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Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium

C L Vaillant, M P A Jones and R M Potvliege
Department of Physics, Durham University, South Road, Durham DH1 3LE∗

Long-range dipole-dipole and quadrupole-quadrupole interactions between pairs of Rydberg atoms
are calculated perturbatively for calcium, strontium and ytterbium within the Coulomb approxi-
mation. Quantum defects, obtained by fitting existing laser spectroscopic data, are provided for all
S, P , D and F series of strontium and for the 3P2 series of calcium. The results show qualitative
differences with the alkali metal atoms, including isotropically attractive interactions of the stron-
tium 1S0 states and a greater rarity of Förster resonances. Only two such resonances are identified,
both in triplet series of strontium. The angular dependence of the long range interaction is briefly
discussed.

PACS numbers: 34.20.Cf, 32.80.Ee

I. INTRODUCTION

In the context of laser cooling, there has been a resur-
gence of interest in the strong interactions between Ry-
dberg atoms. A key development was the concept of the
dipole blockade, where the strong interaction between
Rydberg atoms leads to the excitation of collective states
with a single Rydberg excitation shared between many
atoms [1]. Applications of the dipole blockade include
quantum information [2], where two-qubit gates have
already been demonstrated [3, 4], co-operative nonlin-
ear optics [5] and the physics of strongly correlated sys-
tems [6–8]. Other important areas of study in cold Ryd-
berg gases include the formation of long-range molecules
[9, 10], and the interplay between Rydberg gases and ul-
tracold plasmas [11].
Central to all of these applications is a detailed under-

standing of the long-range interactions between Rydberg
atoms. As most experiments so far have been carried
out using the alkali metals (Rb,Cs), theoretical work has
concentrated on these elements [12–17]. Both perturba-
tive calculations of C5 and C6 coefficients [12–14] and
detailed non-perturbative calculations [15–17] have been
performed.
Atoms with two valence electrons offer a new approach,

as the inner valence electron provides an additional way
to probe and manipulate Rydberg atoms. Recent experi-
ments have shown that the inner electron can be used as
a fast, state-selective probe of the interactions in a cold
Rydberg gas [18, 19]. The polarizability of the additional
electron also enables tight, magic-wavelength traps for
Rydberg atoms [20]. Rydberg states of Sr and Yb have
also been proposed for high-precision measurements of
the black-body shift in optical frequency standards [21].
Preliminary calculations of the interactions for stron-

tium revealed interesting features that differ from the
alkali metals, such as the possibility of an isotropic, at-
tractive interaction potential [20]. The goal of this work
is to carry out a systematic study of the interactions be-
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tween Rydberg atoms in the most commonly laser-cooled
two-electron systems, i.e. Ca, Sr and Yb. In section II
we present the background theory for the calculations.
The C5 and C6 coefficients are expressed in terms of an-
gular factors and radial matrix elements. The latter are
evaluated using the Coulomb approximation, which re-
quires accurate knowledge of the Rydberg energy levels.
We therefore present a detailed review of the available
experimental energy levels. The main results of this pa-
per are C5 and C6 coefficients for all the Rydberg series
where experimental energy levels are available. Tables of
our complete results are provided in the supplementary
data. In section III we present an overview of these ta-
bles, revealing significant differences between the species,
and between different spin symmetries (singlet or triplet).
Several Förster resonances are also identified.

II. METHODS

A. Theory

We consider two interacting divalent atoms, one in the
state n1L1S1J1 and the other in the a state n2L2S2J2,
separated by a distance R. Specifically, we consider
states with high enough principal quantum numbers n1

and n2 that effects arising from configuration mixing can
be neglected. Such effects, e.g., singlet-triplet mixing in
the 5snd 1,3D2 states of strontium [22], can be large in
the vicinity of perturbers. However, they usually affect
only a narrow range of states. We describe each atom
by a simple model in which one of the two valence elec-
trons is in an extended Rydberg orbital while the other
is in a compact inner orbital. Denoting by ra and rb
the position vectors of the valence electrons relative to
the nucleus, we represent the state of each atom by the
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(a)
]
. (1)

The subscripts i and o refer to the inner and outer or-
bitals, χms (a) and χms (b) are spinors describing the spin
states of electrons a and b, φi(r) is the wave function of
the inner electron, and φo(r) the wave function of the
outer electron. We assume that the inner orbital is of
s-symmetry; therefore li = mli = 0 and lo = L.
The Hamiltonian for this system can be written as

Ĥ = Ĥ0 + Ĥint, (2)

where Ĥ0 is the Hamiltonian of the pair of atoms at in-
finite separation and Ĥint is the interaction energy be-
tween the two atoms. In terms of the position vectors of
the valence electrons and the relative position R of the
two nuclei

Ĥint =
∑
ε=a,b

∑
ε′=a,b

1

|rε1 − rε′2 −R|

−
∑
ε=a,b

(
2

|rε1 −R|
+

2

|rε2 +R|

)
+

4

R
, (3)

with the indexes 1 and 2 identifying the respective atoms,
and R = |R|. (Atomic units are used throughout this
section).

We treat the interaction Hamiltonian Ĥint perturba-
tively. For long range Rydberg-Rydberg interactions, the
matrix elements of Ĥint between the bound eigenstates
of Ĥ0 are dominated by the contribution of the two outer
electrons. We can therefore reduce the calculation of the
dispersion coefficients to a problem in which each atom
has only one active electron and the interaction Hamil-
tonian reduces to

Ĥ ′
int =

1

|r1 − r2 −R|
− 1

|r1 −R|
− 1

|r2 −R|
+

1

R
, (4)

where r1 and r2 denote the position vectors of the two
Rydberg electrons respective to the corresponding nuclei.
(Although each atom has only one active electron, the
quantum numbers of the system remain those pertaining
to the original multi-electron problem.) This formulation
neglects exchange interactions, which is valid as long as
R much exceeds the LeRoy radius [23],

RLR = 2
(
〈r21〉

1
2 + 〈r22〉

1
2

)
. (5)

A similar single active electron treatment has been previ-
ously shown to yield accurate Stark maps for two-electron
Rydberg atoms [18, 24].

Expanding Ĥ ′
int in multipoles yields [25]

Ĥ ′
int =

∞∑
k1,k2=1

(−1)k2

Rk1+k2+1

×

√
(4π)3(2k1 + 2k2)!

(2k1 + 1)!(2k2 + 1)!(2k1 + 2k2 + 1)

×
k1+k2∑

p=−(k1+k2)

k1∑
p1=−k1

k2∑
p2=−k2

Ck1+k2,p
k1p1,k2p2

× rk1
1 rk2

2 Yk1,p1
(r̂1)Yk2,p2

(r̂2)Yk1+k2,p(R̂), (6)

where R̂ is the unit vector along the internuclear axis. For
infinite atomic separation, the eigenenergies of the Hamil-
tonian Ĥ coincide with those of Ĥ0, which are sums of
energies of unperturbed atomic states. These asymptotic
eigenenergies are thus degenerate in M1 and M2. (There
is no degeneracy if J1 = J2 = 0 since in this case the
magnetic quantum numbers M1 and M2 can take only
one value.) Ĥ ′

int mixes states of different MJ values and
as a result splits the degenerate asymptotic energy levels
into a number of sublevels. Each of the latter differs from
its R → ∞ limit by a sublevel-specific, R-dependent shift
∆E. Treating Ĥ ′

int perturbatively and making use of the
multipolar expansion (6) leads to an expression of these
shifts in the form of a series of inverse powers of R,

∆E =
∑
N

CN

RN
. (7)

For the systems we are concerned with, this expansion is
dominated at large interatomic separations by the term
in 1/R5, when C5 6= 0, which arises to first order in Ĥ ′

int

from the quadrupole-quadrupole interaction (k1 = k2 =

2 in the multipolar expansion of Ĥ ′
int), and the term in

1/R6, which arises to second order from the dipole-dipole
interaction (k1 = k2 = 1).

The C5 and C6 coefficients are the eigenvalues of the
(2J1 + 1)(2J2 + 1) by (2J1 + 1)(2J2 + 1) matrices C5(R̂)

and C6(R̂) formed by the MJ -dependent, R̂-dependent
coefficients

c5(M
′
1M

′
2,M1M2; R̂) =

D22(αM
′
1M

′
2, αM1M2; R̂)R22(n1n1α, n2n2α) (8)

and

c6(M
′
1M

′
2,M1M2; R̂) = −

∑ 1

∆

×D11(αM
′
1M

′
2, α

′′M ′′
1 M

′′
2 ; R̂)R11(n1n2α, n

′′
1n

′′
2α

′′)

×D11(α
′′M ′′

1 M
′′
2 , αM1M2; R̂)R11(n

′′
1n

′′
2α

′′, n1n2α). (9)

In these two equations, α denotes the sextuple of quan-
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tum numbers L1S1J1L2S2J2 and

Rk1k2(n1n2α, n
′
1n

′
2α

′) =∫ ∞

0

dr1Pn1L1S1J1(r1)r
k1
1 Pn′

1L
′
1S

′
1J

′
1
(r1)

×
∫ ∞

0

dr2Pn2L2S2J2(r2)r
k2
2 Pn′

2L
′
2S

′
2J

′
2
(r2). (10)

The functions D11 and D22 are defined in the appendix.
Moreover, in equation (9) the sum runs over all the inter-
mediate n′′

1n
′′
2α

′′M ′′
1 M

′′
2 pair states dipole coupled both

to the n1n2αM1M2 state and to the n1n2αM
′
1M

′
2 state,

and ∆ denotes the Förster defect (∆ = E′′
1 +E′′

2 −E1 −
E2).

It follows from equation (6) that Ĥ ′
int only couples pair

states of same value of M1+M2, and that the ensuing en-
ergy shifts do not depend on the overall sign of M1+M2,
when the angle θ between the interatomic axis and the
axis of quantization of the angular momenta (which we
take to be the z-axis) is zero. The sublevels the asymp-
totic energy levels split into are thus characterized by
|Ω|, where Ω = M1 + M2. (Ω can be recognized as

the magnetic quantum number associated with Ĵtz, the
z-component of the total angular momentum operator
Ĵt = Ĵ1 + Ĵ2.) For other orientations of the interatomic

axis, Ĥ ′
int also couples pair states differing in Ω. How-

ever, the choice of the quantization axis is arbitrary and
thus the eigenenergies of the system do not depend on R̂:
changing the orientation of the interatomic axis changes
the composition of the eigenstates of the Hamiltonian in
terms of the unperturbed pair states but does not affect
the energy shifts ∆E. Therefore the dispersion coeffi-
cients as defined by equation (7) do not depend on R̂ and

can be obtained by diagonalizing the matrices C5(R̂) and

C6(R̂) for any orientation of the interatomic axis.
Due to the selection rule mentioned at the beginning

of the last paragraph, these two matrices are block di-
agonal when this axis is in the z-direction, each block
being formed by pair states with the same value of Ω.
It follows from the relationships between Ω, Ĵt, Ĵ1 and
Ĵ2 that the linear size of each block, i.e., the number of
values of C5 or C6 associated with each value of Ω, is
J1+J2−max(|Ω|, |J1−J2|)+1. In particular, the diago-
nal blocks with Ω = ±(J1+J2) contain only one element.
For these values of Ω, the dispersion coefficients are thus
given directly by equations (8) and (9) as

C5 = c5(J1J2, J1J2; R̂ = ẑ) (11)

C6 = c6(J1J2, J1J2; R̂ = ẑ). (12)

(Ω = ±(J1 + J2) implies that each atom is in a stretched
state with M1 = ±J1 and M2 = ±J2.)
The calculation thus amounts to diagonalizing the

Hamiltonians

Ĥ(5) = Ĥ0 +
∑

M ′
1M

′
2,M1M2

c5(M
′
1M

′
2,M1M2; R̂)/R5

× |M ′
1M

′
2〉〈M1M2| (13)

and

Ĥ(6) = Ĥ0 +
∑

M ′
1M

′
2,M1M2

c6(M
′
1M

′
2,M1M2; R̂)/R6

× |M ′
1M

′
2〉〈M1M2| (14)

in the basis of the Zeeman substates |M1M2〉 of the pair
state n1n2α. The components of the eigenvectors of the
matrices C5(R̂) or C6(R̂) are the coefficients of the ex-

pansion of the eigenvectors of Ĥ(5) or Ĥ(6) in this ba-
sis. For the first order quadrupole interaction, these co-
efficients are entirely determined by the angular factors
D22(αM

′
1M

′
2, αM1M2; R̂) and are independent of n1 and

n2. They are given in table I for the cases of interest in
this work. Because the c5 functions depend on S only
through an overall factor, the eigenstates of Ĥ(5) are the
same for singlet and triplet states. They are identical to
those obtained in Ref. [13] for a spinless alkali atom.

That Ω is a good quantum number when R̂ = ẑ origi-
nates from the fact that Ĵtz commutes with Ĥ ′

int for this
particular orientation of the interatomic axis. In contrast
Ĵ2
t does normally not commute with Ĥ ′

int. Nonetheless,

as indicated in table I, some of the eigenstates of Ĥ(5)

for R̂ = ẑ are also eigenstates of Ĵ2
t . In view of this

fact, we label the simultaneous eigenstates of Ĥ(5) and
Ĵ2
t by a number K such that the corresponding eigen-

values of Ĵ2
t are h̄2K(K + 1). For eigenstates of Ĥ(5)

that are not eigenstates of Ĵ2
t , we assign the number K

to the eigenstate whose components in the Zeeman basis
are closest to those of the eigenstate of Ĵ2

t with eigen-
value h̄2K(K + 1) for the same Ω. Doing so leads to the
assignments indicated in table I. One may observe that
the eigenstates are symmetric upon the interchange of
the states of atom 1 and atom 2 for K even and antisym-
metric for K odd. (The relevance of Ĵ2

t in this context
had already been recognized in reference [12].)

We label the eigenstates of Ĥ(6) in the same fashion.
As noted in table I, several of these eigenstates are also
eigenstates of Ĥ(5) and of Ĵ2

t . However, this is not the
case in general. In particular, many of the eigenstates of
Ĥ(6) vary with n1 and n2, unlike the eigenstates of Ĥ

(5).
The correspondence between even and odd values of K
and the symmetry under the interchange of the states of
atoms 1 and 2 is nonetheless the same.

In general, the composition of a pair state |M1M2〉 in
terms of energy eigenstates will therefore depend both
on the orientation of the internuclear axis and on R, al-
though the dependence on R will be negligible when the
expansion (7) is completely dominated either by the 1/R6

term or by the 1/R5 term. Due to the differences in the

eigenvectors of Ĥ(5) and of Ĥ(6), the total energy shift
at the interatomic distances where |C5/R

5| ≈ |C6/R
6| is

best calculated by diagonalizing the Hamiltonian

Ĥ(5+6) = Ĥ0 +
∑

M ′
1M

′
2,M1M2

[c5(M
′
1M

′
2,M1M2; R̂)/R5

+c6(M
′
1M

′
2,M1M2; R̂)/R6] |M ′

1M
′
2〉〈M1M2|. (15)
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Series Ω K Notes Eigenstate
1S0,

3P0 0 0 a,b |0, 0〉
1P1,

3P1,
3D1 0 0 a,c (|1,−1〉+ | − 1, 1〉 − |0, 0〉) /

√
3

0 1 a,b (|1,−1〉 − | − 1, 1〉) /
√
2

0 2 c (|1,−1〉+ | − 1, 1〉) /
√
6 +

√
2/3 |0, 0〉

1 1 a,b (|1, 0〉 − |0, 1〉) /
√
2

1 2 b (|1, 0〉+ |0, 1〉) /
√
2

2 2 b |1, 1〉
1D2,

3P2,
3D2 0 0 0.4320 (|2,−2〉+ | − 2, 2〉)− 0.5593 (|1,−1〉+ | − 1, 1〉) + 0.0331 |0, 0〉

0 1 0.3717 (|2,−2〉 − | − 2, 2〉)− 0.6015 (|1,−1〉 − | − 1, 1〉)
0 2 0.2064 (|2,−2〉+ | − 2, 2〉) + 0.1316 (|1,−1〉+ | − 1, 1〉)− 0.9382 |0, 0〉
0 3 0.6015 (|2,−2〉 − | − 2, 2〉) + 0.3717 (|1,−1〉 − | − 1, 1〉)
0 4 0.5204 (|2,−2〉+ | − 2, 2〉) + 0.4121 (|1,−1〉+ | − 1, 1〉) + 0.3445 |0, 0〉
1 1 0.6971 (|2,−1〉 − | − 1, 2〉) + 0.1184 (|0, 1〉 − |1, 0〉)
1 2 0.6250 (|2,−1〉+ | − 1, 2〉)− 0.3307 (|0, 1〉+ |1, 0〉)
1 3 0.1184 (|2,−1〉 − | − 1, 2〉) + 0.6971 (|1, 0〉 − |0, 1〉)
1 4 0.3307 (|2,−1〉+ | − 1, 2〉) + 0.6250 (|1, 0〉+ |0, 1〉)
2 2 0.2810 (|2, 0〉+ |0, 2〉)− 0.9177 |1, 1〉
2 3 b (|2, 0〉 − |0, 2〉) /

√
2

2 4 0.6489 (|2, 0〉+ |0, 2〉) + 0.3974 |1, 1〉
3 3 b (|1, 2〉 − |2, 1〉) /

√
2

3 4 b (|1, 2〉+ |2, 1〉) /
√
2

4 4 b |2, 2〉

TABLE I. The eigenstates of the Ĥ(5) Hamiltonian in terms of the |M1,M2〉 Zeeman substates of the pair states, for the case
where the interatomic axis is aligned with the z-axis. It is assumed that L1 = L2, S1 = S2 and J1 = J2. The eigenstates listed
in this table are the same as those given in Table 1 of Ref. [13]. Note a: C5 = 0 for this state. Note b: The state specified in the

right-hand column is an eigenstate of Ĵ2
t and of Ĥ(6) as well as of Ĥ(5) for any n. Note c: The K = 0,Ω = 0 and K = 2,Ω = 0

eigenstates of Ĥ(5) are also eigenstates of Ĵ2
t for J = 1; however, the K = 0,Ω = 0 and K = 2,Ω = 0 eigenstates of Ĥ(6) aren’t.

Obtaining the dispersion coefficients thus largely re-
duces to a computation of radial matrix elements and of
angular terms. We calculate the former using the an-
alytical expressions derived in references [26–28] in the
framework of the Coulomb approximation. This ap-
proach yields accurate results for sufficiently high prin-
cipal quantum numbers and does not require any other
input than orbital angular momentum quantum numbers
and binding energies. The latter are obtained from ex-
perimental data.
The calculation of the C6 coefficients also involves a

summation over intermediate pair states. As is illus-
trated by figure 1, the sum is dominated by the pair
states with the smallest Förster defect ∆. Including in
the sum the 15,000 (or thereabout) pair states with the
smallest values of ∆ was sufficient to ensure convergence
of the C6 coefficients to four significant figures. (The
intermediate states included were restricted to principal
quantum numbers in the range 10 ≤ n′′

1 , n
′′
2 ≤ 100.) This

rate of convergence is similar to that observed in the al-
kali metals [13].
Before closing this section, we briefly comment on the

applicability of the perturbative approach at the inter-
atomic separations relevant for cold Rydberg gases ex-
periments (typically 2 to 10 µm). A comparison between
a non-perturbative calculation of the energy shift due to
the dipole-dipole interaction and the prediction of the
leading-order perturbative calculation (∆E = C6/R

6) is

shown in figure 2. The non-perturbative shift was calcu-
lated by diagonalizing an Hamiltonian matrix of compo-
nents

Hpq = δpqEp + Vpq, (16)

where the indexes p and q run over all the pair states
included in the calculation, Ep is the asymptotic energy
of the pair state p, and

Vpq = D11(αqM1q,M2q, αpM1pM2p; R̂ = ẑ)

×R11(n1pn2pαp;n1qn2qαq)/R
3. (17)

For the state considered in figure 2, the perturbative
1/R6 shift matches the non-perturbative result very well
for R larger than about 1.5 µm but there are large dif-
ferences at smaller separations. (The barely visible dif-
ferences noticeable at larger values of R originate from
differences in the set of states taken into account: only
4,000 pair states were included in the non-perturbative
calculation.) Perturbation theory breaks down when ∆E
is comparable to or exceeds the Förster defect with the
nearest pair state, ∆, i.e., at a separation Rnp such that
C6/R

6
np ≈ ∆. Hence Rnp scales with the principal quan-

tum number approximately like n7/3: increasing n from
50 to 100 increases Rnp by about a factor 5, which may
preclude the use of the corresponding C5 and C6 coeffi-
cients in systems where the typical interatomic spacing
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FIG. 1. (colour online) Contribution of individual interme-
diate 1S0 pair states to the C6 coefficient of the 5s50p 1P1

state of strontium (top), and the inverse of the corresponding
Förster defect (bottom).

is a few microns. It is clear that nonperturbative ef-
fects become increasingly important at high n and may
be predominant at or near Förster resonances, where the
C6 coefficient is large and the Förster defect ∆ is small.
(The energy shift due to the quadrupole-quadrupole in-
teraction, represented by a dashed red curve in figure 2,
will be discussed in Section III.)

B. Energy Levels

The calculation of the C5 and, particularly, the C6

coefficients requires an accurate knowledge of the bind-
ing energies of all the relevant atomic states. However,

1 5 10 15

R (�m)

10-4

100

104

�

E
/2

�

(M
H
z)

FIG. 2. (colour online) Comparison between the energy shift
calculated non-perturbatively (black dash-dotted curve), the
C6/R

6 energy shift (green solid curve) and the C5/R
5 en-

ergy shift (red dashed curve) for a pair of strontium atoms,
both in the 5s50p 1P1 state, at a distance R from each other.
(The results shown are for the K = 2,Ω = 0 eigenstate, the
only Ω = 0 pair state for which C5 is non-zero). The shaded
area represents the region where R is smaller than the LeRoy
radius.

the quality of the available experimental binding ener-
gies varies from series to series, as some are known only
through laser spectroscopy measurements while others
have been measured using microwave spectroscopy. We
have used the microwave measurements where available,
in view of their normally higher degree of accuracy. The
random errors on the energy levels obtained by laser spec-
troscopy are often large enough to affect the C6 coeffi-
cients significantly. To reduce their impact, we fit the
corresponding energy levels to the Rydberg-Ritz formula
for the quantum defect [29]. Thus, for a state of principal
quantum number n, binding energy Eb and Rydberg con-
stant Ra, we express Eb in terms of the quantum defect,
δ = n− [Ra/Eb]

1/2, and write

δ = δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+ . . . (18)

We set δk = 0 for k > 4 and obtain δ0, δ2 and δ4 by least-
square fitting to the data. The resulting values of these
coefficients are shown in table II together with the ranges
of principal quantum numbers used in the fit. The un-
certainties quoted in the tables were obtained by consid-
ering the variation of the χ2 function about its minimum
[30]. Correlations in these uncertainties, given by the off-
diagonal components of the covariance matrix, are negli-
gibly small. We used the experimental energies directly
for strongly perturbed series that could not be fitted in
this way and the published quantum defects for the series
measured by microwave spectroscopy.

In the case of strontium, no microwave measurements
of energy levels are available but laser measurements have



6

been made for a number of series over wide ranges of val-
ues of n [22, 31–39]. We used the energies of references
[22, 31–34] in view of their higher accuracy. The values
of the δ0, δ2 and δ4 coefficients are given in Table II.
The Rydberg-Ritz formula fits the data well for all the
series, with the exceptions of the 3P2 and 1S0 series for
which substantial departures were found for high princi-
pal quantum numbers. (In the case of the 1S0 states, the
departure has been attributed to collisional shift with for-
eign gas [31].) For these two series, the fit was restricted
to the values of n over which the Rydberg-Ritz formula
could match the data. The 1D2 and 3D2 series exhibit
strong configuration mixing [22]; nevertheless the energy
levels are well described by the Rydberg-Ritz formula for
n ≥ 20.
Microwave spectroscopy measurements have provided

very precise energy levels for calcium [40, 41] and ytter-
bium [42]. We have supplemented these results with laser
spectrosopy measurements of the 3P2 series of calcium
[34] and of the 1F3 series of ytterbium [43]. Altogether,
though, fewer series have been measured for these ele-
ments than for strontium (table II). Moreover, the 1D2

series of calcium and the 1F3 series of ytterbium, which
are highly perturbed, cannot be fitted to the Rydberg-
Ritz formula; as a consequence, we could not extrapo-
lated the measured energies to other values of n. These
limitations reduced the number of states for which we
could calculate the C6 coefficient.

C. Uncertainties

Errors in the binding energies of the relevant states
dominate the uncertainty on the dispersion coefficients
for most series. The fit of the experimental quantum
defects to the Rydberg-Ritz formula reduces this uncer-
tainty in smoothing out the random scatter in the data.
We estimated the uncertainty on the values of the C5 and
C6 coefficients arising from the errors on the values of δ0,
δ2 and δ4 by varying each of these parameters one by one
and adding the resulting differences in quadrature [30].
(This procedure is likely to overestimate the total error
for the series measured by microwave spectroscopy [40].)
The error introduced by extrapolating the Rydberg-Ritz
formula to outside the range of principal quantum num-
bers used in the fits could not be ascertained.
Another source of error is the use of the Coulomb ap-

proximation to calculate the radial matrix elements. We
have compared the Coulomb approximation to a calcu-
lation of the C6 coefficients using a model potential, for
the 1S0 series of strontium. The radial matrix elements
were found to differ typically by about 0.1 a.u. between
the two calculations, which translates to differences in the
values of the C6 coefficients of about 0.5% for n ≈ 20 and
less for larger values of n. These differences are smaller
than the uncertainty originating from the error in the
energies for this series. However, it may be that the er-
ror introduced by the Coulomb approximation dominates

the total error where all the relevant energies are known
accurately from microwave measurements.

III. RESULTS AND DISCUSSION

Tables of the C5 and C6 coefficients for the series
listed in table III are provided in the on-line supple-
mentary data accompanying this paper and form the
main results of this work. We only consider pair states
where both atoms are in the same Rydberg state —
thus n1 = n2 = n, L1 = L2 = L, S1 = S2 = L and
J1 = J2 = J . Tables of the c5(M

′
1M

′
2,M1M2; R̂) and

the c6(M
′
1M

′
2,M1M2; R̂) functions are also provided in

the Supplementary Information for R̂ = ẑ, i.e., for the
case where the internuclear axis is aligned with the axis
of quantization of the angular momenta. These results
can be used, e.g., to obtain the eigenvectors of Ĥ(5) and
Ĥ(6). Simple polynomial fits to selected C6 coefficients
are given in table IV.

An overview of these results is presented in the next
sections. We first examine the form of the long-range
interaction, then consider the C5 and C6 coefficients in
more detail.

A. Long-range interactions

The relative strength of the first-order quadrupole-
quadrupole interaction (C5) and the second-order dipole-
dipole interaction (C6) is illustrated in figure 2. As is well
known, the C5/R

5 term dominates the energy shift at
large separation R (for the symmetries for which C5 6= 0),
while the C6/R

6 term is significant below a critical radius
Rc = C6/C5. How large Rc is depends on the symmetry
of the eigenstate and on n, as shown by figure 3 (Rc is
roughly proportional to n3). For most states, the C6/R

6

term dominates the energy shift up to interatomic dis-
tances at which this shift is too small to be relevant for
experiments. However for certain symmetries, such as
the Ω = 1 state represented in the figure, the second
order dipole-dipole shift is unusually small due to a van-
ishing angular factor [12]. In this case, the quadrupole
interaction may be of significant importance when con-
sidering a dipole blockade.

Given that the quadrupole interaction can normally be
neglected at the atomic densities involved in cold Ryd-
berg gases experiments, we consider the C5 coefficients
only briefly in the following, before discussing the C6 co-
efficients in greater detail.

B. C5 coefficients

As they depend on the energy levels only through
radial matrix elements, the C5 coefficients exhibit less
structure than the C6 coefficients, which also depend on
the inverse of the Förster defect, 1/∆. Due to selection
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Atom Series δ0 δ2 δ4 Fitted Range Ref.
Sr 5sns 1S0 3.26896(2) −0.138(7) 0.9 (6) 14 ≤ n ≤ 34 [31]

5snp 1P1 2.7295(7) −4.67(4) -157 (2) 10 ≤ n ≤ 29 [33]
5snd 1D2 2.3807(2) −39.41(6) -109 (2)×101 20 ≤ n ≤ 50 [31]
5snf 1F3 0.089(1) −2.0(2) 3 (2)×101 10 ≤ n ≤ 25 [33]
5sns 3S1 3.371(2) 0.5(2) -1 (2)×101 13 ≤ n ≤ 45 [32]
5snp 3P2 2.8719(2) 0.446(5) -1.9 (1) 8 ≤ n ≤ 18 [34]
5snp 3P1 2.8824(2) 0.407(5) -1.3 (1) 8 ≤ n ≤ 22 [34]
5snp 3P0 2.8866(1) 0.44(1) -1.9 (1) 8 ≤ n ≤ 15 [34]
5snd 3D3 2.63(1) −42.3(3) -18 (1) ×103 20 ≤ n ≤ 45 [32]
5snd 3D2 2.636(5) −1(2) -9.8 (9)×103 22 ≤ n ≤ 37 [22]
5snd 3D1 2.658(6) 3(2) -8.8 (7)×103 20 ≤ n ≤ 32 [32]
5snf 3F4 0.120(1) −2.4(2) 12 (2)×101 10 ≤ n ≤ 24 [33]
5snf 3F3 0.120(1) −2.2(2) 12 (2)×101 10 ≤ n ≤ 24 [33]
5snf 3F2 0.120(1) −2.2(2) 12 (2)×101 10 ≤ n ≤ 24 [33]

Ca 4sns 1S0 2.337930 (3) -3.96 (10) [40]
4snp 1P1 1.885584 (3) -0.114 (3) -23.8 (25) [40]
4snd 1D2 Highly perturbed series [40]
4snf 1F3 0.09864 (9) -1.29 (9) 36 [41]
4sns 3S1 2.440956 (3) 0.350 (3) [40]
4snp 3P2 1.9549(8) 2.5(1) -16 (1) ×101 12 ≤ n ≤ 60 [34]
4snp 3P1 1.964709 (3) 0.228 (3) [40]
4snd 3D2 0.8859(5)a 0.13 (4) a [40]
4snd 3D1 0.8833(5)b -0.02 (4) b [40]

Yb 4f146sns 1S0 4.27914 (4) -7.06 (6) 565 (25) [42]
4f146snp 1P1 3.95433 (5) -12.33 (6) 1729 (27) [42]
4f146snd 1D2 2.71363 (4) -2.01 (4) [42]
4f146snf 1F3 Highly perturbed series [43]

TABLE II. The Rydberg-Ritz parameters for strontium, calcium and ytterbium used in the calculation of the C5 and C6

coefficients. Uncertainties in the last digits are given in brackets. The parameters printed in italic are quoted from the sources
given in the last column of the table. The others were obtained in this work. For those, the last column gives the reference to the
sources of the spectroscopic data used in the calculation and the fifth column the range of principal quantum numbers included
in the fit. The Rydberg constants for strontium, calcium and ytterbium are RSr = 109 736.627cm−1 [31], RCa = 109 735.81cm−1

[40] and RYb = 109 736.96cm−1 [44] respectively.
aDue to a perturber, a term 9.08(9)× 10−4

[
(n− δ0)

−2 − 0.01676700
]−1

must be added to equation (18) for this series.
bDue to a perturber, a term 8.51(9)× 10−4

[
(n− δ0)

−2 − 0.01685410
]−1

must be added to equation (18) for this series.

Atom Available C6 and c6 coefficients Available C5 and c5 coefficients
Strontium 1S0

3S1
1P1

3P0,1,2
1D2

3D1,2,3
1P1

3P1,2
1D2

3D1,2,3

Calcium 1S0 (1P1)
3P1 (1D2)

1P1
3P1,2 (1D2)

3D1,2

Ytterbium 1S0
1P1 (1D2)

1P1
1D2

TABLE III. Index of the coefficients tabulated in the supplementary data. Results are normally given for 30 ≤ n ≤ 70.
However, only estimates for a reduced range of principal quantum numbers are given for the series indicated between brackets,
due to a lack of spectroscopic data.

rules on the orbital angular momentum, the first order
quadrupole interaction vanishes for many of the series.
In particular, C5 ≡ 0 for J = 0.
In general, the C5 coefficient scales with n like n8 [13].

Apart for this scaling, these coefficients have a similar
magnitude for most states. However, their sign varies
from symmetry to symmetry. For the J = 1 states, the
C5 coefficient is non-zero only for the K = 2 eigenstates.

The corresponding energy shifts are generally one order
of magnitude smaller for the K = 2,Ω = ±2 eigenstates
than for the K = 2,Ω = ±1 and K = 2,Ω = 0 eigen-
states, which have C5 coefficients closer in magnitude but
opposite in sign.

A large number of eigenstates have a non-vanishing
quadrupole interaction for J = 2. The corresponding val-
ues of C5 tend to arrange themselves evenly about zero,
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Atom Series |MJ | a b c FractionalError
Sr 5sns 1S0 0 3.2×10−3 −0.51 3.6 0.02

5sns 3S1 1 −2.387×10−3 1.211 −21.18 0.01
5snp 1P1 1 −1.24×10−4 0.0349 1.03 0.002
5snd 1D2 2 −1.65×10−3 0.365 −7.05 0.02

Ca 4sns 1S0 0 −1.793×10−3 0.3190 −1.338 0.0001
Yb 4f146sns 1S0 0 −9.84×10−5 0.0234 −0.421 0.003

4f146snp 1P1 1 −7.74×10−4 0.167 −2.73 0.0009

TABLE IV. Polynomial fits to the C6 coefficients for stretched states of strontium, calcium and ytterbium (M1 = M2 =
MJ = ±J with respect to the internuclear axis). C6 = n11(an2 + bn + c) and the coefficients a, b and c are expressed in a.u.
(C6 (GHzµm6) = 1.4448× 10−19C6 (a.u.)). These fits are valid for 30 ≤ n ≤ 70. The fractional error quoted is the uncertainty
in C6 for n = 50 due to the uncertainty in the energy levels. For all the series considered in the table this fractional error
exceeds the deviation of the fitting polynomial from the calculated C6 coefficients.
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FIG. 3. (colour online) The energy shift C6/R6 at the critical
radius Rc where |C5/R

5| = |C6/R
6|, for 5snp 1P1 states of

strontium. The total energy shift must be calculated by di-
agonalizing the Hamiltonian defined by equation (15) where
|C5/R

5| ≈ |C6/R
6|. The C5 coefficient is negative and the

C6 coefficient is positive for Ω = 1, which means that for
this symmetry the total energy shift vanishes at R ≈ Rc and
the long-range interaction changes from repulsive below Rc to
attractive beyond Rc.

without marked differences between strontium, calcium
and ytterbium.
In general, most triplet states were found to have

weaker quadrupole than the singlet states for the same
value of n, due to a smaller value of D22.

C. C6 coefficients

First of all, we consider the Rydberg series with or-
bital angular momentum L = 0. In alkali metals, the S
states are widely used in experiments as the interaction
is repulsive, which reduces the effect of ionizing interac-
tions, and is nearly independent of θ. In contrast to the
alkali metals, there are two L = 0 Rydberg series in two-

electron atoms. The 1S0 states of the bosonic isotopes
are particularly appealing for experiments as they have
no magnetic sublevels. The C6 coefficients for the 1S0

series of strontium, calcium, ytterbium and rubidium are
compared in figure 4. The three divalent atoms exhibit
dramatically different behaviour. For Sr, the interaction
is attractive1 while for Ca it is repulsive (although weaker
than in Rb). The interaction is also repulsive in the case
of Yb, however the scaled C6 coefficients are over an or-
der of magnitude smaller than for the other two species.
These differences entirely arise from differences in the
energy level spacing between these atoms.

30 40 50 60 70
n

�20

�10
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10

20

30

C
6
n

�

1
1
(a
.u
.)

Rb

Ca

Yb

Sr

FIG. 4. (colour online) The scaled C6 coefficient for the 2S1/2

series of rubidium [13] and for the 1S0 series of strontium,
calcium and ytterbium. For the latter three atoms, the solid
line represents the polynomial fit of Table IV. The error bars
are multiplied by 200 for calcium and ytterbium.

1 Anomalous behaviour in the Sr 5sns 1S0 energy levels [31] for
n > 36 (attributed to collisional shifts) leads to a discrepancy
between the results in Table IV and previous work [20]. Exper-
imental values were used in [20], while we fit the energy levels
at n < 34 where these effects are absent. The interaction is
attractive in both cases.
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The isotropically attractive interaction for strontium
may have uses in many-body entangled states [20] and
in non-linear self-focussing schemes [45]. This interesting
feature is not unique to this atom. We have estimated the
C6 coefficient for the 1S0 series of magnesium, mercury
and zinc using the quantum defects of references [46–49],
and found the interaction to be repulsive for magnesium
and mercury but attractive for zinc.
Also of note is the weak interaction in the ytterbium

1S0 states, which illustrates the importance of performing
detailed calculations for each series. Such a weak interac-
tion would be detrimental to any experiment wishing to
exploit the 1S0 series of ytterbium to produce a Rydberg
blockade.
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FIG. 5. (colour online) Left: The expectation value of the
scaled C6 coefficient for the n = 50 stretched states of the 3S1

(top) and 1P1 (bottom) series of Sr, |1, 1〉, as a function of the
angle θ between the direction of quantization of the angular
momenta and the internuclear axis. Right: The composition
in energy eigenstates of these two stretched states. Red dash-
dotted curves: K = 0,Ω = 0. Green solid curves: K =
2,Ω = 0. Blue dotted curves: sum of K = 2,Ω = 1 and
K = 2,Ω = −1. Black dashed curves: sum of K = 2,Ω = 2
and K = 2,Ω = 2. The K = 1,Ω = 0 and K = 1,Ω =
±1 eigenstates are orthogonal to |1, 1〉 as they have opposite
symmetry under the interchange of the states of atoms 1 and
2.

Whereas the van der Waals interaction is attractive in
the 1S0 series of strontium, it is repulsive in the 3S1 series.
For these states, Ĥ(6) has six different eigenenergies for
each n, three of which are doubly degenerate. (Different
eigenstates have different energy shifts because of the fine
structure of the intermediate 3P states.) The resulting
values of the scaled C6 coefficient, C6n

−11, range from
33.2 a.u. to 36.8 a.u. for n = 50. The strength of the in-
teraction varies thus little between these eigenstates and
is always larger than for the 2S1/2 states of rubidium
of same principal quantum number. These differences

between eigenstates make the van der Waals interaction
slightly anisotropic in the 3S1 series, in that controlled
excitation to a particular MJ state will generally excite
a superposition of energy eigenstates whose composition
will depend on the orientation of the internuclear axis of
each pair of atoms in the cloud. Suppose, for example,
that one prepares the two atoms of a pair in the same
stretched state (M1 = M2 = 1). This state is an eigen-

state of Ĥ(6) only when the internuclear axis is aligned
with the axis of quantization of the angular momenta.
Otherwise, its composition in terms of eigenstates of Ĥ(6)

varies with the angle θ between the two axes (figure 5).
However, as seen from the figure, the average C6 coeffi-
cient varies by less than 10% between θ = 0 and θ = π/2.
This means that there are two nearly-isotropic S series
in strontium with C6 coefficients of opposite signs, and
therefore that the interaction can be tailored to experi-
mental requirements by modifying the excitation scheme
for the same atom.

The difference in C6 coefficients between the different
eigenstates of Ĥ(6) is more significant in the 1P1 series
than in the 3S1 series, leading to a larger relative varia-
tion of the expectation value of the energy on the state
|M1 = 1,M2 = 1〉 (bottom row of figure 5). The com-
position of |M1 = 1,M2 = 1〉 in terms of the eigenstates

of Ĥ(6) is very similar for the two series — it is actually
identical for the Ω = ±1 and Ω = ±2 eigenstates; how-
ever, in the 3S1 states it is governed by the orientation
of the spin of the four valence electrons and in the 1P1

states by the orientation of the two Rydberg p-orbitals.
Figure 6 gives a snapshot of the strength and sign

of the van der Waals interaction at n = 40. In the
cases of the 1D2 and 3D3 series of Sr and of the 1P1

series of Yb, the C6 coefficient is positive for some of
the eigenstates and negative for the others, and for cer-
tain values of K and Ω its sign depends on n. These
sign changes occur through the C6 coefficient smoothly
passing through zero as n varies. (The C6 coefficients
are never exactly zero in our calculations, contrary to
those discussed in Ref. [12], as we take into account all
the intermediate angular channels.) The sign of C6 also
changes with n in the 3P1 and 3D2 series of Sr, but in
these two cases the change is abrupt and occurs at a
Förster resonance, namely when the Förster defect of the
dominant channel for the series changes sign and almost
vanishes (figure 7). The corresponding near degeneracies
are between the 5s35p 3P1 + 5s35p 3P1 and 5s35s 3S1 +
5s36s 3S1 pair states (∆/2π = 68 MHz) and between the
5s37d 3D2 + 5s37d 3D2 and 5s34f 3F3 + 5s35f 3F3 pair
states (∆/2π = 3 MHz), respectively. These two reso-
nances also give rise to abnormally large values of the C6

coefficient in the 3P1 and 3D2 series of Sr, as can be no-
ticed in figure 6. We have not found Förster resonances
in Ca or Yb, or in any other series of Sr for principal
quantum numbers in the range 30 ≤ n ≤ 70.
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FIG. 6. (colour online) The scaled C6 coefficient at n = 40 for
all the series and energy eigenstates considered in this work.
The red markers indicate the value of C6 in the stretched
eigenstates (|Ω| = 2J). To convert the scaled C6 coefficient
from a.u. to GHzµm6, divide by 2π and by 6.9213× 1018.

IV. CONCLUSIONS

We have presented perturbative calculations of the
long-range interaction between calcium, strontium and
ytterbium Rydberg atoms. Extensive tables of the C5

(first order quadrupole-quadrupole) and C6 (second or-
der dipole-dipole) coefficients are provided in the sup-
plementary data. These calculations are based on the
Coulomb approximation, and accurate binding energies
are required as an input. The experimental energy level
data currently available is summarized by the quantum
defects listed in table II.
The 1/R6 interaction is generally dominant in the

range of interatomic separation important for experi-
ments, although in channels where this interaction is un-
usually weak the quadrupole-quadrupole 1/R5 interac-
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FIG. 7. (colour online) The K = 2, |Ω| = 2 scaled C6 coeffi-
cient for the Sr 5snp 3P1 series (blue circles), and the Förster
defect for the 2× 5snp 3P1 → 5sns 3S1 +5s(n+1)s 3S1 chan-
nel (red solid line). To convert the scaled C6 coefficient from
a.u. to GHzµm6, divide by 2π and by 6.9213× 1018.

tion may become significant. Comparing the C6 coeffi-
cients for the same series revealed significant variations
between the species, illustrating the fact that small differ-
ences in energy level spacings may have dramatic effects
on Rydberg interactions. For example, the 1/R6 interac-
tion for the 1S0 series was found to be attractive for stron-
tium, repulsive for calcium and nearly zero for ytterbium.
The sign of the interaction can also change between dif-
ferent spin symmetries, as, e.g., in the 1S0 and 3S1 series
of strontium. Significant variation was also observed for
different symmetries within the same atomic species, in
particular in the presence of a Förster resonance. Such
resonances are less common in two-electron atoms than
in alkali metals; only two instances were found in this
work, both in triplet states of strontium.
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Appendix A: Angular Factors

Obtaining the C5 and C6 coefficients involves the
calculation of angular matrix elements of the inter-
action Hamiltonian Ĥint between unperturbed states
of the form given by equation (1). We collect
the angular integrals together and define a coefficient
Dk1k2(α

′M ′
1M

′
2, αM1M2; R̂) depending on the quantum

numbers of the states, on the order of the multipole tran-
sition considered, and on the orientation of the internu-
clear axis. Here we present a derivation of these angular
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coefficients.
Recall that we assume that the inner electron is

in a s-orbital. Hence, li = mli = 0, L = lo,

ML = mlo and CLML

limli
lomlo

= 1 and the angular part

of the calculation reduces to that of the matrix elements
〈L′S′J ′M ′

J |Yk,p|LSJMJ〉. However,

〈L′S′J ′M ′
J |Yk,p|LSJMJ〉 =∑

mlo ,ml′o

∑
MS

∑
msi

,mso

δmsi
,ms′

i
δmso ,ms′o

δMS ,M ′
S

× (CSMs
simsi

somso
)2CJMJ

lomloSMS
C

J ′M ′
J

l′om
′
lo
S′M ′

S

× 〈l′om′
l′o
|Yk,p|lomlo〉

=
∑

mlo ,ml′o

∑
MS

CJMJ

lomloSMS
C

J ′M ′
J

l′om
′
lo
SMS

× 〈l′om′
l′o
|Yk,p|lomlo〉. (A1)

Since Ĥ ′
int does not couple singlet to triplet states, S1 =

S′
1 and S2 = S′

2. Using standard summation rules and
evaluating the angular components of the matrix ele-
ments [52] yields the familiar result

〈L′S′J ′M ′
J |Yk,p|LSJMJ〉

= (−1)lo+l′o+1

√
(2lo + 1)(2J + 1)(2k + 1)

4π

× C
l′o0
lo0k0

C
J ′M ′

J

JMJkp

{
J k J ′

l′o S lo

}
. (A2)

Making use of these results and of equation (6), we ex-

press the matrix elements of the Hamiltonian Ĥ ′
int as

sums of radial terms multiplied by the coefficients

Dk1k2(α
′M ′

1M
′
2, αM1M2; R̂) = (−1)k2

×

√
4π(2k1 + 2k2)!(2L1 + 1)(2L2 + 1)

(2k1)!(2k2)!(2k1 + 2k2 + 1)

×
√
(2J1 + 1)(2J2 + 1)C

L′
10

L10,k10
C

L′
20

L20,k20

×
{

J1 k1 J ′
1

L′
1 S L1

}{
J2 k2 J ′

2

L′
2 S L2

}
×

k1+k2∑
p=−(k1+k2)

k1∑
p1=−k1

k2∑
p2=−k2

Yk1+k2,p(R̂)

× Ck1+k2,p
k1p1,k2p2

C
J′
1M

′
1

J1M1,k1p1
C

J ′
2M

′
2

J2M2,k2p2
. (A3)
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J. Phys. B 38 S295.

[14] Reinhard A, Cubel Liebisch T, Knuffman B and Raithel
G 2007 Phys. Rev. A 75 032712.

[15] Samboy N, Stanojevic J and Côté R 2011 Phys. Rev. A
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