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Lattice vibrations in materials induce perturbations on the electron dynamics in the form of long-range
(dipole and quadrupole) and short-range (octopole and higher) potentials. The dipole Fröhlich term can be
included in current first-principles electron-phonon (e-ph) calculations and is present only in polar materials.
The quadrupole e-ph interaction is present in both polar and nonpolar materials, but currently it cannot be
computed from first principles. Here we show an approach to compute the quadrupole e-ph interaction and
include it in ab initio calculations of e-ph matrix elements. The accuracy of the approach is demonstrated
by comparing with direct density functional perturbation theory calculations. We apply our method to silicon
as a case of a nonpolar semiconductor and tetragonal PbTiO3 as a case of a polar piezoelectric material. In
both materials we find that the quadrupole term strongly impacts the e-ph matrix elements. Analysis of e-ph
interactions for different phonon modes reveals that the quadrupole term mainly affects optical modes in silicon
and acoustic modes in PbTiO3, although the quadrupole term is needed for all modes to achieve quantitative
accuracy. The effect of the quadrupole e-ph interaction on electron scattering processes and transport is shown to
be important. Our approach enables accurate studies of e-ph interactions in broad classes of nonpolar, polar, and
piezoelectric materials.

DOI: 10.1103/PhysRevB.102.125203

I. INTRODUCTION

Electron-phonon (e-ph) interactions are key to under-
standing electrical transport, nonequilibrium dynamics, and
superconductivity [1]. First-principles calculations can pro-
vide microscopic insight into e-ph scattering processes and
are rapidly emerging as a quantitative tool for investigating
charge transport and ultrafast carrier dynamics in materials
[2–13]. The typical workflow combines density functional
theory (DFT) [14] calculations of the ground state and band
structure with density functional perturbation theory (DFPT)
[15] for phonon dispersions and e-ph perturbation potentials.
As DFPT can compute the electronic response to periodic
lattice perturbations (phonons) with arbitrary wave-vector q,
the DFPT framework can capture both short- and long-range
e-ph interactions.

However, a key challenge is that DFPT is too computation-
ally demanding to be carried out on the fine Brillouin zone
grids needed to compute electron scattering rates and transport
properties. The established approach in first-principles e-ph
studies [9] is to carry out DFPT calculations on coarse Bril-
louin zone grids with order of 10 × 10 × 10 q points, followed
by interpolation of the e-ph matrix elements with a localized
basis set such as Wannier functions or atomic orbitals [16].
As the perturbation potential can be nonanalytic near q = 0
[16] or even exhibit a divergence for certain phonon modes,
interpolation is particularly challenging and less reliable in
the region between q = 0 and its nearest-neighbor q points

*Corresponding author: bmarco@caltech.edu

in the coarse DFPT grid. This small-q region is critical as it is
dominated by long-range e-ph interactions, whose treatment
can affect the quality of the interpolation even at larger values
of q in the Brillouin zone.

A multipole expansion of the e-ph perturbation potential
shows that in the long-wavelength limit (phonon wave-vector
q → 0) the long-range dipole Fröhlich term diverges as 1/q,
the quadrupole term approaches a constant value and the
short-range octopole and higher terms vanish [17,18]. These
trends in momentum space are due to the spatial decay of
the e-ph interactions, with 1/r2 trend for the dipole, 1/r3

for the quadrupole, and 1/r4 or faster for the short-range
part. The open question is how one can carry out the e-
ph matrix element interpolation in the region near q = 0
using analytical expressions for the long-range dipole and
quadrupole terms. These expressions have been obtained by
Vogl [18], but need to be rewritten in the ab initio formal-
ism and computed with first-principles quantities such as
the atomic dynamical dipoles [15] and quadrupoles [19–21]
induced by lattice vibrations, which can be computed with
DFPT. For each atom κ , one can obtain Born charge (Zκ ) and
dynamical quadrupole (Qκ ) tensors, which, once contracted
with the phonon eigenvector, give the atomic contributions to
the dipole and quadrupole e-ph interactions.

The dipole Fröhlich term has been derived following this
strategy [22,23] and employed in electron scattering rate and
transport calculations [4,7]. The quadrupole term has not yet
been derived or implemented in first-principles calculations
and its important effect on the e-ph matrix elements has
been overlooked. To understand the role of long-range dipole
and quadrupole e-ph interactions, it is useful to consider
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separately the interactions for different phonon modes in the
long-wavelength limit, discerning the effect of longitudinal
and transverse, and acoustic and optical modes. Analytical
models of e-ph interactions rely on such an intuition for the
role of different phonon modes in various materials [24].

In ionic and polar covalent crystals (here and below, de-
noted as polar materials), the dipole Fröhlich term is dominant
as q → 0 due to its 1/q trend. This e-ph interaction is due to
longitudinal optical (LO) phonons and it dominates small-q
scattering. For other phonon modes in polar materials, the
dipole term vanishes, and the dominant long-range e-ph inter-
action is the quadrupole term, which is particularly important
for acoustic phonons in piezoelectric (polar noncentrosym-
metric) materials. In nonpolar semiconductors such as sili-
con and germanium, the dipole Fröhlich interaction vanishes
and the quadrupole term is the dominant long-range e-ph
interaction for all modes. The quadrupole e-ph interaction is
thus expected to play an important role in many classes of
materials, making a compelling case for its inclusion in the
first-principles framework.

Here we show ab initio calculations of the long-range
quadrupole e-ph interaction and an approach to include it
in the e-ph matrix elements. The accuracy of our method is
confirmed by comparing the e-ph matrix elements with direct
DFPT calculations. We find that the quadrupole contribution
is significant for most phonon modes in both nonpolar and
polar materials. In silicon, a nonpolar semiconductor, the
quadrupole term has a large effect on the e-ph coupling for
optical modes, but is negligible for acoustic modes in the
long-wavelength limit. In tetragonal PbTiO3, a polar piezo-
electric material, the quadrupole corrections are substantial
for all phonon modes and are particularly important for
acoustic modes, which contribute to the piezoelectric e-ph
interaction. Including only the long-range Fröhlich interaction
and neglecting the quadrupole term leads to large errors in
PbTiO3, while adding the quadrupole term leads to e-ph ma-
trix elements that accurately reproduce the DFPT benchmark
results for all phonon modes in the entire Brillouin zone.
We investigate the impact of the quadrupole e-ph interaction
on the electron scattering rates and mobility in silicon and
PbTiO3, finding mobility corrections of order 10% in silicon
and 20% in PbTiO3 at 100 K (and smaller corrections at
300 K) when the quadrupole term is included. The correction
on the scattering rate at low electron energy in PbTiO3 is
substantial. Taken together, our results highlight the need to
include the quadrupole term in all materials to correctly cap-
ture the long-range e-ph interactions. In turn, this development
enables more precise calculations of electron dynamics and
scattering processes from first principles.

II. THEORY

The electron distribution changes in response to a dis-
placement of an atom from its equilibrium position. The
cell-integrated charge response to a displacement of atom κ

due to a phonon with wave-vector q → 0 can be written as a
multipole expansion [21]:

Cq
κ,α = −iZκ,αβ qβ − 1

2 Qκ,αβγ qβqγ + · · · , (1)

FIG. 1. Schematic of the dipole and quadrupole charge configu-
rations giving rise to long-range e-ph interactions.

where summation over the Cartesian indices β and γ is
implied. This polarization response defines the Born effec-
tive charge Zκ , a rank-2 tensor associated with the dipole
term, and the dynamical quadrupole Qκ , the rank-3 tensor
in the quadrupole term; both tensors can be computed in the
DFPT framework [15,19]. Each of the dipole and quadrupole
responses generates macroscopic electric fields and corre-
sponding long-range e-ph interactions in semiconductors
and insulators [18,25], while in metals they are effectively
screened out.

In a field-theoretic treatment of the e-ph interactions, one
computes the dipole and quadrupole perturbation potentials
�Vνq due to a phonon with mode index ν and wave-vector q,
and the corresponding e-ph matrix elements [2]

gmnν (k, q) =
(

h̄

2ωνq

)1/2

〈mk + q| �Vνq |nk〉 , (2)

which quantify the probability amplitude of an electron in a
Bloch state |nk〉 with band index n and crystal momentum k

to scatter into a final state |mk + q〉 by emitting or absorbing
a phonon with energy h̄ωνq.

A. Dipole and quadrupole e-ph interactions

To derive the dipole and quadrupole perturbation poten-
tials, we consider a Born–von Karman (BvK) crystal [26] with
N unit cells and volume N	. The potential due to a dipole
configuration with dipole moment p centered at position τ in
the crystal (see Fig. 1) can be written as [22,23]

�V dip(r; τ ) = i
e

N	ε0

∑

q

∑

G �=−q

p · (q + G)ei(q+G)·(r−τ )

(q + G) · ǫ · (q + G)
,

(3)

where ǫ is the dielectric tensor of the material, the phonon
wave-vector q belongs to a regular Brillouin zone grid with
N points, and G are reciprocal lattice vectors. This result is
derived by adding together the potentials generated in the
crystal by two point charges of opposite sign with distance
u → 0, resulting in a dipole p [4,23].

The potential in Eq. (3) is readily extended to the case of an
atomic dynamical dipole pκ,R from atom κ in the unit cell at
Bravais lattice vector R, due to the displacement induced by a
phonon with mode index ν and wave-vector q. The resulting
atomic dynamical dipole is pκ,R = (eZκ ) ẽ(κ )

νq eiq·R, where the
phonon eigenvector projected on atom κ is defined as ẽ(κ )

νq =
e(κ )
νq /

√
Mκ , with eνq the eigenvector of the dynamical matrix at

q and Mκ the mass of atom κ . Summing over the contributions
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from all atoms κ at lattice vectors R with positions τκR =
τκ + R in the BvK supercell, the total e-ph dipole interaction
due to the phonon mode is �V

dip
νq (r) =

∑

κR �V dip(r; τκR ).
Using the identity 1

N

∑

R eiq·R = δq,0, we obtain

�V dip
νq (r) = i

e2

	ε0

∑

κ

M−1/2
κ

∑

G �=−q

×
(

Zκe(κ )
νq

)

·(q + G)ei(q+G)·(r−τ )

(q + G) · ǫ · (q + G)
. (4)

The ab initio Fröhlich e-ph coupling is obtained by evaluating
the matrix elements with this potential:

gdip
mnν (k, q) = i

e2

	ε0

∑

κ

(

h̄

2ωνqMκ

)1/2
∑

G �=−q

×
(

Zκe(κ )
νq

)

·(q + G)

(q + G) · ǫ · (q + G)

× 〈mk + q| ei(q+G)·(r−τ ) |nk〉 . (5)

The potential due to the dynamical quadrupole response
can be derived with a similar strategy. We first consider
the potential generated by a quadrupole charge configuration
consisting of two equal and oppositely oriented dipoles p and
−p, centered at positions τ ± u

2 , respectively (see Fig. 1). The
configuration, with quadrupole moment [27] Mαβ = pαuβ ,
gives a potential:

�V quad(r; τ ) = lim
u→0

[

�V dip
(

r; τ +
u

2

)

−�V dip
(

r; τ −
u

2

)]

=
e

N	ε0

∑

q

∑

G �=−q

(q + G) · M · (q + G)

(q + G) · ǫ · (q + G)

× ei(q+G)·(r−τ ), (6)

where to obtain the second line we used �V dip(r; τ ) in Eq. (3)
and expanded the first line to first order in u.

Similar to the dipole case, the potential from atomic
quadrupoles (Mκ,R )αβ = 1

2 (eQκ )αβγ e(κ )
νq,γ eiq·R due to the dis-

placement induced by a phonon is obtained as �V
quad
νq (r) =

∑

κR �V quad(r; τκR ). Following steps analogous to the dipole
case, we find

�V quad
νq (r) =

e2

	ε0

∑

κ

M−1/2
κ

×
∑

G �=−q

1

2

(q + G) ·
(

Qκe(κ )
νq

)

· (q + G)

(q + G) · ǫ · (q + G)

× ei(q+G)·(r−τκ ). (7)

The corresponding e-ph matrix elements due to the
quadrupole perturbation potential are

gquad
mnν (k, q) =

e2

	ε0

∑

κ

(

h̄

2ωνqMκ

)1/2
∑

G �=−q

1

2

×
(q + G)α

(

Qκ,αβγ e(κ )
νq,γ

)

(q + G)β
(q + G)αǫαβ (q + G)β

× 〈mk + q| ei(q+G)·(r−τκ ) |nk〉 . (8)

Note that in the q → 0 limit the Fröhlich e-ph matrix elements
are of order 1/q and the quadrupole matrix elements of
order q0, thus approaching a constant value; both quantities
are nonanalytic as q → 0. Octopole and higher electronic
responses in Eq. (1) lead to potentials that vanish as q → 0
and can be grouped together into a short-range e-ph interac-
tion, commonly referred to as the “deformation potential” in
analytic e-ph theories [18].

B. Interpolation scheme for e-ph interactions

The total e-ph matrix elements g (here we omit the band
and mode indices) can be formed by adding together the
short-range part gS and the dipole and quadrupole interactions,
which can be combined into a long-range part gL. Therefore,

g = gS + gL

= gS + gdip + gquad. (9)

We start from a set of e-ph matrix elements g(k, q) com-
puted with DFPT on a regular coarse grid of k and q points
[15]. The short-range part is obtained by subtracting the
long-range terms on the coarse grid, gS(k, q) = g(k, q) −
gdip(k, q) − gquad(k, q). The short-range e-ph matrix elements
decay rapidly in real space, and thus are ideal for interpolation
using a localized basis set such as Wannier functions [28]
or atomic orbitals [16]. After interpolating the short-ranged
part [9] on fine k- and q-point grids, we add back the long-
range dipole and quadrupole matrix elements, computed using
Eqs. (5) and (8) directly at the fine-grid k and q points.

As DFPT accurately captures the long-range dipole and
quadrupole e-ph interactions [15], the matrix elements ob-
tained from DFPT can be used as a benchmark for the inter-
polated results. For this comparison, following Ref. [22] we
compute the gauge-invariant e-ph coupling strength Dν

tot(q),
which is proportional to the absolute value of the e-ph matrix
elements:

Dν
tot(q) =

√

2ωνqMuc

h̄2

∑

mn

|gmnν (k = Ŵ, q)|2

Nb

, (10)

where Muc is the mass of the unit cell and the band indices n

and m run over the Nb bands selected for the analysis.

C. Computational details

We investigate the effect of the quadrupole e-ph interaction
in silicon, a nonpolar semiconductor, and tetragonal PbTiO3,
a polar piezoelectric material. Calculations on GaN are shown
in the companion work [29]. The ground state and band struc-
ture are obtained using DFT in the local density approxima-
tion with a plane-wave basis using the QUANTUM ESPRESSO

code [30]. Kinetic energy cutoffs of 40 Ry for silicon and
76 Ry for PbTiO3 are employed, together with scalar-
relativistic norm-conserving pseudopotentials from pseudo
Dojo [31]. We have verified that spin-orbit coupling has
a negligible effect. The calculations employ relaxed lattice
constants of 10.102 bohrs for silicon and 7.275 bohrs (with
aspect ratio c/a = 1.046) for PbTiO3. We use the dynamical
quadrupole tensors computed in Refs. [21,32]. The phonon
dispersions and e-ph perturbation potentials on coarse q-
point grids are computed with DFPT [15]. We employ the
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PERTURBO code [9] to compute the e-ph matrix elements
on coarse Brillouin zone grids with 10 × 10 × 10 k and q

points for silicon and 8 × 8 × 8 k and q points for PbTiO3.
The Wannier functions are computed with the WANNIER90
code [28] and employed in PERTURBO [9] to interpolate the
short-range e-ph matrix elements.

We compute the scattering rates and electron mobility us-
ing the PERTURBO code [9]. Briefly, the band- and k-dependent
e-ph scattering rate Ŵnk is obtained as

Ŵnk =
2π

h̄

∑

mνq

|gmnν (k, q)|2

× [(Nνq + 1 − fmk+q)δ(εnk − εmk+q − h̄ωνq)

+ (Nνq + fmk+q)δ(εnk − εmk+q + h̄ωνq)], (11)

where εnk and h̄ωνq are the electron and phonon energies, re-
spectively, and fnk and Nνq are the corresponding temperature-
dependent occupations. The scattering rate can be further
divided into the long-range part [4] ŴL

nk by replacing |g|2 in
Eq. (11) with |gL|2. The carrier mobility is computed using
μ = σ/(nce), where σ is the electrical conductivity and nc

is the carrier concentration. The electrical conductivity σ is
computed within the relaxation time approximation of the
Boltzmann transport equation [9,33]:

σαβ = e2
∫ +∞

−∞
dE (−∂ f /∂E )�αβ (E , T ), (12)

where �αβ (E , T ) is the transport distribution function at
energy E ,

�αβ (E , T ) =
s

Nk	

∑

nk

τnk(T )vα
nkv

β

nk
δ(E − εnk), (13)

which is computed in PERTURBO using the tetrahedron integra-
tion method [34]. Above, s is the spin degeneracy, Nk is the
number of k points, vnk is the band velocity, and τnk = (Ŵnk)−1

is the relaxation time. The mobility is computed with non-
degenerate electron concentrations of 1015 cm−3 for silicon
and 1017 cm−3 for PbTiO3. To fully converge the scattering
rates and mobility, we use e-ph matrix elements evaluated on
fine Brillouin zone grids with 200 × 200 × 200 k points and
8 × 106 random q points [35].

III. RESULTS

A. Quadrupole effect on the e-ph matrix elements

The long-range quadrupole e-ph interaction is present in
a wide range of semiconductors and insulators, where the
atomic dynamical quadrupoles are in general nonzero. We
illustrate this point by studying silicon, a simple nonpolar
semiconductor in which the Born charges—and thus the
Fröhlich interaction—vanish and the presence of long-range
interactions is not immediately obvious. Figure 2 shows the
e-ph coupling strength Dν

tot(q) in Eq. (10), computed directly
using DFPT as a benchmark and compared with Wannier
interpolation with and without inclusion of the quadrupole
term. The DFPT benchmark e-ph matrix elements for optical
modes approach a constant value as q → 0, as we show
for the LO mode in the Ŵ-L direction and the transverse
optical (TO) mode along Ŵ-K . This trend is distinctive of

FIG. 2. Mode-resolved e-ph coupling strength [see Eq. (10)]
in silicon, computed using the lowest valence band. The electron
momentum k is fixed at the Ŵ point and the phonon wave-vector q is
varied along high-symmetry lines in the Brillouin zone. Benchmark
results from DFPT (black circles) are compared with Wannier inter-
polation with the quadrupole e-ph interaction included (orange line)
or neglected (blue line). The coarse-grid q points are indicated with
vertical lines.

the quadrupole e-ph interaction, which is of order q0 in the
long-wavelength limit.

If the quadrupole term is neglected and all e-ph interactions
are treated as short ranged, the e-ph matrix elements for opti-
cal modes in silicon incorrectly vanish as q → 0. The interpo-
lated values for optical modes are underestimated between the
Ŵ point, where the error is greatest, and its nearest-neighbor
q points in the coarse grid, where the error vanishes. Outside
this q-point region close to Ŵ, the interpolated matrix elements
without the quadrupole interaction still deviate from the DFPT
result, although the error is smaller than near Ŵ. When the
quadrupole term is included, the long-range e-ph interactions
for the optical modes are captured correctly, as can be seen
for the Wannier plus quadrupole curves in Fig. 2. The root-
mean-square deviation of Dν

tot(q) from DFPT, for the optical
branches shown in Fig. 2, is 0.78 eV/Å when the quadrupole
term is neglected versus 0.03 eV/Å when the quadrupole term
is included in the interpolation. This result highlights the im-
portance of the quadrupole term to correctly describe long-
range e-ph interactions in nonpolar semiconductors.

Observe also how for acoustic modes in silicon the
quadrupole term has a nearly negligible effect, as we show for
the longitudinal acoustic (LA) mode in Fig. 2. As contracting
the dynamical quadrupoles Qκ with a rigid shift of the lattice
leads to a vanishing quadrupole contribution [18], one can
obtain the quadrupole acoustic sum rule

∑

α Qκ,αβγ = 0 for
nonpolar materials [18]. This sum rule, which is satisfied by
the dynamical quadrupole values we employ for silicon [21],
leads to a negligible quadrupole correction for acoustic modes
in the long-wavelength limit. Though we focus on silicon
in this work, on the basis of our results we expect sizable
quadrupole contributions for optical modes, and negligible for
acoustic modes, in all nonpolar semiconductors.
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FIG. 3. Mode-resolved e-ph coupling strength [see Eq. (10)] in
tetragonal PbTiO3, computed for the lowest conduction band. The
initial electron momentum is fixed at the Ŵ point and the phonon
wave-vector q is varied along high-symmetry lines in the Brillouin
zone. Benchmark results from DFPT (black circles) are compared
with Wannier interpolation plus the Fröhlich interaction (blue line)
and Wannier interpolation plus the Fröhlich and quadrupole interac-
tions (orange line). Note that two LO branches with coupling strength
exceeding the y-axis limit are not shown.

The quadrupole e-ph interaction is particularly critical
in piezoelectric materials, as discussed here for tetragonal
PbTiO3, a prototypical piezoelectric insulator. Piezoelectric
materials are polar noncentrosymmetric systems with nonzero
Born charges. As a result, while the dipole Fröhlich inter-
action is dominant for LO modes near q → 0 due to its
1/q divergence, the quadrupole contribution is expected to
be important for TO and acoustic modes (the quadrupole
acoustic sum rule does not hold for polar noncentrosymmetric
crystals).

Figure 3 shows the e-ph coupling strength Dν
tot(q) in

Eq. (10) for the DFPT benchmark in tetragonal PbTiO3,
and compares it with interpolated results that include only
the Fröhlich dipole interaction or both the Fröhlich and the
quadrupole interactions. The short-range interactions are in-
cluded through Wannier interpolation in both cases. When
only the Fröhlich dipole interaction is included, the e-ph ma-
trix elements deviate dramatically from the DFPT results. The
values are either overestimated or underestimated depending
on the phonon mode considered, with deviations from DFPT
that depend strongly on the direction in which q approaches
Ŵ due to the nonanalytic character of the long-range e-ph
interactions. When the quadrupole e-ph interaction is taken
into account, the interpolated e-ph coupling strength matches
the DFPT result very accurately for all phonon modes. For LO
modes, the quadrupole correction is moderate due to the dom-
inant Fröhlich term near q = 0. For other optical and acoustic
modes with a finite e-ph coupling at q = 0, the quadrupole
term removes the large error in the dipole-only results (up
to an order of magnitude) and gives e-ph matrix elements in
nearly exact agreement with DFPT. For the branches shown in
Fig. 3, the root-mean-square deviation of Dν

tot(q) from DFPT
is 0.46 eV/Å for dipole-only results versus 0.03 eV/Å for our
dipole plus quadrupole interpolation scheme. It is clear that

FIG. 4. Room temperature scattering rate versus electron en-
ergy (referenced to the conduction band minimum) in (a) silicon
and (b) PbTiO3. For silicon we plot the quadrupole contribution
multiplied by 100 (orange) and the total scattering rate (black),
which includes the short-range and the quadrupole contributions. For
PbTiO3 we show the long-range scattering rate computed using only
the Fröhlich interaction (blue) or both the Fröhlich and quadrupole
interactions (orange).

the quadrupole term is essential in piezoelectric materials for
all phonon modes.

Contrary to silicon and nonpolar materials, the quadrupole
term has a large effect for acoustic modes in piezoelectric
materials, where it is one of the two contributions to the
so-called piezoelectric e-ph interaction [24]. Expanding the
phonon eigenvectors at q → 0 as eνq ≈ e(0)

νq + iq · e(1)
νq , one

finds two contributions of order q0 [18]. One is from the
Born charges, and it reads Zκe(1)

νq , a dipolelike interaction
generated by atoms with a net charge experiencing different
displacements due to strain from an acoustic mode. The
other is the term Qκe(0)

νq , from the dynamical quadrupoles,
which is associated with a clamped-ion electronic polarization
[36]. The ab initio Fröhlich interaction includes only the
former term, namely the strain component of the piezoelectric
e-ph interaction, and thus the dipole-only scheme leads to
large errors for acoustic phonons in PbTiO3 (see Fig. 3) as
it neglects the important electronic quadrupole contribution.
Until now, the ab initio Fröhlich term has been mistakenly
thought to fully capture piezoelectric e-ph interactions. Our
results demonstrate that both dipole and quadrupole terms
are essential for accurate acoustic mode e-ph interactions in
piezoelectric materials [37]. The relative magnitude of the
strain and quadrupole contributions is material dependent—
the two terms can nearly cancel each other out, as we have
shown elsewhere for GaN [29], or their ratio can be mode and
phonon wave-vector dependent, as we find in PbTiO3.

B. Quadrupole contribution to the scattering rate

Because the quadrupole interaction has a significant effect
on the e-ph matrix elements, we expect that it also plays a
role in calculations of the e-ph scattering rate and mobility.
Figure 4(a) shows both the quadrupole contribution and the
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total e-ph scattering rate in silicon at 300 K for electron
energies near the conduction band minimum. We find that the
quadrupole contribution to the scattering rate is about 1% of
the total scattering rate at temperatures between 100–400 K.
At electron energies below the optical phonon emission
threshold in silicon (h̄ωO ≈ 65 meV relative to the conduction
band minimum), absorption and emission of acoustic phonons
dominate the scattering processes, and thus we find a small
correction due to the quadrupole interaction, which minimally
affects acoustic modes in silicon. Since the quadrupole acous-
tic sum rule holds only in the long wavelength limit, the
quadrupole interaction can still contribute to finite-q acoustic
scattering, as is shown by the fact that the quadrupole scat-
tering rate at energy below h̄ωO is proportional to the total
scattering rate. The quadrupole contribution increases sharply
above the optical emission threshold because the quadrupole
term is greater for optical modes in silicon. For the same rea-
son, the relative contribution of the quadrupole term increases
slightly with temperature in the 100–400 K range, varying
from 1% of the total scattering rate at 100 K to 1.5% at 400 K.

The effect of the quadrupole interaction on the scattering
rates is greater in PbTiO3. Our analysis focuses on the e-
ph scattering rate due to the long-range e-ph interactions,
although similar conclusions hold for the total scattering
rate. Figure 4(b) shows the long-range e-ph scattering rate in
PbTiO3 at 300 K as a function of electron energy, comparing
results that include only the dipole Fröhlich interaction with
results from our approach including both the dipole and
quadrupole terms. The scattering rate from the long-range
e-ph interactions is lower at all energies when the quadrupole
term is taken into account. The difference is greatest near
the band edge, where the scattering rate due to the dipole
interaction alone is 0.075 fs−1 versus a 50% smaller value of
0.050 fs−1 for dipole plus quadrupole.

These trends can be understood on the basis of the e-ph
matrix element analysis in Fig. 3. The errors found when ne-
glecting the quadrupole term in Dν

tot(q), which is proportional
to the absolute value of the matrix elements [see Eq. (10)],
are amplified in calculations of the scattering rate, which is
proportional to the square of the matrix elements. The largest
errors we find for Dν

tot(q) are in the q → 0 limit, especially for
the acoustic modes. For example, for the LA mode in the Ŵ-M
and Ŵ-X directions, the value of Dν

tot(q) from the dipole-only
calculation is 0.17 eV/Å compared to a twice-greater value of
0.40 eV/Å when the quadrupole term is included. This leads
to a fourfold increase of the LA mode scattering rate upon
including the quadrupole interaction. Opposite to the silicon
case, in PbTiO3 the relative magnitude of the quadrupole
correction is greater at lower temperatures because the
quadrupole interaction is stronger for acoustic modes. Near
the band edge, we find quadrupole corrections to the long-
range scattering rate ranging from 97% at 100 K to 38% at
400 K. Given that low-energy electronic states near the band
edge govern transport properties, including the quadrupole
term is critical to accurately computing electronic transport.

C. Quadrupole contribution to the mobility

The effect of the quadrupole e-ph interaction on the
mobility is noteworthy. Figure 5(a) shows the temperature-

FIG. 5. Computed temperature-dependent electron mobility in
(a) silicon and (b) tetragonal PbTiO3. The plot compares the mobility
obtained when the quadrupole e-ph interaction is included (orange
squares) or neglected (blue circles). The PbTiO3 results are for
transport in the basal xy plane.

dependent electron mobility in silicon computed with and
without the quadrupole term. Including the quadrupole in-
teraction reduces the computed mobility by approximately
5%–10% due to the increased e-ph coupling strength and
scattering rates. For example, the computed mobility at 300 K
is 1390 cm2/V s when including the quadrupole interaction
versus a value of 1473 cm2/V s with the conventional inter-
polation approach in which all e-ph interactions in silicon are
treated as short ranged. This discrepancy is due to the under-
estimation of the e-ph coupling strength for optical modes in
the conventional approach, especially at small values of q as
shown in Fig. 2.

In silicon, e-ph scattering mediates both intravalley and in-
tervalley processes. The quadrupole interaction affects mainly
small-q intravalley processes associated with optical phonons.
However, intravalley processes—particularly those associated
with acoustic phonons—are dominant only at low tempera-
ture, while at higher temperatures intervalley processes medi-
ated by large-q phonons are dominant [38]. As a result, the
intravalley optical phonon scattering processes mediated by
the quadrupole interaction are active mainly at low tempera-
ture and are overall weaker than other scattering contributions
in silicon, including acoustic intravalley scattering at low
temperature. The contribution of the quadrupole correction to
the mobility is thus maximal at low temperature and overall
relatively small.

Although we focus on silicon, we expect that these trends
apply in general to nonpolar semiconductors because small-
q optical e-ph coupling will consistently be underestimated
without the quadrupole term. The long-range quadrupole e-
ph interaction is thus surprisingly manifest in the transport
properties of nonpolar materials.

We find an opposite trend in PbTiO3, in which including
the quadrupole interaction increases the mobility by 10%–
25% between 100–400 K, as seen in Fig. 5(b). The quadrupole
term gives a larger correction at lower temperatures, reaching
values up to ∼25% at 100 K. This result is due to the dominant
acoustic mode contribution at low temperatures together with
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the large quadrupole correction for acoustic modes in piezo-
electric materials. At higher temperatures, where optical mode
scattering is dominant and acoustic scattering less important,
the quadrupole contribution is smaller, only about 10% at
400 K. Due to differences in the quadrupole interaction for
different phonon modes and to varying mode contributions
to the mobility as a function of temperature, including the
quadrupole term corrects the temperature dependence of the
mobility [29] and is essential in piezoelectric materials.

IV. DISCUSSION

We briefly discuss a technical aspect of the e-ph matrix
element interpolation. The treatment of long-wavelength per-
turbations with wave-vector q → 0 in DFPT is critical in
semiconductors and insulators [16,39]. The lattice-periodic
part of the phonon perturbation potential �vq(r) is the sum
of a Coulomb and an exchange-correlation contribution,

�vq(r) = �vq,C(r) + �vq,XC(r). (14)

The Coulomb contribution �vq,C(r) combines the variation of
the Hartree and electron-nuclei interactions. Its integral over
the unit cell [39]

�(q) =
1

	

∫

	

dr vq,C(r) (15)

is well behaved for insulators (and semiconductors) at finite
q values, but is ill defined at q = 0. First-principles codes
such as QUANTUM ESPRESSO [30] subtract �(q) from the
perturbation potential at q = 0, thus making it discontinuous
at q = 0. Therefore, due to both the discontinuity at q = 0 and
the nonanalytic behavior near q = 0, the e-ph matrix elements
are challenging to interpolate in the long-wavelength limit.

In our scheme we identify the quadrupole interaction as
the key long-range term in nonpolar materials, and remove
the nonanalytic behavior near q = 0 on the coarse grid by
subtracting the quadrupole term. This strategy improves the
interpolation near q = 0 in nonpolar materials, at once captur-
ing the correct physics and smoothing the coarse-grid matrix
element to be interpolated. Due to the nonanalytic behavior,
denser DFPT grids cannot fully remove the interpolation
error if the quadrupole term is not subtracted on the coarse
grid [40]. For polar materials such as PbTiO3, the nonanalytic
behavior is due to both the dipole (Fröhlich) and quadrupole
long-range e-ph interactions. By subtracting both terms in
our scheme in polar materials, the coarse-grid matrix elements

to be interpolated are made smooth and the interpolation
approach more reliable. The nonanalytic behavior of the
Coulomb potential is correctly reconstructed by adding back
the dipole (in polar materials) and quadrupole (in all insula-
tors) contributions after interpolation.

V. CONCLUSION

In summary, we developed an accurate approach for com-
puting the quadrupole e-ph interaction from first principles.
This advance resolves the outstanding problem of correctly
quantifying long-range e-ph interactions for all phonon modes
in semiconductors and insulators. Our results clearly show
that the quadrupole interactions are crucial for obtaining
accurate e-ph matrix elements, scattering rates, and electronic
transport properties. The quadrupole effect is particularly
apparent in piezoelectric materials such as wurtzite GaN [29]
and PbTiO3, in which neglecting the quadrupole interaction
leads to large and uncontrolled errors. The method intro-
duced in this work enables accurate calculations of electrical
transport, thermoelectric properties and superconductivity in
a wide range of materials.

Note added. Recently, we became aware of a related work
by another group that reaches similar conclusions about the
importance of the dynamical quadrupole term to obtain an
accurate physical description of e-ph interactions [40,41].
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