained
from the transfer matrix eigenvalues of an inhomogeneous chain. This statement on the
spectra of commuting operators can be lifted to a statement of the operators themselves: up
to a similarity transformation, the long-range charges Qr must equal

Qr 
 − 1

2π i

∮
u=0

i

(r − 1)x(u)r−1
d log

T
(
u + i

2

)
PN(u + i)

+ O(λN+1−r ). (8.15)

As an example we now want to see explicitly how to obtain the first long-range deformation
of the Hamiltonian Q2 from an inhomogeneous spin chain. In particular, we will have to find
a suitable similarity transformation.

We first expand the transfer matrix according to the usual relation into a sequence of
charges

T
(
u + i

2

)
PN(u + i)

= U exp

( ∞∑
r=2

iur−1Q̄r

)
. (8.16)

Here U denotes the operator that shifts the sites of the spin chain by one unit. The above
relation determines the long-range Hamiltonian Q2 in terms of the inhomogeneous charges
Q̄r

Q2 
 Q̄2 + 3λQ̄4 + O(λ2). (8.17)
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This is in fact precisely the same relation as derived in section 5.2. The transfer matrix T is
defined as the trace of a product of R-matrices (see [41] for a review of the R-matrix formalism)

T
(
u + i

2

) = Tr0R0,1(u − μ1)R0,2(u − μ2) · · ·R0,N (u − μN). (8.18)

Up to an overall factor the su(2) R-matrix14 in the fundamental representation takes the form

Rk,l(u) = uIk,l + iPk,l , (8.19)

where Ik,l is the identity operator acting on the spin sites k and l, while Pk,l exchanges the two
spins. The resulting inhomogeneous Hamiltonian Q̄2 is given by

Q̄2 =
N∑

k=1

([1]k − [2, 1]k) + i
N∑

k=1

μk ([3, 1, 2]k−1 − [2, 3, 1]k−1)

+
N∑

k=1

μ2
k (−[1]k + 2[2, 1]k − [3, 2, 1]k−1)

+
N∑

k=1

μk−1μk ([2, 3, 4, 1]k−2 − [2, 4, 1, 3]k−2 + [4, 1, 2, 3]k−2 + [3, 1, 4, 2]k−2)

+O(λ3). (8.20)

Note that the inhomogeneities μk are small and thus to leading order the charges Q̄r coincide
with the charges QNN

r of a nearest neighbor chain; only the higher orders in λ contain
inhomogeneous terms.

We now have to find a similarity transformation that turns the inhomogeneous terms into
homogeneous long-range interactions

Q2 = S(Q̄2 + 3λQ̄4 + · · ·)S−1. (8.21)

An ansatz for the similarity transformation S relating the two spin chain Hamiltonians is

S = exp

(
i

N∑
k=1

νk ([1]k − [2, 1]k) −
N∑

k=1

ρk ([3, 1, 2]k−1 − [2, 3, 1]k−1) + · · ·
)

. (8.22)

In order to find suitable coefficients νk and ρk we have to be more specific about the
inhomogeneities μk . The factorization of the long-range polynomial PN(u) in (8.2) yields the
following set of inhomogeneities [6]:

μk = 2
√

α3 cos
π(2k − 1)

2N
+

α4

α3
cos

π(2k − 1)

N
+ · · · . (8.23)

Note that the order of the inhomogeneities matters only to a certain extent; different orderings
are related by similarity transformations. We choose the natural ordering for which the
similarity transformation to the long-range model is the simplest. The parameters νk and ρk

then have to be chosen as

νk = √
α3

sin πk
N

sin π
2N

+
α4

α3

sin 2πk
N

2 sin π
N

+ · · · , ρk = α3
sin π(2k−1)

N

2 sin π
2N

+ · · · . (8.24)

This transformation (8.21), (8.22) cancels the inhomogeneous
√

α3 term as well as the
inhomogeneous terms atO(α3). We then find the well-known form of the first-order long-range

14 In fact the considerations apply equally well to su(K) without modifications.
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Hamiltonian (5.8)

Q2 =
N∑

k=1

([1]k − [2, 1]k) + α3

N∑
k=1

(−3[1]k + 4[2, 1]k − [3, 2, 1]k−1) + O(λ3/2)

= [1] − [2, 1] + α3 (−3[1] + 4[2, 1] − [3, 2, 1]) + O(λ3/2). (8.25)

8.4. Beyond wrapping

The asymptotic Bethe ansatz for long-range chains holds only as long as the range of the
interactions does not exceed the length of the chain. Beyond this so-called wrapping order,
not only the Bethe equations fail to provide consistent results [6], but also the construction
allows for arbitrary corrections to the spectrum [37, 41]. With the above considerations
one might contemplate to resolve these problems: we could simply define the undetermined
wrapping interactions such that the mapping between inhomogeneous and long-range chains
becomes exact. While this solves the problem of consistency, it unfortunately does not cure
the arbitrariness as we shall see below.

First we replace the asymptotic Bethe equations (8.3) by the inhomogeneous ones (8.2).
This is beneficial because the standard Bethe ansatz is believed to be complete: to every
multiplet of eigenstates there corresponds precisely one solution of the Bethe equations. There
is no doubt that this also applies for arbitrary inhomogeneities. Conversely, the asymptotic
Bethe equations (8.3) are apparently not complete because the number of acceptable solutions
is different for small and for large λ15. Thus we have gained an exact definition of the spectrum
of T (u) even for finite λ.

Second we choose the inhomogeneities μk in (8.23) such that (8.5) holds. However, this
relation defines the inhomogeneities only up to a certain order, it is not clear how to continue
(8.23) to all orders. Nevertheless, this arbitrariness is only mild, because it introduces N new
degrees of freedom parametrizing a spectrum of 2N states. Furthermore, for the special choice
of αk>3 = 0 [6, 42], which is relevant to the gauge theory models discussed above, there is a
natural exact choice for μk consisting only in the first term in (8.23).

Finally we have to extract the charge eigenvalues Qr from the transfer matrix eigenvalue
T (u). This is done via the integral (8.10) which we can also define to be exact in λ. There is
nevertheless a residual ambiguity in this definition: the function x(u) contains a branch cut
and the contour of integration encircles it tightly. As long as the branch cut is infinitesimally
small at λ ≈ 0, there is a canonical way to define the contour. If at finite λ the branch cut has
finite extent, however, it can be deformed and the result of the contour integral will depend on
the shape.

Furthermore there is the option to add corrections at O(λN−r+1) to the expression for
Qr . These corrections introduce a huge arbitrariness in that each eigenvalue can be deformed
independently. This can be seen as follows: the definition (8.10) is a map from the transfer
matrix eigenvalues T (u) to the charges Qr . T (u) are normalized polynomials of degree N and
can thus be viewed as elements of C

N , i.e. we are interested in analytic functions C
N → C.

It is straightforward to construct an analytic function which maps a given set of 2N vectors
(the solutions to the Bethe equations) to a given set of N numbers (the spectrum). Thus with
a suitable definition for the map T (u) �→ Qr we can construct any desired spectrum for Qr .

If any desired spectrum can be obtained from an integrable spin chain model, we may
wonder what is special about integrability. The point is that the map T (u) �→ Qr must
enjoy additional properties: expression (8.10) ensures that only one of the two terms in the

15 We thank Didina Serban for pointing out this property and for discussions.
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transfer matrix eigenvalue (8.8) contributes to Qr up to terms of order O(λN−r+1). This is the
equivalent of the locality property for the corresponding spin chain charges. The logarithm
of the transfer matrix log T (u) has an expansion in terms of local operators Q̄r according to
(8.16). Only linear combinations of Q̄r lead to local operators while nonlinear maps generate
non-local terms. And indeed the map log T (u) �→ Qr in (8.10) is linear. Unfortunately at
wrapping order the notion of locality, or analogously the irrelevance of one of the two terms
in (8.8), becomes meaningless. One would have to replace it by a suitable property for the
map T (u) �→ Qr .

In conclusion, the spectrum of long-range spin chains can be adjusted arbitrarily beyond
wrapping order, at least in the absence of further insights or constraints for the map T (u) �→ Qr .
Let us merely present a possible scenario how the arbitrariness could be cured: ideally there
would be a unique way to consistently complete the map T (u) �→ Qr beyond wrapping order,
which also removes the ambiguity of the integration contour. Whether or not this works
remains to be seen. It would also be interesting to find out whether the bilocal deformation
alias the dressing phase can somehow be incorporated into the above framework.

Let us comment on two interesting models, which could be of help in resolving the above
issue. The first is the Inozemtsev spin chain which can be viewed as a long-range model
in a certain limit for the coupling constant [18]. What is nice about it is that the Hamiltonian
is well defined for all couplings and thus the spectrum beyond wrapping can be computed
unambiguously. This model has an asymptotic Bethe ansatz, which fails already at half-
wrapping. If one succeeds in completing the above transformation to an inhomogeneous
Heisenberg chain, one would perhaps gain some inspiration for different models. A similar
model is the Hubbard chain whose spectrum is known for all values of its coupling constant.
A twisted sector was shown in [43] to be equivalent to the BDS chain (8.3), (8.9) [6] up
to wrapping terms. Therefore we can again reproduce the spectrum by an inhomogeneous
Heisenberg chain. In this case it is clear, however, that the two models cannot be equivalent at
finite coupling: the separation of the above-mentioned sector in the Hubbard model cannot be
formulated at finite coupling. In other words the Hilbert spaces are different at finite coupling;
the one of the Hubbard model is considerably larger. Similarly, the Lieb–Wu equations for
the Hubbard model are manifestly different from the Bethe equations for an inhomogeneous
Heisenberg chain. Consequently, studying the Inozemtsev model will be more helpful for our
purposes than the Hubbard model.

9. Conclusions and outlook

In this paper we have presented a general framework for the construction of long-range
integrable spin chain models. The most important results can be summarized as follows:

• On infinite chains an integrable long-range spin chain model can be constructed to all
orders in the deformation parameters.

• In the long-range Bethe ansatz the boost and bilocal deformations twist the boundary
conditions which results in the rapidity map (5.10), (6.16)(

uk + i
2 t

uk − i
2 t

)L

→
(

x
(
uk + i

2 t
)

x
(
uk − i

2 t
)
)L

, u(x) = x +
∞∑

k=3

αk

xk−2
, (9.1)

and the phase (6.35), (6.37) dressing the otherwise undeformed nearest neighbor scattering
factors SNN(uk − uj ) → SNN(uk − uj ) exp(2iθ(uk, uj ))

θ(uk, uj ) =
∞∑

s>r=2

βr,s(qr(uk)qs(uj ) − qs(uk)qr(uj )). (9.2)
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• The presented recursion relation provides a recipe to explicitly construct the long-range
interactions of the integrable charges.

We shortly recapitulate the paper: starting with an arbitrary set of integrable short-range
charges on infinite spin chains we have defined long-range charges by parallel transport in
moduli space with respect to a connection �. The resulting operators are manifestly integrable.
Four different types of deformation operators were specified and the moduli space determined
in [24] was recovered. In particular, the rapidity map parameters αk and the dressing phase
parameters βr,s were related to the boost and bilocal deformations. They change the one-
magnon momenta and the two-magnon scattering phase, respectively, which is reflected in the
Bethe equations. These appear to form a complete set of admissible long-range deformations
of the closed Bethe equations compatible with the gauge/string structure and integrability.

A canonical basis of the charge algebra was chosen at each point of the moduli space by
associating a certain change of basis to the boost deformations. This basis provides normalized
charges with a minimal interaction range that grows additively in the order of each deformation
parameter αk, βr,s . In addition, the chosen change of basis renders the connection � on moduli
space flat.

Applying our method to alternating spin chains, we have explicitly constructed a
generalized Hamiltonian for the fundamental gl(Ke)⊕gl(Ko) spin chain. The Bethe equations
for the alternating su(2) ⊕ su(2) chain were specified and gauge theory restrictions on the
moduli were discussed.

Finally we have presented a correspondence between long-range and inhomogeneous spin
chains. Here, it was shown how the boost-deformed long-range spin chain can be written in
terms of an inhomogeneous chain. The inhomogeneity of the boost operator was thus reflected
by a manifestly inhomogeneous chain.

Several questions arise in this context:
The minimization of the interaction range of the charge operators in section 5 was based

on extensive experiments with the gl(K) spin chain. It would be desirable to obtain a rigorous
derivation of the minimizing conditions (5.22). This requires a better understanding of the
range of the generated operators and its dependence on the moduli. Presumably, the conditions
can be derived by methods similar to those used in appendix A.

For open long-range integrable spin chains the moduli space looks different [37]. Most
notably, one finds an additional parameter δk corresponding to a phase for reflections at the
boundaries of the chain. Can the recursion presented in this paper be extended to the case
of open spin chains? For instance, it might seem natural to associate this phase to bilocal
deformations with the boundary-counting operator ([1] − [1, 2] in our gl(K) notation) on one
leg of the bilocal operator. Can we reproduce the moduli space for open chains in this fashion?

Other interesting integrable models include quantum-deformed spin chains. Again it is
obvious that our construction works for these models as well. However, there certainly are
further permissible deformations once only the Cartan algebra of g needs to be respected.
These include the Reshetikhin twist deformations [44] considered in [45].

The map between long-range and inhomogeneous spin chains was restricted to boost
deformations; bilocal deformations were not included. This might have a natural origin in the
inhomogeneity of the boost operator. Is it possible to map the bilocal long-range deformations
to some other well-understood model of finite spin chains?

Trying to extend the presented method to sectors of N = 4 or N = 6 gauge theory
beyond the su(2) sectors, two main obstacles appear: first, the underlying algebra psu(2, 2|4)

or osp(6|4) is no longer manifest but must receive long-range deformations in the same way
as the charge operators. Even more, the Hamiltonian becomes a part of the symmetry algebra.
To address these problems (cf section 3.6), one might think about joining our method with
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the ideas to deform the algebra of the su(1, 1|2) sector of N = 4 SYM theory presented in
[30]. Second, the length of the spin chain in other gauge theory sectors is no longer conserved.
The quantum numbers of different numbers of fields coincide such that length fluctuations
are admissible; the spin chain becomes dynamic [14]. A starting point to tackle this issue
might be a transformation to an undynamic spin chain as presented in [46] for the su(2|3)

sector of N = 4 SYM. Is it possible to extend the method presented in this paper to the whole
gauge/string theory algebra?

Appendix A. Cancellation of longest terms

In the construction of deformations that minimized the range of the charges, we made use
of the relation (5.2), which states that, up to an overall factor, the longest-range terms of
[B[Qs],Qr ] and Qs+r−1 are the same

i(s − 1)M ([B[Qs],Qr ]) = −(s + r − 2)M(Qs+r−1). (A.1)

Here, we denote by M(Lk) the part of the local operator Lk that has the longest range. In the
following, we will prove the statement (A.1) for the undeformed charges Qr ≡ QNN

r that are
generated by (2.14). In this case, (A.1) reduces to

(s − 1)M ([B[Qs],Qr ]) = M ([B[Q2],Qs+r−2]) (A.2)

In order to understand this equality, we first note that the longest-range terms of (s −
1)[B[Qs],Qr ] equal those of (r − 1)[B[Qr ],Qs]. Namely, the longest-range terms of
[B[Qs],Qr ] are given by

M ([B[Qs],Qr ]) = (r − 1)
∑

k

[Qs(k + r − 1),Qr (k)], (A.3)

which follows directly from the definition (3.12) and the fact that [Qs ,Qr ] = 0. Using (A.3),
one finds that indeed

(s − 1)M ([B[Qs],Qr ]) − (r − 1)M ([B[Qr ],Qs]) = (s − 1)(r − 1)M ([Qs ,Qr ]) = 0.

(A.4)

With the help of (A.4), we can now prove (A.2) inductively. For r = 2, the equality follows
directly from (A.4). Assuming that it holds for any given r = r0, we can show that it also
holds for r = r0 + 1. Namely, by (A.4), one finds

(s − 1)M([B[Qs],Qr0+1]) = r0M([B[Qr0+1],Qs]). (A.5)

With the help of (2.14) and (A.3), this can be written as

i
r0 − 1

M [B[Qs], Qr0+1]
)

=
1

(s− 1)(r0 − 1)
M [B[[B[Q2], Qr0 ]], Qs]

)

=
∑

k

[
[Q2(k + s + r0 − 2), Qr0(k + s− 1)], Qs(k)

]

=
∑

k
Qs

k

Qr

Q2
− Qs

k

Qr Q2 − Qs
k Qr

Q2 +
Qs

k Qr Q2

.

(A.6)
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The operators in the double commutator overlap only by one site. On the other hand, by
the assumption that (A.1) holds for r = r0 and again using (A.3), one finds that

i
(s− 1)(r0 − 1)

M [B[Q2], Qs+r0−1]
)

=
i

(s− 1)(r0 − 1)
M [B[Q2], M(Qs+r0−1)]

)

=
1

(r0 − 1)(s + r0 − 2)
M [B[Q2], M [B[Qs], Qr0 ]

)
]
)

=
∑

k

[
Q2(k + s + r0 − 2), [Qs(k + r0 − 1), Qr0(k)]

]

=
∑

k
Qr

k

Qs

Q2
− Qr

k

Qs Q2 − Qr
k Qs

Q2 +
Qr

k Qs Q2

.

(A.7)

Since in the commutator under the sum in (A.6) all operators overlap only by one site,
the terms can be reshuffled to yield

(s − 1)M([B[Qs],Qr0+1]) − M([B[Q2],Qs+r0−1])

= −i(s − 1)(r0 − 1)
∑

k

[Q2(k + s + r0 − 2),

[Qr0(k + s − 1),Qs(k)] + [Qr0(k),Qs(k + r − 1)]]

= −i(s − 1)(r0 − 1)
∑

k

[Q2(k + s + r0 − 2),M([Qr ,Qs])(k)]. (A.8)

This expression vanishes, since M([Qr ,Qs]) = 0. Hence, (A.2) also holds for r = r0 + 1,
which proves (A.1) for arbitrary r.

Appendix B. Reading off the charges

As discussed in section 5.5, the parametrization (5.22) of the moduli space yields a flat
connection � (4.10). Hence the charges Qr can be directly expanded in the deformation
moduli αk, βr,s (5.23) (up to local similarity transformations, i.e. deformations (3.8) by local
operators). Taking the generating equation (4.3) as well as the redefinitions (5.22) into account,
one can iteratively determine all higher order terms Q[...]

r of the deformed charges in terms of
the undeformed charges Q(0)

r . By virtue of equation (2.14),

Q(0)
r+1 = − i

r

[
B
[
Q(0)

2

]
,Q(0)

r

]
, (B.1)

these can in turn be generated from the charge Q(0)
2 alone.

In the following we will explicitly carry out the expansion and express the first few
terms of (5.23) in terms of the undeformed charges Q(0)

r . For the gl(K) chain, the
resulting Hamiltonian Q2 is given in table 2. Let us start with the term proportional to α3:
equation (5.4) together with the parametrization (5.9) yields

∂Q
∂α3

= i[P̃3,Q] + · · · = 2i[P3,Q] + i[G3,Q] + · · · , (B.2)

which implies

Qr = Q(0)
r + α3Q[3]

r + · · · ,
Q[3]

r = 2i
[
B
[
Q(0)

3

]
,Q(0)

r

]
+ (r + 1)Q(0)

r+2.
(B.3)

53



J. Phys. A: Math. Theor. 42 (2009) 285205 T Bargheer et al

Similarly one finds all other terms proportional to αk

Qr = Q(0)
r +

∞∑
k=3

αkQ[k]
r + · · · ,

Q[k]
r = (k − 1) i

[
B
[
Q(0)

k

]
,Q(0)

r

]
+ (r + k − 2)Q(0)

r+k−1.

(B.4)

The next thing to do is to consider terms proportional to higher powers in αk . So let us start
with the term multiplied by α3α4: equation (5.9) shows that

∂Q
∂α3

= i[P̃3,Q] + (4 − 2)α4 i[P̃3+4−1,Q] + · · · ,
∂Q
∂α4

= i[P̃4,Q] + (3 − 2)α3 i[P̃4+3−1,Q] + · · · .
(B.5)

Due to the flatness of the connection, the coefficient Q[4,3]
r of α4 in ∂Q/∂α3 equals the

coefficient Q[3,4]
r of α3 in ∂Q/∂α4 (up to local similarity transformations), i.e.

Qr = Q(0)
r + αkQ[k]

r + α3α4Q[4,3]
r + · · ·

= Q(0)
r + αkQ[k]

r + α4α3Q[3,4]
r + · · · , (B.6)

where Q[34]
r 
 Q[43]

r and

Q[4,3]
r = i

[
P̃ [4]

3 ,Q(0)
r

]
+ i

[
P̃(0)

3 ,Q[4]
r

]
+ (4 − 2)i

[
P̃(0)

3+4−1,Q
(0)
r

]
= i

[
2P [4]

3 ,Q(0)
r

]
+ i

[
2P(0)

3 ,Q[4]
r

]
+ i

[
G3,Q[4]

]
r

+ 2i
[
5P(0)

6 ,Q(0)
r

]
+ 2i

[
G6,Q(0)

]
r

= 2i
[
P [4]

3 ,Q(0)
r

]
+ 2i

[
P(0)

3 ,Q[4]
r

]
+ (r + 1)Q[4]

r+2 + 10i
[
P(0)

6 ,Q(0)
r

]
+ 2(r + 4)Q(0)

r+5,

Q[3,4]
r = i

[
P̃ [3]

4 ,Q(0)
r

]
+ i

[
P̃(0)

4 ,Q[3]
r

]
+ (3 − 2)i

[
P̃(0)

4+3−1,Q
(0)
r

]
= i

[
3P [3]

4 ,Q(0)
r

]
+ i

[
3P(0)

4 ,Q[3]
r

]
+ i

[
G4,Q[3]

]
r

+ i
[
5P(0)

6 ,Q(0)
r

]
+ i

[
G6,Q(0)

]
r

= 3i
[
P [3]

4 ,Q(0)
r

]
+ 3i

[
P(0)

4 ,Q[3]
r

]
+ (r + 2)Q[3]

r+3 + 5i
[
P(0)

6 ,Q(0)
r

]
+ (r + 4)Q(0)

r+5.

(B.7)

In other words, the terms Q[4,3]
r and Q[3,4]

r determine the coefficient of α3α4 equally well and
differ only by a local deformation (3.8). Since we have already determined Q[k]

r , we can plug
in the result (B.4) to find

Q[4,3]
r = 2i

[
B
[
3i

[
P(0)

4 ,Q(0)
3

]
+ 5Q(0)

6

]
,Q(0)

r

]
+ 2i

[
P(0)

3 , 3i
[
P(0)

4 ,Q(0)
r

]
+ (r + 2)Q(0)

r+3

]
+ (r + 1)

(
3i

[
P(0)

4 ,Q(0)
r+2

]
+ (r + 4)Q(0)

r+5

)
+ 10i

[
P(0)

6 ,Q(0)
r

]
+ 2(r + 4)Q(0)

r+5,

Q[3,4]
r = 3i

[
B
[
2i

[
P(0)

3 ,Q(0)
4

]
+ 5Q(0)

6

]
,Q(0)

r

]
+ 3i

[
P(0)

4 , 2i
[
P(0)

3 ,Q(0)
r

]
+ (r + 1)Q(0)

r+2

]
+ (r + 2)

(
2i

[
P(0)

3 ,Q(0)
r+3

]
+ (r + 4)Q(0)

r+5

)
+ 5i

[
P(0)

6 ,Q(0)
r

]
+ (r + 4)Q(0)

r+5. (B.8)

Now the whole structure is expressed in terms of zeroth-order charges Q(0)
r which can in turn

be expressed in terms of Q(0)
2 by means of (2.14). Similarly we can continue to higher orders

in the parameters αk and will find operators that can all be expressed in terms of the simple
short-range Hamiltonian.

The next step is to consider operators proportional to the free parameters βr,s : equation
(5.14) yields

∂Q
∂βr,s

= 2i[Yr,s ,Q] + · · · = 2i[[Qr |Qs],Q] + · · · , (B.9)

such that we find

Qt = Q(0)
t + βr,sQ[r|s]

t + · · · , (B.10)
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with

Q[r|s]
t = 2i

[[
Q(0)

r

∣∣Q(0)
s

]
,Q(0)

t

]
. (B.11)

Higher orders in the parameters βr,s as in

Qt = Q(0)
t + βr,sQ[r|s]

t + βr,sβp,qQ[r|s,p|q]
t + · · · , (B.12)

are then given by

Q[r|s,p|q]
t = 2i

[[
Q[p|q]

r

∣∣Q(0)
s

]
,Q(0)

t

]
+ 2i

[[
Q(0)

r

∣∣Q[p|q]
s

]
,Q(0)

t

]
+ 2i

[[
Q(0)

r

∣∣Q(0)
s

]
,Q[p|q]

t

]
, (B.13)

where again the flatness of the connection implies that up to local similarity transformations
this term is equal to

Q[p|q,r|s]
t = 2i

[[
Q[r|s]

p

∣∣Q(0)
q

]
,Q(0)

t

]
+ 2i

[[
Q(0)

p

∣∣Q[r|s]
q

]
,Q(0)

t

]
+ 2i

[[
Q(0)

p

∣∣Q(0)
q

]
,Q[r|s]

t

]
. (B.14)

Again, we could plug in the solution for the first orders (B.11) and express the whole operator
in terms of the undeformed charges, and then in terms of Q(0)

2 by (2.14).
We are now only missing the terms Q[k,r|s]

t proportional to mixed powers αkβr,s of the
free parameters in

Qt = Q(0)
t + αkQ[k]

t + αkαlQ[k,l]
t + βr,sQ[r|s]

t + βr,sβp,qQ[r|s,p|q]
t + αkβr,sQ[k,r|s]

t + · · · . (B.15)

Again, we can determine these either by plugging the βr,s-deformation into the αk-deformation
equation or vice versa. Due to flatness, both results are equal up to local deformations (3.8).
The αk-equation (5.9) together with (5.15) yields

∂Q
∂αk

= i[P̃k,Q] + · · ·
= (k − 1)i[Pk,Q] + i[Gk,Q] − 2βr,s[[[Gk,Q]r |Qs] + [Qr |[Gk,Q]s],Q] + · · · , (B.16)

which results in

Q[r|s,k]
t = i(k − 1)

[
P [r|s]

k ,Q(0)
t

]
+ i(k − 1)

[
P(0)

k ,Q[r|s]
t

]
+ (t + k − 2)Q[r|s]

t+k−1

+ 2i
[[

(r + k − 2)Q(0)
r+k−1

∣∣Q(0)
s

]
+

[
Q(0)

r

∣∣(s + k − 2)Q(0)
s+k−1

]
,Q(0)

t

]
. (B.17)

The βr,s-equation (5.12) in contrast yields

Q[k,r|s]
t = 2i

[[
Q[k]

r

∣∣Q(0)
s

]
,Q(0)

t

]
+ 2i

[[
Q(0)

r

∣∣Q[k]
s

]
,Q(0)

t

]
+ 2i

[[
Q(0)

r

∣∣Q(0)
s

]
,Q[k]

t

]
. (B.18)

Again, due to flatness of the connection, expressions (B.17) and (B.18) are equal up to local
similarity transformations.

Note that the explicit expansions given in this appendix does not always yield terms
with the desired interaction range (5.24) straightforwardly. In order to obtain terms of this
minimal range, one generically has to add deformations (3.8) by some local operators. For
example, when one explicitly calculates the terms (B.8) for the gl(K) chain, one finds that
Q[3,4]

r has the minimal interaction range (r + 3) as given in (5.24), while the term Q[4,3]
r has

range (r + 4). Adding a deformation � = L4,3α4dα3 by some local operator L4,3 however
results in Q[4,3]

r = Q[3,4]
r . Similarly, for all terms we calculated for the gl(K) chain, (B.18)

yields the correct range (5.24), while (B.17) needs to be corrected by a local deformation
� = Lr|s,kβr,sdαk . For explicit results for the gl(K) and gl(Ke) ⊗ gl(Ko) chains, see tables 2
and 3.
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