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1 Introduction

Long-range dependence or long-memory is receiving an increasing emphasis in several fields of
science. Recently it has been discovered also in biological systems, [HP96], [PHSG95], [SBG+93],
[SBG+94], in the traffic of high speed networks, [LTWW94], [WTSW95], [WTSW97], in eco-
nomic processes and in a variety of pieces of music, [BI98], as well. The question arises natu-
rally how do micro level processes imply long-range dependence at macro level. The Brownian
motion (BM) can be constructed as the result of infinitely many effects at the same time at
micro level, while the basic long range dependent processes such as fractional Brownian motion
(FBM), fractional Gaussian noise (FGN) and fractional ARIMA processes are constructed by
time-aggregation (e.g. fractional integration). We are interested in constructions in which the
long-range dependence arises not by aggregation in time but similarly to the BM by aggregating
the copies of a short range dependent process, each copy taken at the same time point. The
different copies are the micro level processes. Surprisingly, long-range dependence may come
into being in this manner, as the following examples show. (i) The most famous paper in this
field is the one by Granger [Gra80], who aggregated random coefficient AR(1) time series to get
an approximation of long-range dependence. (ii) Other interesting models due to Willinger et
al. [WTSW95], [WTSW97] and Taqqu et al. [TWS97], aggregation of independent ON/OFF
processes with heavy tailed ON or OFF time periods. They are based on the idea of Mandelbrot
[Man69], namely that superposition of many sources exhibiting the infinite variance syndrome
results in long-range dependence. (iii) Lowen, Teich and Ryu [LT93], [RL98] study essentially
the same processes under the names of superposition of fractal renewal processes and alternating
fractal renewal process. (iv) Recently Carmona, Coutin and Montseny ([CCM], [CC98]) discov-
ered that the Riemann–Liouville fractional integral operator can be represented as a mixture
of AR(1) operators. Though [CCM] and [CC98] deal with nonstationary processes for which
the long-range dependence is not defined they are very closely related to our results. (v) Some
mixture of two AR(1)s has been used for modeling the traffic of high speed networks in [AZN95].

In this paper we apply the ideas of both Granger [Gra80], Carmona, Coutin and Montseny
[CCM], [CC98] and Mandelbrot [Man69] and construct a continuous time stationary process
with long-range dependence. In Section 2 we deal with the sum of random coefficient AR(1)
processes. In Granger’s models the squares of the AR(1) coefficients are Beta distributed. In our
second model the AR(1) coefficients are Gamma distributed and the input Brownian motions
are common. In our first model the AR(1) coefficients are doubly stochastic, that is they are
Gamma distributed with a Pareto distributed random scale parameter, and the input BM’s are
independent. We show that the two aggregational models lead to the same limit process. It is
Gaussian and stationary and its transfer function ϕ(ω) is the mixture of transfer functions of
Ornstein–Uhlenbeck (OU) processes by Gamma distribution, i.e.

ϕ(ω) =

∞∫
0

1
iω + x

fΓ(1−h,λ)(x)dx.

It is long-range dependent, we shall call it Gamma-mixed Ornstein–Uhlenbeck process with
long-range parameter h and scale parameter λ and denote it by ΓMOU(h, λ).

The third aggregational model of Section 2 diverges from the previous two in its starting point,
i.e., the type of the micro level processes. In particular, we take independent random intensity
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Poisson alternating 0–1 reward processes and show that if the intensity parameter follows the
Gamma distribution with a Pareto distributed random scale parameter, then the standardized
sum of the processes converges to the standardized ΓMOU process.

The ΓMOU process is a new candidate for the successful modelling of several Gaussian stationary
data with long-range dependence. In Section 3 we show several interesting properties of it.
Namely, it is asymptotically self-similar, it converges to the continuous time FGN when λ → 0
and to the BM when λ → ∞. Its position between the continuous time FGN and the BM can
be controlled simply by the scaling parameter λ. The ΓMOU process has a simple time domain
moving average representation, almost the same as that of the continuous time FGN. Moreover,
it is semimartingal, so it is possible to integrate with respect to it without any difficulties.

Section 4 is a digression in which we look at what happens if the limiting procedures leading to
the ΓMOU process are taken in reverse order.

Possible applications and problems are considered in Section 5. Modelling the heart interbeat
intervals time series by the ΓMOU process may lead closer to an understanding of the mysterious
phenomenon of heart rate variability. The other possibility of making use of the ΓMOU process
is that it can serve as the input to different chaotic models. It also suggests a new definition of
stochastic differential equations with FBM input. That new definition—which is somewhat more
handy than the ones known at present—is based on almost sure (a.s.) smooth approximations of
the FBM. The properly scaled integral process of the ΓMOU process serves as a natural example
of such an approximating process.

For the sake of unanimity let us agree on the parametrization of distributions we shall deal with.
The probability density function of the Gaussian distribution N (µ, σ2) is denoted by fN (µ,σ2)(x).
The Γ distribution with shape parameter p > 0 and scale parameter λ > 0, Γ(p, λ) for short,
has the probability density function

fΓ(p,λ)(x) =
λp

Γ(p)
xp−1e−λx, x > 0.

The Pareto distribution with scale parameter µ > 0 and shape parameter q > 0, P(q, µ) for
short, has the probability density function

fP(q,µ)(x) = qµqx−q−1, x > µ.

2 Representations by aggregation

2.1 The limit of aggregated random coefficient independent Ornstein–
Uhlenbeck processes

Let us consider a sequence of stationary OU processes Xk (t) , k ∈ N with random coefficient,
i.e., Xk is the stationary solution of the stochastic differential equation

dXk (t) = αkXk (t) dt + dBk (t) .

The processes Bk (t) , k ∈ N, are independent BM’s with time parameter t ∈ R. Let us denote
the probability space on which they are defined by (ΩB,FB ,PB). The autoregression coefficients,
αk, k ∈ N, are independent identically distributed random variables on the probability space
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(Ωα,Fα,Pα). We consider them as extended versions to the space (Ωα,Fα,Pα)×(ΩB ,FB ,PB),
i.e., the two sets {Bk(t) : t ∈ R, k ∈ N}, {αk : k ∈ N} are independent. Moreover, let us fix
parameters 0 < h < 1

2 , and λ > 0 and suppose that the distribution of the random variables
−αk is the mixture of Gamma Γ(2 − h, z) distributions by the weight function fP(2−2h,λ)(z),
i.e., for each k ∈ N, −αk is Γ(2 − h, θk)-distributed, −αk ∼ Γ(2 − h, θk) for short, and the scale
parameter θk has Pareto distribution. In other words they are the conditional distributions
P−αk |θk

, which are Gamma distributions, i.e.,

P−αk |θk
∼ Γ(2 − h, θk), k ∈ N,

where

θk ∼ P(2 − 2h, λ), k ∈ N.

The dependence structure of the random variables θk, k ∈ N is arbitrary. For example, the θk’s
may be independent or even the same. It must be stressed again that for parameter h we specify
the range 0 < h < 1

2 . Otherwise the process we shall deal with will not be L2-stationary and
long-range dependent.

Actually the density function f−α of −αk is given clearly by

f−α(x) = 2xfΓ(1−h,λ)(x)

∞∫
0

1
x + y

fΓ(1−h,λ)(y)dy,

see Lemma 4 in the Appendix.

Let

Zn (t) $
1√
n

n∑
k=1

Xk (t) , n ∈ N, (1)

denote the series of the
√

n-standardized aggregated processes. Xk (t) and Zn (t) can be con-
sidered Pα-almost surely (a.s.) to be random processes on (ΩB ,FB ,PB). Since Pα-a.s. the
processes Xk (t) , k ∈ N, are independent, the spectral density of Zn (t) is the average of those
of Xk (t) , k=1, . . . ,n, so, Pα-a.s.

SZn(ω) =
1
n

n∑
k=1

SXk
(ω) =

1
2πn

n∑
k=1

1
ω2 + α2

k

(2)

→
n→∞

1
2π

E
1

ω2 + α2
1

=
1
2π

∞∫
0

1
ω2 + x2

f−α(x)dx.

Let Y (t) be a zero mean Gaussian process on (ΩB ,FB ,PB) with spectral density

SY (ω) =
1
2π

∞∫
0

1
ω2 + x2

f−α(x)dx. (3)
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Theorem 1 Function (3) is really a spectral density function, i.e., its integral is finite. The
zero-mean Gaussian process Y (t) on (ΩB ,FB ,PB), given in the weak sense by spectral density
(3), has a PB-a.s. continuous modification. Moreover

Zn
w→

n→∞ Y

Pα-a.s, where w→ denotes the weak convergence in C[a, b], for arbitrary a < b ∈ R.

For the proof see the Appendix.

2.2 The limit of aggregated random coefficient
Ornstein–Uhlenbeck processes with a common
input

It is interesting to note that the process Y (t) defined in the previous section arises also by the
limit of aggregated random coefficient OU processes, the input of which is the same BM.

Let us consider the random coefficient stationary OU processes Xk (t) , k ∈ N, i.e., the stationary
solutions of the stochastic differential equations

dXk (t) = αkXk (t) dt + dB (t) .

B (t) is a BM defined on (ΩB ,FB ,PB). The autoregression coefficients αk, k ∈ N, are independent
random variables on the space (Ωα,Fα,Pα), and

−αk ∼ Γ(1 − h, λ), k ∈ N.

For example, they can be considered to be the increments of a Gamma field. We use the word
”field” to indicate that the index k of the coefficients does not mean time.

We consider the BM B(t) and the random variables αk, k ∈ N to be extended versions to the
space (Ωα,Fα,Pα) × (ΩB ,FB ,PB), i.e., they are independent. The ranges of h and λ are the
same as everywhere in this paper, i.e., 0 < h < 1

2 , and λ > 0, respectivelly.

We know both the time domain and the frequency domain spectral representations of the sta-
tionary OU process, i.e.,

Xk (t) =

t∫
−∞

eαk(t−s)dB(s) =

∞∫
−∞

eitω 1
iω − αk

W (dω) (4)

Pα-a.s., where W (dω) is the complex Gaussian spectral measure connected with B (t) through

B (t) =

∞∫
−∞

eitω − 1
iω

W (dω), t ∈ R.

Let

Yn (t) $
1
n

n∑
k=1

Xk (t) , n ∈ N.
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From (4) we have

Yn (t) =

t∫
−∞

1
n

n∑
k=1

eαk(t−s)dB(s) =

∞∫
−∞

eitω 1
n

n∑
k=1

1
iω − αk

W (dω) (5)

Pα-a.s. By the law of large numbers

lim
n→∞

1
n

n∑
k=1

eαk(t−s) = Eeα1(t−s)

lim
n→∞

1
n

n∑
k=1

1
iω − αk

= E
1

iω − α1
, (6)

Pα-a.s. The above time domain transfer function has the very simple explicit form

Eeα1(t−s) =

∞∫
0

e−(t−s)x λ1−h

Γ(1 − h)
x−he−λxdx =

(
λ

λ + t − s

)1−h

. (7)

Also the frequency domain transfer function has an explicit representation by some special
functions, but for our immediate purposes the trivial representation

E
1

iω − α1
=

∞∫
0

1
iω + x

fΓ(1−h,λ)(x)dx

will do.

Definition 1 Let us define the process

Y (t) $

t∫
−∞

(
λ

λ + t − s

)1−h

dB(s)

$

∞∫
−∞

eitω

∞∫
0

1
iω + x

fΓ(1−h,λ)(x)dxW (dω).

Y (t) will be called Gamma-mixed Ornstein–Uhlenbeck process with parameters h and λ,
ΓMOU(h, λ) for short. We also use the notation Yλ (t) where it is necessary to emphasize the
dependence on λ.

Remark 1 The appearance of the Gamma distribution in the role of mixing distribution is not
an illusory assumption. E.g., there exist practical applications of the so called Gamma-mixed
Poisson process, see, ”mixed Poisson process” in [DVJ88]. It is also called negative binomial
process and Pólya process.
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Theorem 2 Pα-a.s. for all t ∈ R

Yn(t) →
n→∞ Y (t) in L2(ΩB,FB ,PB).

This process Y and the one in Theorem 1, denoted by Y also, are the same in weak sense, i.e.,
they have the same distributions on C[a, b], for arbitrary a < b ∈ R. Moreover, Pα-a.s.

Yn
w→

n→∞ Y in C[a, b].

For the proof see the Appendix.

Remark 2 EαEB (Yn (t) − Y (t))2 →
n→∞ 0 no longer holds. This is because the processes

Xk (t) , k ∈ N, as well as the ones Yn (t) , n ∈ N, are not in
L2 ((Ωα,Fα,Pα) × (ΩB ,FB ,PB)) , since

EαEB (Yn (t))2 =
1
n2

Eα

n∑
r=1

n∑
s=1

1
−αr − αs

≥ 1
n2

Eα

n∑
r=1

1
−2αr

=
1
2n

λ1−h

Γ(1 − h)

∞∫
0

x−1−he−λxdx = ∞.

Thus the convergence holds only in the Pα-a.s. in L2(ΩB ,FB ,PB) sense.

Remark 3 While the conditional distribution of the processes Xk (t) to aggregate, is Gaussian,
the unconditional distribution of Xk (t) is not Gaussian. That is, the unconditional probability
density is

fXk
(x) =

∞∫
0

fN (0, 1
2s

)(x)fΓ(1−h,λ)(s)ds =
1

B(1
2 , 1 − h)

√
λ

(
1 +

(
x√
λ

)2
) 3

2
−h

.

E.g., if h ↑ 1
2 , then the distribution of Xk (t) converges to the Cauchy distribution with scale

parameter
√

λ.

Remark 4 Carmona, Coutin and Montseny [CCM], [CC98] discovered that the Riemann–
Liouville fractional integral operator can be represented as a mixture of AR(1) operators. While
they deal with moving average processes of the type

t∫
0

g(t − s)dB(s),

our processes are all stationary, as the lower limit of the integral is −∞ in our case. Sta-
tionarity is necessary because long-range dependence is defined only for stationary processes.
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This is the main difference between the subject of [CCM], [CC98] and our paper, and the main
correspondence is the following. Let µ be a probability measure on R+ for which

∞∫
0

x− 1
2 µ(dx) < ∞,

and let us define as in [CC98] for every fixed t ∈ R+ the L1(R+ , µ)-valued process Zt = Zt(·) by

Zt(·) $ Z·(t)

Zx(t) $

t∫
0

exp(−x(t − s))dB(s), x > 0,

i.e., for every fixed x > 0, Zx(·) is the OU process with AR(1) coefficient x and starting from
zero. Moreover let

〈ϕ,Zt〉µ $
∞∫
0

ϕ(x)Zt(x)µ(dx)

be the value of the continuous linear functional ϕ ∈ L∞(R+ , µ) =
(
L1(R+ , µ)

)∗ taken on Zt ∈
L1(R+ , µ). Note that the L1(R+ , µ)-valued process Zt is introduced in [CC98] because it is a
Markov process, though infinite dimensional, while the finite dimensional processes

〈ϕ,Zt〉µ =

∞∫
0

ϕ(x)

t∫
0

exp(−x(t − s))dB(s)µ(dx)

=

t∫
0

g(t − s)dB(s)

are not Markovian in general, where g is the Laplace–Stieltjes transform of ϕ. Now, it is easy
to see that the ΓMOU process can be represented as the weak limit process, as r → ∞, of the
processes vr defined by

vr(t) $ 〈ϕ,Zt+r〉µ
with ϕ = 1 ∈ L1(R+ , µ) and µ(dx) = fΓ(1−h,λ)(x)dx, x > 0. In other words the ΓMOU process
Yt can be represented as

Yt = 〈1,Xt〉µ
where µ(dx) = fΓ(1−h,λ)(x)dx, x > 0, and for every fixed t ∈ R+ the L1(R+ , µ)-valued process
Xt is defined by

Xt(·) $ X·(t)

Xx(t) $

t∫
−∞

exp(−x(t − s))dB(s), x > 0,

i.e., for every fixed x > 0, Xx(·) is the stationary OU process with AR(1) coefficient x.
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2.3 The limit of aggregated random intensity Poisson alternating 0–1 reward
processes

Let us take the extended Poisson process N(t), t ∈ R, on a probability space (ΩN ,FN ,PN ). We
denote the intensity parameter by κ. The stationary Poisson alternating 0–1 reward process
X(t) with intensity parameter κ is defined by

X(t) $


1 if N(t) + ν is even

0 if N(t) + ν is odd
, t ∈ R,

where the random variable ν is independent of the process N(t) and symmetric Bernoulli dis-
tributed, i.e., PN (ν = 0) = PN (ν = 1) = 1/2. The addition of ν to N(t) is needed to achieve
the stationarity of X(t). Indeed,

EX(t) = PN (N(t) + ν is even) =
1
2
,

and for s ≤ t,

EX(s)X(t) =
1
2
PN (N(s) and N(t) have the same evenness)

=
1
2
PN (the number of events in (s, t) is even)

=
1
4

(
1 + e−2κ(t−s)

)
.

Thus, the spectral density is

SX(ω) =
1
2π

κ

ω2 + (2κ)2
,

which is exactly that of an OU process with AR coefficient 2κ and innovation variance κ, so we
can proceed in the same way as in Subsection 2.1. In order to get the same limit process, the
parameterization of the distribution of the random parameter κ will be somewhat different from
that of the AR coefficient α.

Thus, let us take the independent stationary Poisson alternating 0–1 reward processes Xk (t) , k ∈
N on the probability space (ΩN ,FN ,PN ), and assume that the intensity parameters κk, k ∈
N, are independent and identically distributed random variables on the probability space
(Ωκ,Fκ,Pκ). As in Subsection 2.1, assume also that the parameters and the processes are
independent, i.e., we consider everything on the product space (Ωκ,Fκ,Pκ) × (ΩN ,FN ,PN ).
Moreover let the distribution of the random parameters κk, k ∈ N, be Pareto-mixed Gamma,
namely

Pκk|θk
∼ Γ(1 − h, θk), θk ∼ P(1 − 2h, 2λ), k ∈ N. (8)

Actually the density function fκ(x) of κk is given clearly by

fκ(x) =
1 − 2h

λ
21−2hfΓ(1−h,λ)(x)

∞∫
0

1
x + y

fΓ(1−h,λ)(y)dy, x > 0,
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see Lemma 1 in the Appendix. The standardized sum of the Xk (t)’s is

Zn (t) =
2√
n

n∑
k=1

(
Xk (t) − 1

2

)
.

Since Pκ-a.s. the processes Xk (t) , k ∈ N, are independent, the spectral density of Zn (t) is

SZn(ω) =
4
n

n∑
k=1

SXk
(ω)

=
1

2πn

n∑
k=1

4κk

ω2 + (2κk)2
→

n→∞
1
2π

E
4κ

ω2 + (2κ)2

=
1
2π

∞∫
0

4x
ω2 + (2x)2

fκ(x)dx

=
1 − 2h

λ

1
2π

∞∫
0

1
ω2 + x2

f−α(x)dx,

Pκ-a.s. The last row contains exactly the spectral density of the standardized ΓMOU(h, λ)
process, see (3). Thus we have obtained a further aggregational model for approaching the
ΓMOU process.

Theorem 3 Let Xk(t), k ∈ N, be a series of independent stationary Poisson alternating 0–1
reward processes the intensity parameters κk of which are independent random variables with
the Pareto-mixed Gamma distribution given by (8). Then the series Zn of the standardized
sums of the processes Xk(t) converges Pκ-a.s. to the standardized ΓMOU(h, λ) process in the
sense of weak convergence of finite dimensional distributions.

Remark 5 For each k ∈ N, the conditional distribution of the interevent times of the process
Xk(t), i.e., that of the interevent times of the background Poisson process Nk(t), is exponential
with intensity parameter κk. Because of (8), the unconditional distribution is Pareto-mixed
Gamma-mixed exponential, that is Pareto-mixed shifted Pareto. Specifically, if τ (j) denotes the
time between the (j − 1)-th and j-th events, then

Pτ (j)+θ|θ ∼ P(1 − h, θ),

where

θ ∼ P(1 − 2h, 2λ).

Nevertheless, the process Xk(t) can not be derived from a renewal process with this interevent
time distribution, since τ (j), j ∈ Z, are only conditionally independent. For this reason our
setting is somewhat different from those described in [TWS97], [LT93] and [RL98].
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3 Properties of the ΓMOU process

Property 1. Conditional expectation

An expressive form of the ΓMOU process is

Y (t) = EαXα (t) = E(Xα (t) |FB) = E(Xα (t) |FB(t)),

where Xα (t) is the random coefficient OU process defined in Subsection 2.2, the lower index
is used to denote the dependence of the process on α, and FB(t) is the σ-field generated by the
random variables Bs, 0 < s ≤ t.

Property 2. Stationarity

The ΓMOU process Y (t) is stationary, regular or physically realizable, zero-mean and Gaussian.
The frequency domain transfer function

ϕ(ω) =

∞∫
0

1
iω + x

fΓ(1−h,λ)(x)dx (9)

of Y (t) can be expressed by the upper incomplete complex-argument Γ function as

ϕ(ω) =

∞∫
0

e−iuω

(
λ

λ + u

)1−h

du

= λ1−heiλω

∞∫
λ

uh−1e−iuωdu

= λ1−heiλω (iω)−h Γiλω(h).

An explicit form of the autocovariance function is

rY (t) = EY (0)Y (t)

=

0∫
−∞

λ2−2h

(λ − s)1−h(λ + t − s)1−h
ds

= λ

1∫
0

u−2h

(
1 +

t

λ
u

)h−1

du

=
λ

1 − 2h 2F1

(
1 − h, 1 − 2h; 2 − 2h,− t

λ

)
.

The last equality is the consequence of an identity of Euler concerning the Gaussian hypergeo-
metric function 2F 1. The variance of Y (t) is

D2Y (t) =
λ

1 − 2h
,
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so the autocorrelation function is just the hypergeometric function

ρY (t) = 2F1

(
1 − h, 1 − 2h; 2 − 2h,− t

λ

)
.

A form of the spectral density, which is useful for describing the next property, is

SY (ω) =
1
2π

|ϕ(ω)|2 = |ω|−2h λ2−2h

2πΓ(1 − h)2

∣∣∣∣∣∣
∞∫
0

1
i + x

x−he−λ|ω|xdx

∣∣∣∣∣∣
2

. (10)

Property 3. Long-range dependence and asymptotically self-similarity

The most interesting property of the ΓMOU process Y (t) is the long-range dependence. Because
the phenomenon of long-memory or long-range dependence is ubiquitous and already widely
known, we only recall what it really is. The main point is that the dependence on the past
values of the process decreases so slowly that the sum of the autocovariance series becomes
infinite, or, equivalently, the spectral density S(ω) has a pole at zero. In the case of very small
and very large values, one usually changes into logarithmic scale, so, because the linear function
is the simplest,

log S(ω) ≈ −2h log |ω| + a, ω → 0,

or, equivalently, the so-called power law

S(ω) ' c|ω|−2h, ω → 0, (11)

becomes the characteristic when describing long-range dependence. (Generally, in (11) there is
a slowly varying function in place of c, but it has no significant role, so we simply omit it.) The
quantity h called long-range parameter must be in the range 0 < h < 1

2 .

Now it follows from (10) that the ΓMOU(h, λ) process Y (t) is long-range dependent with pa-
rameter h, since (11) holds for SY (ω). This also appears from the asymptotic behavior of the
autocovariance function since

rY (t) =

0∫
−∞

λ2−2h

(λ − s)1−h(λ + t − s)1−h
ds

' λ2−2hB(h, 1 − 2h)t2h−1, t → ∞,

where B denotes the Beta function at this point.

A property expressing the fractal-like feature of the process Y (t), closely related to long-range
dependence, is asymptotical self-similarity. This means that, as T → ∞, the series of the
autocorrelation functions ρ(T )(s) of the processes arising by averaging Y (u) over the intervals
(tT, (t + 1)T ), t ∈ R, converges to an autocorrelation function ρ(∞)(s), moreover ρ(∞) and ρY
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are equivalent at infinity, i.e., ρ(∞)(t) and ρY (t) converge to zero as t→ ∞ in the same order.
That is,

ρ(T )(s) $
r(T )(s)
r(T )(0)

= E

 1
T

(t+1)T∫
tT

Y (u) du
1
T

(t+s+1)T∫
(t+s)T

Y (u) du


E

 1
T

(t+1)T∫
tT

Y (u) du


2

−1

=

1∫
0

s+1∫
s

rY (T (u1 − u2))du2du1

 1∫
0

1∫
0

rY (T (u1 − u2))du2du1

−1

'
1∫

0

s+1∫
s

|u1 − u2|2h−1 du2du1

 1∫
0

1∫
0

|u1 − u2|2h−1 du2du1

−1

as T → ∞, hence

ρ(∞)(s) =

1∫
0

s+1∫
s

|u1 − u2|2h−1 du2du1

 1∫
0

1∫
0

|u1 − u2|2h−1 du2du1

−1

' h(2h + 1)s2h−1

as s → ∞, and

ρY (s) $
rY (s)
rY (0)

' λ1−2hB(h, 1 − 2h)(1 − 2h)s2h−1

as s → ∞. The order of the convergence is s2h−1 in both cases. This type of self-similarity
mentioned in [Cox91], is the weakest, i.e., the most general among the various other self-similarity
concepts. It is the one that always follows from long-range dependence.

Property 4. Convergence to the continuous time fractional Gaussian noise when λ → 0.

The fractional Brownian motion (FBM)

B(h) (t) $
1

Γ(h + 1)

 t∫
−∞

(t − s)h − (−s)hdB (s) +

t∫
0

(t − s)hdB (s)

, t ∈ R,

where h ∈ (−1
2 , 1

2

)
, has a central role in the field of long-range dependent processes. Its difference

process, B(h) (t + 1) − B(h) (t) is called fractional Gaussian noise (FGN).

The BM motion is of almost sure unbounded variation and this is the reason for the existence
of the stochastic integro-differential calculi. The FBM also has this property and it is not even
semimartingale since its quadratic variation is zero. Hence, integration with respect to FBM,
that is, stochastic differential equations with FBM input are not obvious things. There exist
various approaches for them, see [Ber89], [Lyo98], [DH96], [DÜ99], [CD], [Zäh98], [KZ99] and
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[IT99]; however the most natural one remained hidden yet. Later in Subsection 5.2 we shall
try to bring the reader around to our point of view and demonstrate the concept for treating
stochastic differential equations with FBM input.

One possibility to find a process easier to handle, which is arbitrarily close to the continuous
time FGN on the one hand, and preserves the long-range dependent feature on the other hand, is
the following. Let us consider the continuous time FGN, i.e., the informal derivative of B(h) (t),

b(h) (t) $
d

dt
B(h) (t) =

1
Γ(h)

t∫
−∞

(t − s)h−1dB (s) . (12)

Unfortunately, b(h) (t) does not exist in L2, for the same reason that the usual continuous time
white noise does not exist. However, if we cut off that part of the integral which causes the
trouble, that is, the upper end, then we get the new process

b
(h)
λ (t) $

1
Γ(h)

t−λ∫
−∞

(t − s)h−1dB (s) , t ∈ R, (13)

where λ > 0 is preferably small. The integral in (13) does exist in L2, and b
(h)
λ (t) continues

to be long-range dependent if B(h) (t) is, i.e. if 0 < h < 1
2 . This is because we cut off only the

present and the recent past. The effect of the long past, from which the long-range dependence
arises, is left untouched. From another point of view what we do is, in fact, the retardation of
the effect of the noise. At point of time t, only the noise effects acting up to the point of time
t − λ are cumulated in b

(h)
λ (t) .

It is easy to calculate the standard deviation of the stationary process b
(h)
λ (t) . It is

D
(
b
(h)
λ (t)

)
=

λh− 1
2

Γ(h)
√

1 − 2h
.

Now, we have the standardized processes

b̃
(h)
λ (t + λ) $

b
(h)
λ (t + λ)

D
(
b
(h)
λ (t + λ)

) =

√
1 − 2h

λ

t∫
−∞

(
λ

t + λ − s

)1−h

dB (s)

and

Ỹλ (t) $
Yλ (t)

D (Yλ (t))
=

√
1 − 2h

λ

t∫
−∞

(
λ

t + λ − s

)1−h

dB (s)

being the same. (The lower index indicates the dependence of Y (t) on λ.) In other words the
process b

(h)
λ (t) in (13) is just the shifted ΓMOU(h, λ) process multiplied by a constant. This

property can be described also in terms of the FBM and the integrated ΓMOU process as follows.
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The ΓMOU(h, λ) process Yλ (t) is close to the continuous time FGN in the sense that the integral
process of the properly scaled process Yλ (t) converges in L2 if λ → 0, to the FBM, i.e.

J(Yλ) (t) $

t∫
0

D
(
b
(h)
λ (s)

)
D (Yλ (s))

Yλ (s) ds (14)

=
1

Γ(h)
λh−1

t∫
0

Yλ (s) ds

=
1

Γ(h + 1)

 0∫
−∞

(t − s)h − (−s)hdB (s)

+

t−λ∫
0

(t − s)hdB (s) − λhB (t − λ)

 →
λ→0

B(h)(t),

in L2 for all t ∈ R.

Almost sure uniform convergence also holds, i.e.,

lim
λ→0

sup
t∈[a,b]

∣∣∣J(Yλ)(t) − B(h)(t)
∣∣∣ = 0 a.s. (15)

over every compact interval [a, b]. The proof is straightforward so we include it here.

lim
λ→0

sup
t∈[a,b]

∣∣∣J(Yλ)(t) − B(h)(t)
∣∣∣

=
1

Γ(h + 1)
lim
λ→0

sup
t∈[a,b]

∣∣∣∣∣∣
t∫

t−λ

h(t − s)h−1B (s) ds

∣∣∣∣∣∣
6

1
Γ(h + 1)

lim
λ→0

λh sup
t∈[a,b]

|B(t)|

= 0,

where the first equation arises by integrating by parts.

The weak convergence in C[a, b],

J(Yλ) w→
λ→0

B(h) (16)

follows from (15).

In fact the convergence in (16) is also a consequence of Taqqu’s time-aggregation limit theorem,
which states that properly scaled time-averaged functions of the process converge weakly in
C[a, b], to certain self-similar processes with stationary increments the Hermite order of which
is the Hermite rank of the function, see [Taq79]. The limit processes have the form (18). This
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theorem is applicable in full to our process because

Yλ (t)
D (Yλ (t))

=

√
1 − 2h

λ

t∫
−∞

(
λ

t + λ − u

)1−h

dB (u)

d=
√

1 − 2h

t
λ∫

−∞

(
t

λ
+ 1 − v

)h−1

dB (v) ,

where d= means that the finite dimensional distributions are the same, thus by Taqqu’s theorem
in [Taq79], if G is a function for which

EG

(
Yλ (t)

D (Yλ (t))

)
= 0, E

(
G

(
Yλ (t)

D (Yλ (t))

))2

< ∞,

moreover G has Hermite rank m < 1
1−2h , then

K(h)mλm(h− 1
2)

t∫
0

G

(
Yλ (s)

D (Yλ (s))

)
ds (17)

d= K(h)mλm(h− 1
2)+1

t 1
λ∫

0

G

√
1 − 2h

u∫
−∞

(u + 1 − v)h−1 dB (v)

 du

w→
λ→0

J(m)
m!

Z(h)
m (t)

because 1
λ → ∞. Here w→ means the weak convergence in C[a, b], K(h) = Γ(h)

√
1 − 2h, J(m) is

the mth coefficient in the Hermite expansion of G, and

Z(h)
m (t) $ Γ(h)−m

∫
Rm

t∫
0

m∏
k=1

(s − uk)h−1χ(uk < s)dsdBm(u1, ..., um) (18)

d=
∫
Rm

eit(ω1+...+ωm) − 1
i(ω1+...+ωm)

m∏
k=1

(iωk)−hdWm(ω1, ..., ωm),

an Hermite order m self-similar process with stationary increments, subordinated to B (t). Here
the integrals are multiple Wiener–Itô and multiple Wiener–Itô–Dobrushin integrals, see [Taq79]
and for an introductory level [Ter99]. Since Z

(h)
1 (t) = B(h) (t), (16) is a special case of (17).

It is interesting to note that Taqqu’s theorem states what happens to the scaled aggregated
process when the time unit expands to infinity, while (17) means that we arrive at the same
limit process when compressing the intensity parameter λ to zero, i.e. when expanding its
reciprocal, the space unit to infinity. Note that for the model of Subsection 2.2 λ is the intensity
parameter of a Gamma field. Recall that it is the field the increments of which are the AR(1)
coefficients αk. See also Property 7.
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Remark 6 (7) is the key formula leading to most remarkable properties of the ΓMOU process.
It shows that the ΓMOU process and the informal derivative (12) of the FBM are closely related.
The idea leading to (7) and to finding out the proper distribution of the AR(1) coefficients, is
based on two facts. The first is that the time domain transfer function of an OU process is
almost the same as the exponential density function, and the time domain transfer function of
(12) is almost the same as the Pareto density function. The second fact is that the exponential
distribution with a Gamma distributed random intensity parameter is the same as the Pareto
distrubution shifted to zero.

Property 5. Properties of paths and semimartingale

The ΓMOU process Y (t) is almost surely continuous, as Theorem 1 states. It is a.s. nowhere
differentiable, because it is semimartingale with a nonzero martingale component. That is, the
semimartingale decomposition

Y (t) = Y (0) + V (t) + M(t), (19)

to an a.s. bounded variable part V (t), and a martingale part M(t), both being adapted to the
basic filtration (B (t) ,F(t)) of the BM motion, is the following:

V (t) =

t∫
0

Eα (αXα (s)) ds, (20)

where Xα (t) is the random coefficient OU process defined by (4), and

M(t) = B (t) .

This can be seen if one considers the spectral representation of Y (t) and takes the L2-derivative

d

dt
(Y (t) −Y (0) − B (t)) (21)

=
d

dt

∫
R

(
eitω − 1

)(
φ(ω) − 1

iω

)
W (dω)

=
∫
R

eitω (φ(ω)iω − 1) W (dω).

The transfer function here, φ(ω)iω−1, is really square-integrable, since it is the Fourier-transform
of a square-integrable function, viz.

φ(ω)iω − 1 = − λ1−h

Γ(1 − h)

∞∫
0

1
iω + x

x1−he−λxdx (22)

= − λ1−h

Γ(1 − h)

∞∫
0

∞∫
0

e−itωe−xtdt x1−he−λxdx

= −(1 − h)λ1−h

∞∫
0

e−itω (λ + t)h−2 dt.
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Thus, Y (t) − Y (0) − B (t) is L2-differentiable. The a.s. differentiability follows from the fact
that the second moment of the L2-derivative process (21) is constant, thus it is integrable over
every finite interval, so the L2-derivative process (21) is a.s. integrable over every finite interval
and its integral a.s. coincides with its L2-integral Y (t) − Y (0) − B (t). On the other hand,

Y (t) − Y (0) − B (t) (23)

=

t∫
0

∫
R

eisω (φ(ω)iω − 1) W (dω)ds

=

t∫
0

∞∫
0

−x

∫
R

eisω 1
iω + x

W (dω)
λ1−h

Γ(1 − h)
x−he−λxdxds

=

t∫
0

Eα (αXα (s)) ds,

thus the above semimartingale decomposition is proven. For various values of h and λ the
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Figure 1: Y (t)
DY (t) ,M(t),V (t) downwards.h = 0.01,λ = 0.01.

upper parts of the figures illustrate the trajectories of the standardized ΓMOU(h, λ) processes
Y (t) /DY (t). The middle and lower parts demonstrate the martingale components M(t) =
B (t), and the components V (t) of bounded variation (even absolutely continuous in this case),
respectively. All of the processes in the four figures are generated from the same realization of
B (t), therefore the differences between them arise from the different values of h and λ, alone.
Figure 1 refers to the case of a small h, thus slight long-range dependence, and small λ, i.e.
closeness to dB(h) (t) /dt in the sense of Property 4. Therefore, in such a case the ΓMOU(h, λ)
process Y (t) is close to the white noise.

18



0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

Figure 2: Y (t)
DY (t) , M(t), V (t), downwards. h = 0.49, λ = 0.01.

Figure 2 refers to the case of a large h, thus very long-range dependence, and small λ, i.e., when
the properly scaled ΓMOU(h, λ) process is close to dB(h) (t) /dt, in the sense of Property 4. It
seems the slow fluctuation, called pseudotrend, which is the manifestation of the high intensity
of the low frequency components, just the spectral characteristic of long-range dependence. On
the other hand, the fluctuation can be explained by the fact that the component V (t) of bounded
variation, which means something like average feedback (see (20)), can not completely balance
the random walk M(t) = B (t) . The decrease of the feedback is caused by the decreased modulus
of the AR(1) coefficients α, we recall that

E |α| =
2(1 − h)(2 − h)

(3 − 2h)λ
(24)

or

E |α| =
1 − h

λ
(25)

for the OU processes of Subsection 2.1 and 2.2, respectively. Thus, for both models the larger
the h the smaller the feedback and the smoother the V (t).

Property 6. Convergence to the BM as λ → ∞.

The semimartingale decomposition makes it possible to obtain the asymptotic behavior of the
ΓMOU(h, λ) process Yλ (t) as λ → ∞. In particular, the component Vλ (t) of bounded variation
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converges to zero as λ → ∞, i.e., as it follows from (23),

E (Vλ (t))2 = E (Yλ (t) − Yλ (0) − B (t))2 (26)

= E

∫
R

eitω − 1
iω

(φλ(ω)iω − 1) W (dω)

2

=
1
2π

∫
R

∣∣∣∣eitω − 1
iω

∣∣∣∣2 |φλ(ω)iω − 1|2 dω,

and (22) implies that

lim
λ→∞

|φλ(ω)iω − 1|2 = lim
λ→∞

(1 − h)2λ2−2h

∣∣∣∣∣∣
∞∫
0

e−itω(λ + t)h−2dt

∣∣∣∣∣∣
2

= (1 − h)2 lim
λ→∞

1
λ

∞∫
0

e−itω

(
λ

λ + t

)2−h

dt

2

= (1 − h)2 lim
λ→∞

 ∞∫
0

e−iuλω (1 + u)h−2 du

2

= 0,

because the function (1 + u)h−2 is square integrable. On the other hand, also from (22) we have

|φλ(ω)iω − 1|2 ≤ (1 − h)2λ2−2h

 ∞∫
0

(λ + t)h−2dt

2

= 1,

hence by applying the Lebesgue theorem, from (26) we have

Vλ (t) →
λ→∞

0 in L2(Ω),

uniformly in t ∈ [a, b], for arbitrary a < b ∈ R. This means that the ΓMOU(h, λ) process, fixed
to zero at t = 0, converges to the BM, i.e.

Yλ (t) − Yλ (0) →
λ→∞

B (t) in L2(Ω),

uniformly in t ∈ [a, b]. From this the weak convergence in C[a, b],

Yλ(t) − Yλ(0) w→
λ→∞

B(t),

also easily follows.

Figure 3 refers to the case of a small h, that is slight long-range dependence, and large λ, i.e.,
when the zero-fixed process Yλ (t) − Yλ (0) is close to the BM. The differentiability of V (t) has
come into view. Also the convergence Vλ (t) →

λ→∞
0 is apparent. Either the model of Subsection

2.1 or that of 2.2 is considered, the reason for the random walk feature of Y (t) is the poor
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Figure 3: Y (t)
DY (t) , M(t), V (t), downwards. h = 0.01, λ = 10.

feedback, caused by the very small expectation of the AR(1) coefficient α, see (24) and (25).
Note that in both cases E |α| depends more strongly on λ than on h. Figure 4 refers to the
case of a large h, so very long-range dependence, and a large λ, i.e., when the zero-fixed process
Yλ (t) − Yλ (0) is close to the BM.

Property 7. The scaling effect of λ is to move the ΓMOU(h, λ) process between the continuous
time FGN(h) and the BM.

As we have done above, let us denote the dependence on parameter λ by indexing, and the
equality of finite dimensional distributions by d=. The scaling property

Yλ (t) d=
√

λY1

(
t

λ

)
(27)

seems to be very spectacular. Its origin is that the role of the parameter λ is the scaling
both the Gamma and the Pareto distributions, and thus the AR coefficients of the micro level
OU processes eventually. Actually, there is not too much special in (27), as the OU processes
also have a similar property. What makes it interesting is that by Properties 4 and 6, as λ
varies between 0 and ∞, the scaled ΓMOU(h, λ) process ranges from FGN(h) = Ih(WN) to
BM= I(WN), meanwhile it remains stationary. (Here Ih means the fractional integral of order
h, and WN denotes the white noise.) This means that from a certain viewpoint the process
behaves as if its long-range parameter were larger, between h and 1. Thus in case of h ≈ 1

2 , the
long-range parameter seems to be between 1

2 and 1. This phenomenon is really noticeable when
we treat certain data sets. The ΓMOU process can be a possible interpretation for it.
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Figure 4: Y (t)
DY (t) , M(t), V (t), downwards. h = 0.49, λ = 10

4 Digression: taking the limits in reverse order

One of the interesting properties of the ΓMOU process is that it is an approximation of the
continuous time FGN in the sense of Property 4, Section 3. It means that if we consider the
random coefficient OU processes Xk,λ (t), those of either Subsection 2.1 or Subsection 2.2, take
their scaled infinite sum for k, take the scaled time-integral, and take the limit as λ → 0 in
this order, we obtain the FBM. (In Xk,λ (t) the index λ denotes the fact that the process also
depends on it.) Starting from the stationary Poisson alternating 0–1 reward processes Xk,λ (t)
of Subsection 2.3, we can get the FBM similarly. The question is whether it is important to take
the limits in this order or not. The answer is yes because the following statements hold. Let us
denote the characteristic function of the α-stable distribution Sα(γ, β, c) by ϕSα(γ,β,c), i.e.,

ϕSα(γ,β,c)(t) = exp {ict − γ |t|α [1 + iβ sgn(t)ω(t, α)]} ,

where

ω(t, α) =


tan απ

2 if α 6= 1

2
π log |t| if α = 1

.

If Xk,λ (t) , k ∈ N, are the random coefficient OU processes of Subsection 2.1, then

lim
n→∞n

− 1
2(1−h)

n∑
k=1

lim
λ→0

1
λ

T∫
0

Xk,λ (t) dt =
√

ζB (T ) ,
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where the random variable ζ is independent of the BM B (t), and it is (1 − h)-stable, that is

ζ ∼ S1−h

((
Γ(h)

Γ(2 − h)

)1−h

, 1, 0

)
.

The limits mean weak convergences in C[a, b].

If Xk,λ (t) , k ∈ N, are the random coefficient OU processes of Subsection 2.2, then

lim
n→∞n− 1

1−h

n∑
k=1

lim
λ→0

1
λ

T∫
0

Xk,λ (t) dt = ηB (T ) ,

where the random variable η is independent of the BM B (t), and it is (1 − h)-stable, that is

η ∼ S1−h

((
1

Γ(2 − h)

)1−h

, 1, 0

)
.

The above two limit processes are non-Gaussian, they have no finite second moment and ηB (T )
has no expectation even. They have dependent increments. They are still not too interesting
because their paths are those of the BM.

In the case of λ → ∞, changing the order of limits does not matter. In fact

lim
λ→∞

(Xk,λ (t) − Xk,λ (0)) = B (t)

for both processes Xk,λ (t).

Taking the limits in reverse order in the case of the stationary Poisson alternating 0–1 reward
processes Xk,λ (t) of Subsection 2.3 yields even less interesting result as

lim
λ→0

Xk,λ (t) dt = 1 − νk,

for all t ∈ R and k ∈ N, where the limit means stochastic convergence, and

lim
λ→∞

1
t

t∫
0

Xk,λ (s) ds =
1
2

a.s.

Thus, in practice the ΓMOU process occurs in all three cases typically when λ is neither too
large, nor too small and n/(1/λ) = nλ is large.

5 Applications of the ΓMOU process

5.1 Heart rate variability

One of the many stochastic processes in nature in which modelling fractal-like features by long-
range dependence has proved to be successful is the time series of the heartbeat intervals. It
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Figure 5: Interbeat intervals from a diseased heart (up) and from a healthy heart (down) from
[Buc98].

seems to the authors that particularly the ΓMOU process and heart interbeat intervals time
series have very much in common.

Over the last thirty years a decrease in short scale heart rate variability has received increas-
ing attention as a prognostic indicator of risks associated with a variety of chronic diseases,
behavioral disorders, mortality, and even aging. It is well known ([Buc98], [HP96], [PHSG95],
[SBG+94]) that healthy hearts and diseased hearts produce different patterns of interbeat in-
terval variability, see Figure 5. The graph in the healthy case is patchy, the pseudotrend shows
up, nevertheless the process appears to be stationary. On the contrary, the time series in the
diseased case is rather nonstationary, even after filtering out some large frequency periodic
components—the concomitants of various special heart failures. The trajectory is smoother and
much more reminiscent of random walk than the healthy one. The estimated values of the long-
range parameter are ĥ ≈ 1

2 in the healthy case and 1
2 � ĥ ≤ 1 or even ĥ ≈ 1 in the pathologic

case. These facts are taken for granted in the literature.

Healthy heart activity requires strong feedbacks, well balanced among themselves in the various
regulating processes of the autonomic peripheral nervous system ( [HP96], [PHSG95], [SBG+94]).
These regulating feedback processes can be random coefficient OU processes where the strength
of the feedbacks depends on the AR(1) coefficients. [HP96] put the question of what the dis-
tribution of the moduli of the AR(1) coefficients should be for the aggregated OU processes
to be long-range dependent with parameter h ≈ 1

2 . ”Perhaps some relatively simple processes
are responsible for this puzzling behavior.” ( [HP96]) In the authors’ opinion these relatively
simple processes could be either OU processes with Pareto–Gamma distributed moduli of the
AR(1) coefficients and independent inputs, see Subsection 2.1, or OU processes with Gamma
distributed moduli of the AR(1) coefficients and common inputs, see Subsection 2.2. We know
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that the limits of the properly scaled aggregated processes is the ΓMOU process in both cases.
In Figure 5 the trajectory belonging to a healthy heart looks like a ΓMOU(h, λ) process for large
h, small λ, see the upper graph in Figure 2, while that of a diseased heart is like a ΓMOU(h, λ)
process for some large λ, see Figure 4.

Modelling the heart interbeat intervals time series by the discretized ΓMOU process makes it
possible for us to explain the heart diseases simply by an unsatisfactory feedback. Thus, a small
λ involves a large feedback and health and a large λ involves a small feedback and disease, see
also Section 3, Properties 5 and 6, and the interpretation of the figures. Moreover, Property
7 means that after centralizing to zero, i.e. after subtracting the expectations, the difference
between the healthy and the diseased heart interbeat interval time series arises only from the
difference of scales. When the two coordinate axes are shrunk and streched out properly, the
diseased heart time series seems just as stationary as the healthy one. The estimated values
ĥ ≈ 1 for the diseased data set are far too large since 1

2 < h means nonstationarity while ĥ ≈ 1
is typical of a random walk. However, obtaining large estimated values for h agrees well with
our finding that for a large λ the ΓMOU(h, λ) process is close to the BM, see Property 6 for
the precise statement. As λ increases the ΓMOU(h, λ) process remains stationary and retains
its fixed long-range parameter h ∈ (0, 1

2

)
in spite of the fact that it becomes increasingly similar

to the BM, thus it becomes more and more difficult to estimate h. Furthermore, by the scaling
Property 7 increasing λ means extending out the process along the time axis, losing information
about large scale properties, while the estimation methods of the long-range parameter are
based on just those large scale properties. Thus, the authors suggest that it is not h, i.e.,
not the degree of long-range dependence, but λ, i.e., the scaling that lies behind the difference
between the healthy and the diseased heart functions. It is simply the insufficient feedback that
is responsible for the pathologic heart rate variability.

The ΓMOU model can answer the question why the healthy heartbeat time series is so strongly
long-range dependent, i.e., why h ≈ 1

2 . The argument is based on the semimartingale decom-
position, see Property 5. If we also indicate the dependence on the parameters h and λ, the
expected value of the total variation of the component (20) of bounded variation is

EV
(
Vh,λ(t); [0, T ]

)
=

T∫
0

E

∣∣∣∣ d

dt
Vh,λ(t)

∣∣∣∣ dt = T

√
2
π

1 − h√
3 − 2h

1√
λ

. (28)

Increasing λ involves a decrease of the process Vh,λ(t) in the sense of (28), and thus the martingale
component, i.e., the random walk process B (t) becomes the determining term in (19), and this
happens to be the sign of disease. However (28) means also that the larger the h, the less
sensitive the process Vh,λ(t) and thus also the ΓMOU(h, λ) process, to an increase of λ. (From
(24) and (25) one can come to a similar conclusion with respect to the AR(1) coefficient α and
thus to the feedback.) Therefore, the strong long-range dependence may be the result of some
evolutionary adaptation process, the effort of the organism to become more resistant to the
pathologic condition of an increasing λ, in order to slow down the deterioration.
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5.2 Stochastic differential equations with ΓMOU process input.
Stochastic differential equations with FBM input

The fact that the ΓMOU process is semimartingale (see Property 5) can be utilized mainly for
going beyond the linear processes to the chaotic ones. Now we are interested in stationary long-
range dependent chaotic processes (see [IT99], [Ter99]). One of the simplest of these processes
is

F (t) $ exp (γY (t)) .

Here Y (t)—as everywhere in this paper—is the ΓMOU process. We also define the exponential
process of the semimartingale γY (t) as

G(t) $ exp
(
−γ2

2
t + γY (t)

)
.

G(t) could also be called a geometric ΓMOU process, on the analogy of the geometric BM. The
process F (t) appears because it is the stationary one. It is long-range dependent and chaotic at
the same time. We briefly outline how the long-range dependence follows. Consider the spectral
domain chaotic representation

F (t) =
∞∑

k=0

∫
Rk

exp
(
itΣω(k)

)
ϕk

(
ω(k)

)
dWk

(
ω(k)

)
,

where ω(k) = (ω1, . . . , ωk), Σω(k) =
k∑

j=1
ωj, and the integrals are multiple Wiener–Itô–Dobrushin

integrals, see [IT99], [Ter99]. The terms with different orders of k are orthogonal processes,
thus the spectral density of F (t) is the spectral density of the first order term plus the sum
of the spectral densities of the other terms. The first order term is constant times Y (t), the
spectral density of which has a pole at zero. Since all of the spectral densities are nonnegative,
its sum, i.e., the spectral density of F (t), also must also have a pole at zero, which means just
the long-range dependence of the process F (t).

F (t) satisfies the homogeneous bilinear differential equation

dF (t) =
γ2

2
F (t)dt + γF (t)dY (t),

while for G(t) the simplest bilinear differential equation

dG(t) = γG(t)dY (t)

holds. If we do not use the Itô integral but the Stratonovich one, there is no need for the process
G(t) because the stationary process F (t) satisfies the simplest bilinear Stratonovich differential
equation

dF (t) = γF (t) ◦ dY (t).
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The ΓMOU process also leads to an idea to find a natural meaning of stochastic differential
equations with FBM input. Let B(h)(t) be the FBM process. The question is what

dx(t) = f(x(t), t)dt + g(x(t), t)dB(h)(t) (29)

should mean. There exist various definitions and relevant theories for (29), see [Ber89], [Lyo98],
[DH96], [DÜ99], [CD], [Zäh98], [KZ99] and [IT99]. However, in the authors’ opinion the following
interpretation of (29) is the most natural one.

We remind that by Property 4

J(Yλ) (t) =
1

Γ(h)
λh−1

t∫
0

Yλ (s) ds
C[a,b]→
λ→0

B(h)(t), a.s,

for arbitrary a < b, where the convergence is the supremum norm convergence in C[a, b]. The
idea is to replace B(h)(t) by J(Yλ) (t) in (29), which then becomes

d

dt
x(t) = f(x(t), t) + g(x(t), t)

d

dt
J(Yλ) (t) , a.s. (30)

(30) is a.s. a deterministic differential equation because J(Yλ) (t) is a.s. continuously differ-
entiable. Thus, under the usual differentiability and Lipschitzian conditions imposed on the
deterministic functions f and g, for every initial condition x(t0) = x0 (t0 ∈ [a, b], x0 is a random
variable) and for every λ > 0, (30) a.s. has a well-defined unique solution xλ(t), for which
xλ(t0) = x0. And now comes the key, a result of Sussmann, [Sus78], Theorem 9, according
to which—under mild growth and smoothness assumptions prescribed for the functions f and
g—the a.s. convergence in C[a, b] of the input processes, as λ → 0, entails the a.s. convergence
in C[a, b] of the solution processes. Hence we can clearly define the pathwise solution x(t) of
(29) with initial condition x(t0) = x0, as the pathwise uniform limit of the solutions of (30). In
other words, the pathwise solution x(t) is an element of C[a, b] for which

xλ(t)
C[a,b]→
λ→0

x(t).

Strictly speaking, it is not necessary to include the ΓMOU process in this definition. Obviously,
the family of processes {J(Yλ) (t) : λ → 0} might be replaced by any series of a.s. continuously
differentiable processes, a.s. converging to B(h)(t) in C[a, b]. The stochastic differential equation
(29) refers to the FBM rather than the ΓMOU process. The role of the ΓMOU process is that its
set of scaled integral functions {J(Yλ) (t) : λ → 0} serves as an example of an a.s. continuously
differentiable approximation of the FBM. We notice here that for interpreting the stochastic
differential equation (29) we did not have to define the integral with respect to B(h)(t).

6 Appendix

Lemma 4 Let 0 < α, 0 < β < 1 + α, 0 < λ be real numbers. The density function of the
mixture of Γ(β, θ), θ > 0 distributions by the Pareto density function fP(α,λ)(θ) is given by

f(x) =
α

λ
fΓ(β,λ)(x)

∞∫
0

1
x + y

fΓ(1+α−β,λ)(y)dy, x > 0.
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Proof.

f(x) =

∞∫
λ

zβ

Γ(β)
xβ−1e−zxαλαz−α−1dz

= α
λα

Γ(β)Γ(1 + α − β)
xβ−1

∞∫
λ

∞∫
0

e−z(x+y)yα−βdydz

= α
λα

Γ(β)Γ(1 + α − β)
xβ−1

∞∫
0

 ∞∫
λ

e−z(x+y)dz

 yα−βdy

=
α

λ
fΓ(β,λ)(x)

∞∫
0

1
x + y

fΓ(1+α−β,λ)(y)dy.

Proof of Theorem 1.

∞∫
−∞

SY (ω)dω =
1
2π

∞∫
0

∞∫
−∞

1
ω2 + x2

dωf−α(x)dx =

∞∫
0

1
2x

f−α(x)dx

=

∞∫
0

∞∫
0

1
x + y

fΓ(1−h,λ)(x)fΓ(1−h,λ)(y)dxdy = E
1

η1 + η2
,

where η1, η2 ∼ Γ(1 − h, λ) and they are independent. But then η1 + η2 ∼ Γ(2 − 2h, λ), hence

∞∫
−∞

SY (ω)dω = E
1

η1 + η2
=

λ2−2h

Γ(2 − 2h)

∞∫
0

x−2he−λxdx =
λ

1 − 2h
< ∞,

because h < 1
2 . Thus, we have proved that (3) is a spectral density function. Moreover since

Pα-a.s. Zn (t) is a zero-mean and Gaussian process, whose finite dimensional distributions are
determined by its autocovariance function, that is eventually by its spectral density. This also
applies to Y (t). Hence (2) and (3) imply that Pα-a.s. the finite dimensional distributions of
Zn (t) converge to the corresponding finite dimensional distributions of Y (t).

We know that since the Pα-a.s. OU processes Xk (t) have PB-a.s. continuous modifications, so
do Pα-a.s. Zn (t) , n ∈ N. If we prove the Pα-a.s. tightness of the series of distributions induced
by Zn (t) , n ∈ N, on C[a, b], then, if we consider the Pα-a.s. convergence of the finite dimensional
distributions of Zn (t) , n ∈ N, to those of Y (t), both the Pα-a.s. weak convergence Zn

w→
n→∞ Y

and the PB-a.s. continuity of Y (t) follow. Hence, let us now prove the Pα-a.s. tightness. The
autocovariance

rZn(t) =
1
n

n∑
k=1

rXk
(t) =

1
n

n∑
k=1

eαk |t|

−2αk
,
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therefore,

EB (Zn (t) − Zn (0))2 = 2 (rZn(0) − rZn(t)) =
1
n

n∑
k=1

1 − eαk |t|

−αk
(31)

Pα-a.s, where EB is the expectation on (ΩB ,FB ,PB). Because of the Pα-a.s. Gaussianity and
zero-mean of Zn (t), for any δ > 0,

EB |Zn (t) − Zn (0)|2+δ = c1

(
EB (Zn (t) − Zn (0))2

)1+ δ
2 (32)

Pα-a.s., where the constant c1 > 0 does not depend on t or n. Thus from (31) and (32) we have

EB |Zn (t) − Zn (0)|2+δ = c1n
−1− δ

2

(
n∑

k=1

1 − eαk |t|

−αk

)1+ δ
2

≤ c1n
−1− δ

2

(
n∑

k=1

|t|
)1+ δ

2

= c1|t|1+ δ
2

Pα-a.s. If we take the Pα-a.s. stationarity into account, the Pα-a.s. tightness follows from the
last inequality.

Proof of Theorem 2.

EB (Yn (t) − Y (t))2 =

∞∫
0

(
1
n

n∑
k=1

eαku −
(

λ

λ + u

)1−h
)2

du, (33)

Pα-a.s, where EB denotes the expectation on (ΩB,FB ,PB). It is already known that

1
n

n∑
k=1

eαku −
(

λ

λ + u

)1−h

→
n→∞ 0 for all u ≥ 0. (34)

Pα-a.s. Because of (34), for the convergence of (33) to zero, it is necessary and sufficient that the
series of functions to integrate should be uniformly integrable. Because it is uniformly bounded
(by 0 and 1), for the uniform integrability only

sup
n∈N

∞∫
0

(
1
n

n∑
k=1

eαku

)2

du < ∞

should be proven. The latter integral is
∞∫
0

(
1
n

n∑
k=1

eαku

)2

du =

∞∫
0

1
n2

n∑
r=1

n∑
s=1

e(αr+αs)udu =
1
n2

n∑
r=1

n∑
s=1

1
−αr − αs

.

Let us use the inequality between the arithmetic and geometric means to get

1
n2

n∑
r=1

n∑
s=1

1
−αr − αs

≤ 1
n2

n∑
r=1

n∑
s=1

1
2
√

αrαs
=

1
2

(
1
n

n∑
r=1

1√
αr

)2

.
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But

E
1√
αr

=
λ1−h

Γ(1 − h)

∞∫
0

1√
x

x−he−λxdx =
λ1−h

Γ(1 − h)

∞∫
0

x−h− 1
2 e−λxdx < ∞,

because h < 1
2 . Thus

1
n

n∑
r=1

1√
αr

→
n→∞ E

1√
αr

< ∞

Pα-a.s, hence

sup
n∈N

∞∫
0

(
1
n

n∑
k=1

eαku

)2

du < ∞

Pα-a.s. We have now proved that EB (Yn (t) − Y (t))2 →
n→∞ 0 Pα-a.s. As the mean square here

does not depend on t, the first statement of the theorem is also proven.

Let us deal with the second statement. Because of the isometric isomorphism between the Hilbert
spaces of the time domain transfer functions and the frequency domain ones, the first statement
of this theorem, (5), and (6) together yield the frequency domain representation of Y (t),

Y (t) =

∞∫
−∞

eitω

∞∫
0

1
iω + x

fΓ(1−h,λ)(x)dxW (dω) (35)

Pα-a.s. Now, using the notation p $ 1 − h, we obtain the spectral density of Y (t) as

SY (ω) =
1
2π

∣∣∣∣∣∣
∞∫
0

1
iω + x

fΓ(p,λ)(x)dx

∣∣∣∣∣∣
2

=
1
2π

∞∫
0

∞∫
0

1
(iω + x) (−iω + y)

fΓ(p,λ)(x)fΓ(p,λ)(y)dydx

=
1
2π

∞∫
0

∞∫
0

(−iω + x)(iω + y)
(ω2 + x2)(ω2 + y2)

fΓ(p,λ)(x)fΓ(p,λ)(y)dydx

=
1
2π

∞∫
0

∞∫
0

ω2 + xy

(ω2 + x2)(ω2 + y2)
fΓ(p,λ)(x)fΓ(p,λ)(y)dydx

=
1
2π

∞∫
0

∞∫
0

(
x

x + y

1
ω2 + x2

+
y

x + y

1
ω2 + y2

)
fΓ(p,λ)(x)fΓ(p,λ)(y)dydx.
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Therefore

SY (ω) =
1
2π

2

∞∫
0

∞∫
0

x

x + y

1
ω2 + x2

fΓ(p,λ)(x)fΓ(p,λ)(y)dydx

=
1
2π

∞∫
0

1
ω2 + x2

2xfΓ(p,λ)(x)

∞∫
0

1
x + y

fΓ(p,λ)(y)dydx

=
1
2π

∞∫
0

1
ω2 + x2

f−α(x)dx.

Here the last equality is the consequence of Lemma 1. The resulting expression for the spectral
density is exactly the spectral density of the process we studied in Subsection 2.1, see (3).

The Pα-a.s. weak convergence Yn (t) w→
n→∞ Y in C[a, b] follows from the Pα-a.s. continuity of

Y (t) and from the convergence of the finite dimensional distributions. The latter convergence
is the consequence of the Pα-a.s. Gaussianity and the pointwise L2-convergence.
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