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Summary. For a long-term predictor from which a joint distribution of earth- 
quake occurrence time and magnitude has been obtained, and also a record 
of past successes, false alarms and failures, Bayesian statistical methods yield 
predictive information of the kind needed as a basis for decision-making on 
precautionary measures. The information is presented in terms of risk refine- 
ment, intensity probability and success probability. After the event the 
relative likelihood that a prediction was a success or failure can be estimated. 
Comparisons can also be made of the performance of different forecasting 
models. The application of these methods is illustrated by an example based 
on the proposed swarm-magnitude predictor. 

Introduction 

The study of earthquake precursors shows promise of supporting a major advance in the 
estimation of future earthquake occurrences through the detailed forecasting of specific 
earthquakes. Such forecasts might be expressed adequately for some purposes in terms of 
ranges of epicentre location, occurrence time and magnitude for each earthquake. A more 
elaborate presentation is needed if the value of forecasting is to be realized fully as a basis 
for precautionary measures. Bayesian statistical methods are well suited to the problem of 
drawing together essentially mixed precursory data into a unified and comprehensive 
expression of the forecasting information. One facet of this problem -- the calculation of 
risk enhancement for a particular event -has recently been discussed by Vere-Jones (1978). 
The full information comprises a pattern of risk which extends over the whole region under 
surveillance and varies continuously in space and time. In addition there is the need to assess 
results given by any chosen forecasting modL. ind to compare the performances of different 
models. 

The simplest forecasting model which yields the necessary information is one involving 
a single quantifiable predictor which identifies the earthquake location and is associated with 
a known joint distribution of occurrence time and magnitude. In the occurrence of long- 
range precursory phenomena there is much evidence that the earthquake magnitude 
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increases with the logarithm of the precursor time (Rikitake 1975). A possible predictor is 
the size of the area affected by the precursory phenomenon, since it appears that this area 
increases with the earthquake magnitude; but in many circumstances the area would be 
difficult to delineate and so far this proposal has been little developed. Recently a long 
range precursory hypothesis has been put forward in which a characteristic sequence of 
minor earthquake activity is initiated by an earthquake swarm (Sekiya 1976; Evison 
1977a, b), and in which the magnitude of the largest earthquake in the swarm is linearly 
related to the logarithm of the precursor time (Evison 1977~).  This swarm magnitude is 
a predictor of the desired kind. 

The following analysis relates to an unspecified predictor P. It is supposed that the 
validity of this predictor has been established, so that relationships which have been 
ascertained from past events are applicable to the future. Through the Bayesian approach 
the past record of successes, false alarms and failures is combined with the estimation errors 
for occurrence time and magnitude in order to present the forecast. The results will be 
illustrated by reference to the swarm-magnitude predictor as observed in New Zealand, 
where there are adequate past data on this predictor, although its validity for future events 
has yet to be tested and for the present purpose will be assumed. 

D. A.  Rhoades and F. F. Evison 

Observational basis 

The required data on the precursory relationship consist of n past observations of the 
precursory phenomenon and the corresponding earthquake (i.c. successes), r observations 
of the precursor without a corresponding earthquake (i.e. false alarms), and r’ observations 
of an earthquake without a corresponding precursor (i.e. failures). The n t r precursory 
events on the one hand and the n t r’ earthquakes on the other make up two well-defined 
populations, which are preferably the largest that homogeneity of data allows, and which are 
bounded in respect of region, time, magnitude and values of the predictor. The desired 
expression of forecasts in terms of the regional risk pattern requires information also about 
the ordinary incidence of earthquakes belonging to the specified population. 

For a forecast to be useful as a basis for precautionary measures the size of the earth- 
quake can be better expressed by mapping the intensity rather than merely specifying the 
magnitude. Information is therefore also required on the distribution of intensity 
corresponding to any earthquake of specified location and magnitude. 

Probabilities of success, false alarm and failure 

From the n past successes and r past false alarms, Bayesian methods can be used to estimate 
the probability of a false alarm, so that this can be allowed for in future predictions. The 
false alarm probability can be regarded as an unknown parameter 8 from a binomial 
distribution. A prior distribution for 8, which expresses the initial lack of information about 
8 in the absence of any data, is modified on the basis of r observed false alarms from n t r 
trials to give a posterior distribution whose expected value is used as an estimate of the false 
alarm probability. 

The Beta family of distributions is a suia wy rich and mathematically convenient family 
from which to choose the prior distribution. If the prior distribution is Beta with parameters 
u and u then the posterior distribution is also Beta with parameters r + u and n + u (DeGroot 
1970, p. 160). The prior distribution then has expected value u/(u + u )  and the posterior 
distribution (r t u)/(r + u + n + u).  Large values of u and u would indicate a strongly held, 
and small values a weakly held, prior belief about the value of 8. Since the actual value of 8 
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Long-range earthquake forecasting 45 

is unknown it seems appropriate to adopt the uniform distribution, i.e. that for which all 
possible values of 6 are equally likely. Accordingly the values u = 1 and u = 1 have been 
chosen. We shall denote the event of a successful prediction by S and a false alarm (the 
complementary event) by 3. Thus Pr(3)  = (r + l ) / (n  + r + 2). This is an initial false alarm 
probability for general use in future predictions; it may be modified by further information 
specific to a given prediction. The failure rate Pr(F), i.e. the probability that an earthquake 
fails to have a precursor, can be estimated similarly with r' replacing r in the above. 

As time passes and additional information becomes available the probability of success 
can be updated by the use of Bayes' rule. Let G denote all relevant information available at 
time to after the precursor and suppose G' = G I  n G,n.. .Gk, where the k pieces of 
information GI . . . , G, are conditionally independent given S and conditionally independent 
given f; i.e. for any subset {a l ,  az, . . .a11 of { I ,  2 , .  . . , k )  

I 
Pr n GaE IS = n Pr (eai I s )  

j = 1  

with a corresponding condition for s. Let 

~j = c , n cz n . . . n ci, 
Then Ck = G ,  and G o  is the event of no additional information. Suppose that Pr(Gi IS) 
and Pr(G, 1s )  have been estimated for j = 1 , .  . . , k .  Then Bayes' rule can be applied 
successively using each new piece of information in turn to update the probability of 
success; i.e. 

j =  I ,  ..., k .  

I f  the pieces of information are not conditionally independent given S (or g ) ,  for instance if 
sevcral are symptoms of some phenomenon which may be unrelated to the mainshock, the 
above procedure is invalid and could lead to a gross error in the estimation. 

Joint distribution of magnitude and precursor time 

Let P ,  T and M denote, respectively, the predictive variable, the precursor time and the 
earthquake magnitude, or some suitably chosen transformations of these (e.g. the logarithm 
of the precursor time for T) .  Then as random variables, P ,  T and M are assumed to be related 
as follows: 

T = a o + a l p + e l  ( 1 )  

M = b o + h l t + b Z p + e z  (2) 
where t ,  p denote observed values of T ,  P respectively and e l ,  e ,  are normal random variables 
with zero means and unknown variances u:, u; respectively. Let ai, 6, denote the least- 
squares estimates of ai, h, (where i = 0, 1 ; j = 0, 1 ,2 )  computed from n past observations of 
P ,  T and M ,  and define 

F ( p )  = 5, + a l p  

&(t ,  p )  = bo + 6,  r + 6,p.  

(3 ) 

(4) 

According to the theory of linear regression, the random variable (T - i ' ( p ) ) / o ~ ( p )  has a 
t-distribution with n - 2 degrees of freedom and ( M -  M(t ,  p ) ) / u ~ ( t ,  p )  has a t-distribution 
with n 3 degrees of freedom, where u&) and uM(t,  p j  are estimates of the standard 
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46 
deviation for prediction of the dependent variable from the regression equations (3) and (4), 
and depend also on the standard error of estimate and the variance-covariance matrix of the 
coefficients (e.g. Smillie 1966, p. 49). Let gk denote the probability density function of the 
t-distribution with k degrees of freedom. Then the conditional density function fTlp of T 
given P is given by 

D. A. Rhoades and F. F. Evison 

and the conditional density function fM I T, p of M given T and P is given by 

The joint density function fM, T I P  of M and T given P is then given by 

fM, T I P ( m  t I P )  = fM I T, P(" I t 9  PMTI P O  IP). (7) 

The joint density function may be integrated to obtain the probability of the earthquake 
occurring in any fixed time interval and magnitude range, assuming that the prediction will 
be successful. Let S denote the event of a successful prediction and G all information 
available at some time to after the precursor. At time to the probability q(t0; ("1, mz), 
( t l ,  t2 ) )  of the earthquake occurring in the magnitude range (ml, m 2 )  and the future time 
interval ( t l ,  t 2 )  is given by 

J f T i  P ( t  I PI d t  
TO 

The estimation of h ( S  I G) has already been discussed. 

occurred up to time to. Thus 
A simple case is given by G=G1,  where G I  is the event that the earthquake has not 

Pr(GIIS)=Pr(T> to )=  fTIP(tlP)dt It: 
and Pr(Gl 1s) = 1. Other kinds of information, such as the occurrence or non-occurrence of 
other precursors, also have potential for use as Cis as our knowledge of precursory 
phenomena increases. 

Use of the precursory area in modifying the distributions 

Although the size of the precursory area is not usually well enough known to be used as a 
predictor it is typically much larger than the source region of the earthquake and it may be 
considered to put an upper limit on the size of the source region. In view of the well-known 
relationship between the magnitude of a shallow earthquake and the size of its source region, 
it is desirable to incorporate such information into the forecast, since it implies an upper 
limit on the predicted magnitude. One way of doing this, chosen because of its consistency 
with the later section on intensity probability charts, is described below. 
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Long-range earthquake forecasting 47 

Formulae are assumed to  be available indicating the magnitude range of an earthquake, 
at any specified location, which should produce a given felt intensity at any other specified 
location. 

Let A denote the surface projection of the precursory region. For the predicted earth- 
quake the source region (which includes the aftershock epicentres) is expected to lie within 
A .  The edge of the source region for large shallow earthquakes commonly occurs about 
midway between isoseismals MM IX and MM X for the mainshock. For any point a in A let 
m,(a) (the critical magnitude) be the largest magnitude for which the theoretical MM IX - 
MM X isoseismal lies entirely within A .  The cut-off magnitude is the supremum of all such 
critical magnitudes, i.e. 

mA = sup m,(a). 
a E A  

The assumption is that the predicted earthquake cannot exceed the cut-off magnitude. 
The conditional distribution of M given T and P is modified accordingly. Let fhl T,P(m It, p )  
denote the modified distribution given that M G mA.  Then 

J -- 
= O  form > mA. 

A consequent modification is made to the joint distribution of M and T given P. 

fib, T P (my t I P) = fib I T, P (m I t ,  P )  f T  I P ( t  I PI- 
The above procedure has the effect of preventing unrealistically high probabilities being 

associated with very large magnitudes and to some extent provides a check against the 
dangers of projecting the regression relationships beyond the range of the data used to 
generate them. 

Risk refinement factor 

The object of earthquake prediction from the present viewpoint is to refine the pattern of 
risk over a region by improving its resolution in time and space. The risk refinement factor 
is defined here as the ratio of risk under the prediction model to the corresponding risk 
estimated by means previously available, for example from a knowledge of historical 
seismicity. A value greater than unity, representing a risk enhancement, occurs for a certain 
interval of time near the location of a predicted earthquake. At other times and places the 
factor is less than unity, representing a risk reduction. The enhancement aspect has been 
discussed by Vere-Jones (1978). The reduction aspect is also of much theoretical and 
practical interest; for example, conditions of risk reduction might justify some temporary 
relaxation of precautionary measures. 

Let A be the area within which the predicted earthquake is to occur. Under the 
assumption that earthquakes occur randomly in time and space in some neighbourhood of 
A ,  the number of earthquakes in the magnitude range ( m l ,  m 2 )  occurring in A in the time 
range ( t l ,  t 2 )  is a Poisson random variable with parameter h(A; ( m l ,  m 2 ) ,  ( t l ,  t 2 ) )  where h 
is the average rate estimated from historical seismicity. Although 'there is strong evidence 
that earthquake occurrence deviates markedly from Poisson behaviour even when short- 
term clustering is eliminated, and to this extent the estimation of X is unsatisfactory, the 
Poisson approach still appears to give the most credible expression of future earthquake 
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risk in the absence of a specific predictive model. Let p ( x ;  A) denote the probability that a 
Poisson random variable with parameter X takes the value x. The probability of an earth- 
quake in the magnitude range (ml ,  mz)  occurring in A in the time interval ( t l ,  t z )  is 
1 - p ( O ;  h (A; (m, ,  m2), ( t l ,  t2))). Under the prediction model the probability at time 
tl of the mainshock occurring within the stated time and magnitude limits is q ( t l ;  (ml, m 2 ) ,  
( t l ,  tz))  (see equation (8)). It is also possible that an earthquake unrelated to the precursor 
could occur within the stated limits. Assuming that failures occur randomly, the probability 
of such a coincidental failure is 1 -p (O;  Pr(F).X(A;(ml, mz) ,  ( t l ,  t2))) where Pr(F) is 
the failure rate. 

The risk refinement factor for an earthquake in the region A and magnitude range 
(ml, m ~ )  at time t l  is defined by 

D. A .  Rhoades and F. F. Evison 

R ( A ,  (m 1, mz) 7 t 1) 

q(tl;(ml,m,), ( t l , t Z ) > +  1 -p(O;Pr(F).X(A;(ml,mz),(tl,tz))> 
1 - p ( 0 ;  VA; (m1, mz), (tl, tz,)) 

= lim 
t l+  tl 

In practice R can be approximated quite accurately by computing the ratio on the right 
side for a short time-interval (say 1 day). 

The risk refinement factor can also be computed for a region B in which no precursor 
has occurred. In this case the only risk under the prediction model is the risk of failure. 
Thus 

R(B, (m1,mz), t1>=Pr(F). 

This is a risk reduction. 

Intensity probability charts 

Probability charts are a useful means of displaying the risk of a given intensity being 
experienced during a fixed time period in the light of current predictions. Such charts 
could be the primary presentation of a forecast as a basis for precautionary measures. 

Let B denote any fixed location and A the surface projection of the precursory region. 
For any point a in A the critical magnitude m,.(~) is defined as before. Let i denote a given 
fixed intensity and let (ml(a), m2(a)) denote the magnitude range of an earthquake with 
epicentre at the point a, given that the felt intensity is i at b. Let A,(m) denote the set of all 
possible epicentres for a mainshock of magnitude m, such that the entire source region 
would lie within A ;  and let A6(m)  denote the subset of epicentres in A,(m) for which the 
felt intensity at b would be i. Thus 

A , ( m ) = ( a E A :  m < m,(a)} 

& ( m ) = { a E A : m , ( a ) <  m < min(m2(a),m,(a))). 

Assuming that the epicentre is equally likely to be at any point in A,(m), the probability 
of intensity i being felt at b given that the mainshock has magnitude m is approximately 

area A6 (m)  
area A , (m) ' r (m)  = if area A ,  (m)  # 0 

= 0, otherwise. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/59/1/43/588757 by guest on 21 August 2022



Long-range earthquake forecasting 49 

At time to after the precursor, the probability of intensity i being felt at b in the future 
time interval (tl, t z )  due to the mainshock is 

pr(s I GI It: jrw r(m>fh,  TIP (m, t I p )  dm d t  

4to;  b, i, ( t l ,  t z ) )  = 

J - Y f T I P ( t  IP) dt 

By adding s(to; b ,  i, (tl,  &)) to the probability of intensity i being felt due to the occurrence 
of failures, for a grid of points b covering the area of interest, and by interpolating for values 
in between, a contour plot of the probability of intensity i being felt in the time interval 
( t l ,  t z )  can be produced. 

Distinguishing successes from failures 

Since predictions are stated in terms of a probability distribution for the time and magnitude 
of the mainshock, an earthquake which occurs in the precursory region cannot with 
certainty be called a success or failure of the method. Nevertheless for each such earthquake 
a decision must be made one way or the other based on the observed time and magnitude. 
The suggested criterion is to accept an earthquake as a success if the likelihood of a success 
exceeds the likelihood of a failure according to all the information available at the time of 
the occurrence. 

Suppose that an earthquake occurring in the precursory area has a measured magnitude 
of m k Am and a measured precursor time o f t  k A t .  Then the relevant likelihood ratio is 

LR = 
q ( t l ;  (m - Am, m + Am) ,  ( t  - At,  t t A t ) )  

1 -p(O;Pr(F) .h (A;  (m - Am, m + Am) ,  ( t  - At, t t At)))  ’ 

If LR > 1 the earthquake is accepted as a success; if LR 4 1 it is called a failure. 
Although the critical value of unity is arbitrary, the 50-50 balance seems appropriate here 
since a wrong decision either way has a harmful impact on future predictions using the 
model. 

Under the likelihood ratio criterion an unfulfilled prediction may finally be declared a 
false alarm when no future earthquake could qualify as a success by the criterion, i.e. when 
there is no longer any magnitude for which the likelihood ratio exceeds unity. In practice 
a false alarm might make itself apparent much earlier, for example if information came to 
light which showed that the supposed precursor had been wrongly identified. 

Comparative performance of forecasting models 

The record of successes, failures and false alarms in actual forecasting (as distinct from the 
record for the past data whch were used to generate the model) gives some indication of 
the reliability of a forecasting method. However, it is inadequate for probabilistic models of 
the kind proposed here in that it takes no account of the uncertainty which is an integral 
part of such models. 

A suggested measure of the performance of a model is the likelihood of the whole 
sequence of seismic events (restricted to events exceeding some fixed magnitude mo) 
commencing at the instigation of forecasting using the model. Two competing methods 
of forecasting can be compared by looking at the ratio of the likelihoods of the observed 
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record of earthquakes under the two models. This likelihood ratio can be evaluated by 
splitting up the record of earthquakes into ‘elementary events’ for which the likelihoods are 
easily found. As an example, consider the problem of comparing the performance of the 
model described in this paper with a Poisson model based on the average rate of occurrence 
for past events. Let L l ( E )  and L2(E) denote the likelihoods of an event E under the 
respective models. The region under observation would first be divided into sub-regions 
which are homogeneous for forecasting under both models. The ‘elementary events’ would 
then be of the following four kinds. 

El: the non-occurrence of a predicted earthquake in a precursory region A during a time 
interval ( t l ,  i 2 ) .  In the notation of the previous sections the likelihoods are 

D. A.  Rhoades and F. F. Evison 

Ll(E1) = p ( O ; W F )  
and 

L, (El )  = ~ ( 0 ;  

with magnitude m +- A m .  
L , ( E , ) = q ( t  - A t ; ( m  - A m , m  + A m ) , ( t  - At,  t + A t ) )  

(mo, - 9 9  (tl, t z ) ) )  (1 - q(t1; (mo9 9, (tl, t2))) 

(mo, m), ( t l ,  t ~ > > .  
E,: the occurrence of an earthquake in a precursory region A at measured time t k A t  

+ 1 - p(O;Pi . (F) .  A @ ;  (m - Am, m + Am) ,  ( t  - A t ,  t t At)))  

L,(E,)= 1 - p ( O ; X ( A ; ( m - A m , m t A r n ) , ( t - A t ,  t + A t ) ) ) .  

E,: the non-occurrence of failures in a homogeneous region B during a time interval 
(tr, t2). 

Ll(E3) =p(O;Pr(F).X(B; ( m o , 9 , ( t 1 ,  t2)N 

L,(E,) =P(O;X(B;(mo,00),(f,,t*))). 

E4: the occurrence of a failure in a homogeneous region B at time t * At with magnitude 
m ?  Am.  
L1(E4) = 1 -p(O;Pv(F) .h (B; (m - Am, m + A m ) ,  (t - At,  t + At) ) )  

LZ(E4) = 1 - p ( O ;  h(B; (m - Am, m + Am) ,  (t - At ,  t + At) ) ) .  

If E denotes the total earthquake record of events exceeding magnitude mo and if 
J 

E=n Ej 
i= I 

where the Ej are J elementary events, then the likelihood ratios for the whole sequence can 
be expressed as the product of likelihood ratios for the elementary events, i.e. 

If an effective method for forecasting is compared to the Poisson model this ratio should 
become large after the occurrence of a few earthquakes. 

Application to proposed swarm-magnitude predictor 

The precursory swarm hypothesis, which has been developed mainly from New Zealand 
data, involves a long-range predictor P, as has been mentioned above. P is taken here as the 
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Location Date (UT) P T M Weight 

Inangahua 
Milford Sd 
Puysegur Pt 
Gisborne 
Seddon 
Martins Bay 
Doubtful Sd 
Hastings 
Taradale 
Bainham 
Goose Bay 

23 .5 .68  
4 . 5 . 7 6  

25 .9 .68  
4 .3 .66  

23 .4 .66  
20 .9 .74  

2 .4 .68  
21 .2 .73  
26 .5 .68  
18 .1 .74  

1 . 5 . 7 0  

5.6 
5.1 
4.4 
4.4 
3.8 
4.1 
4 .O 
4.3 
4.1 
3.5 
3.7 

3.360 
3.477 
2.860 
2.746 
2.748 
2.915 
2.113 
2.614 
2.627 
2.441 
2.262 

7 . 1  
7 .O 
6.5 
6.2 
6 .O 
5.9 
5.8 
5 .I 
5.2 
5 .o 
4.9 

1 .o 
1 .o 
0.5 
1 .o 
1 .o 
1 .o 
1 .o 
0.5 
0.5 
1 .o 
1 .o 

average magnitude of the three largest earthquakes in the swarm; in view of the uncertainty 
in magnitude determinations this seems preferable to taking simply the single largest 
magnitude, as was done in early investigations (Evison 1977~).  T is taken as the logarithm 
to base 10 of the precursor time, which is the time in days between the swarm onset and the 
mainshock. M is the mainshock magnitude. 

Regressions connecting P, T and M have been obtained for New Zealand from values 
given in Table 1. The source of basic data is the New Zealand Seismological Report, which 
is published annually by the Seismological Observatory, Geophysics Division, Department 
of Scientific and Industrial Research, Wellington. Excluded from consideration is the New 
Zealand region of Quaternary volcanism, in which swarms are comparatively frequent 
but major earthquakes are rare. Also excluded are major earthquakes which have few or 
no aftershocks; it appears that precursory swarms and aftershock sequences require similar 
ambient conditions, including fairly shallow focal depths. The period included in Table 1 
is 1966-77. A few events are given half weight in the regressions because the relevznt 
precursory swarms do not quite satisfy the recognition criteria which have been developed 
for New Zealand conditions. All the statistical quantities required for the present purpose 
can be obtained from the data in Table 1; it may be of interest that the regression 
coefficients are: 

i0=0.64, d1=0.51, h0=0.92, bl= 1.38, h2=0.28. 

There were a number of false alarms and failures during the period. Table 2 shows how 
the cumulative score varies with the M threshold. Fairly rapid deterioration of the score 
is to be expected below some level of M ,  depending on the capability of the seismograph 
network to locate the corresponding swarm earthquakes. On the basis of Table 2 the 

Table 2. Cumulative score for past events. 

Mainshock Successes Failures False 
magnitudes alarms 

> 6.2 4 0 0 
> 6.1 4 1 0 
> 6.0 5 1 0 
> 5.9 6 2 1 
> 5.8 I 2 1 
> 5.7 8 2 2 
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52 
condition M > 6.0 has been adopted in what follows, and it is assumed that the false alarm 
and failure rates are constant for such magnitudes. Thus 

n = 5 ,  r = o ,  r ’ =  I 
so that, assuming a uniform prior distribution, 

Pr(S)  = 6/7, 
The theoretical results obtained above will be illustrated by a sample forecast based on 

the swarm which preceded the Inangahua event (Table 1). A detailed account of this event 
has been published (Evison 1978). The precursory data have of course been used in the re- 
gressions, and the event has been included as a success in the score for past events. It is of 
interest, however, to  examine the forecast that would be made if a similar precursor were to 
occur again. 

For this precursor the area A (7500 km2) was situated as shown in Fig. 1 (a), and P= 5.6. 
The normal rate X of earthquake occurrence in A can be estimated by assuming that A is 
typical of the main seismic region of New Zealand, in which there have occurred 14 shallow 
earthquakes of magnitude M > 7.0 during the past 130 yr, in a total area of some 2 x 
10’ km2. 

D. A.  Rhoades and F. F. Evison 

Pr(F) = 1/4. 

The usual frequency-magnitude law is 

= d m o )  exp [-m - mo)l 

Figure 1. Map of New Zealand showing: (a) Approximate area A of precursor, and isoseismd MM VII, 
for Inangahua earthquake, 1968 May 23, M L  = 7 . 1 .  (b) Percentage probability of intensity MM VII 
occurring during any two-year period, estimated from the historical record (after Smith 1976). Contour 
interval 2 per cent. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/59/1/43/588757 by guest on 21 August 2022



Long-range earthquake forecasting 53 
where p ( m )  denotes the average rate of occurrence of events of magnitude greater than m 
in the precursory area A ,  and b is a numerical coefficient. Then 

A[A;(m,,mz) , ( t1 , tz) l= (tz - t l )  M m 1 )  -P(mz>I. 

From results given by Eiby (1971) we obtain b = 2.1 1, and the values given above lead to 
p(7.0) = 0.004 eventlyr. 

The presentation of forecasting information in terms of intensity probabilities can be 
illustrated for New Zealand as a whole. For any location the probability estimated from 

b 

Figure 2. Map of New Zealand showing forecast percentage probabilities of intensity MM VlI occurring 
during specified two-year periods. Contour interval 2 per cent. (a) Any two-year period, given that there 
are no earthquakes currently forecast. The risk depends on the historical record (Fig. l(b)) and the fore- 
casting failure rate; this risk is incorporated in (b), (c) and (d). (b) Two-year period commencing 500 day 
after the onset of the lnangahua precursory swarm. (c) Two-year period commencing 2000 day after the 
swarm onset. (d) Two-year period Commencing 10 000 day after the swarm onset. 
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historical data is modified by current forecasts and by the probability of failure to forecast. 
Probabilities can be estimated for any required intensity and time interval; the illustrations 
given here are for intensity MM VII and for specified two-year intervals. The historical 
probability, shown in Fig. l(b), has been derived from the results of Smith (1976), with the 
usual Poisson assumptions. 

The probability of intensity MMVII occurring in New Zealand during any two-year 
period due to a failure under the precursory swarm hypothesis (assumed valid) is shown in 
Fig. 2(a). This is computed by dividing the average return time (Smith 1976) by the failure 
rate, again with the usual Poisson assumptions. As in the other charts in Fig. 2 the 
probability is expressed in percentages with 1 per cent as the lowest value shown and 

D. A .  Rhoades and F. F. Evison 

C 7.25 I 
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100 1,000 10,000 
NUMBER OF DAYS SINCE SWARM ONSET 

Figure 3. Forecast information exemplified for the Inangahua eyent. (a) Variation of risk refinement 
factor in area A of Fig. l(a). (b) Variation of probability that forecast will be successful. (c) Variation of 
likelihood that the earthquake fulfilled the forecast, relative to likelihood that it did not. 
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contours at 2 per cent intervals. The effect of the Inangahua forecast is exemplified for 
selected two-year periods in Fig. 2(b), (c) and (d), it being assumed in each case that no 
other forecast is current and that the earthquake has not occurred before the start of the 
respective period. In computing these patterns the formulae used to transform magnitude 
into intensity are those of Smith (1978). The Inangahua earthquake actually occurred at 
t = 2289 days with magnitude 7.1 ; the actual isoseismal for intensity MM VII is included in 
Fig. 1 for comparison with Fig. 2(c). 

An impression of the effect achieved by forecasting in improving the resolution of earth- 
quake risk can be gained from a comparison of Fig. l(b) with Fig. 2. Risk reduction is a 
prominent feature, as will be appreciated from Fig. 2(a), which is directly comparable with 
Fig. l(b) for any two-year period in which the forecasting method is in use but no particular 
forecast happens to be current. The probability is reduced everywhere by a factor of 4. Risk 
reduction also occurs almost everywhere during the early and late stages of the currency of 
a forecast, as Fig. 2(b) and (d) illustrate. On the other hand the manner in which a forecast 
concentrates the risk in certain regions of space and time is exemplified in Fig. 2(c). 

The forecast is presented in Fig. 3(a) in terms of risk refinement in area A as a function 
of precursor time and mainshock magnitude; the estimated cut-off magnitude is 7.25. The 
probability that the forecast will be successful in the light of all available information, 
Pr(SlG), is plotted against time in Fig. 3(b). Here G is simply taken as the information that 
the earthquake has not yet occurred. If an earthquake does occur the relative likelihood that 
it marks a successful forecast rather than a failure is shown in Fig. 3(c) as a function of time 
and magnitude. For the actual Inangahua earthquake the risk refinement factor given by the 
forecast was about 30 (Fig. 3(a)). At the time of occurrence the probability of a successful 
forecast was about 0.8 (Fig. 3(b)). Finally, the relative likelihood that the actual earthquake 
would have represented a successful forecast rather than a failure was greater than 50 
(Fig. 3(c)). 

These results are presented for illustrative purposes only; they in no way constitute a 
test of the precursory swarm hypothesis. 

Conclusions 

A theoretical framework has been developed for the presentation of predictive information 
in a country or large region in such a way as to provide a sound basis for the taking of pre- 
cautionary measures. The main concern has been with the use of a single predictor but there 
is provision for taking account of additional information of which the validity has been 
independently established. The practical application of risk refinement, intensity 
probabilities, and the other types of predictive information discussed will require careful 
study. 
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