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Abstract

This paper is concerned with the final state problem for the homogeneous type
nonlinear Schrödinger equation with time-decaying harmonic potentials. The non-
linearity has the critical order and is not necessarily the form of a polynomial. In
the case of the gauge-invariant power-type nonlinearity, the first author proves that
the equation admits a nontrivial solution that behaves like a free solution with a
logarithmic phase correction in [22]. In this paper, we extend his result into the
case with the general homogeneous nonlinearity by the technique due to the Fourier
series expansion introduced by Masaki and the second author [26]. To adapt the
argument in the aforementioned paper, we develop a factorization identity for the
propagator and require a little stronger decay condition for the Fourier coefficients
arising from the harmonic potential. Moreover, in two or three dimensions, we
improve the regularity condition of the final data in [26,28].
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1 Introduction

In this paper, we consider the nonlinear Schrödinger equation with time-decaying har-
monic potentials

i∂tu−H0(t)u = F (u), (NLS)

where (t, x) ∈ R+ ×Rd, d ≤ 3, and u = u(t, x) is a complex-valued unknown function.
The operator H0(t) is defined by

H0(t) = −1

2
∆ + σ(t)

|x|2
2
, σ(t) ∈ R.

The coefficient of the potential σ(t) satisfies a time-decay condition (see Assumption 1.1).
Suppose that the nonlinearity F is homogeneous of degree 1 + 2/d(1 − λ); that is, it
satisfies

F (αz) = α1+pcF (z), λ ∈ [0, 1/2), pc :=
2

d(1− λ)
(1)

1

http://arxiv.org/abs/2206.08168v1


for any α > 0 and z ∈ C. The aim of the paper is to determine the asymptotic behavior of
nontrivial solutions to (NLS) with a general homogeneous nonlinearity. More specifically,
we give a sufficient condition on the shape of the nonlinearity F for (NLS) to have a
short- or long-range scattering solution. Hence we focus on dealing with the final state
problem which is usually discussed simper than the corresponding initial value problem
(e.g., [9, 21, 23]).

As for (NLS) without the potential

i∂tu+
1

2
∆u = F (u), (2)

the asymptotic behavior of solutions for large time has been much studied by many
authors. We remark that our equation (NLS) includes the free equation (2) when σ(t) ≡ 0
(i.e., λ = 0). The typical nonlinearity is the gauge-invariant power-type nonlinearity

F (u) = µ|u|pu, µ ∈ R \ {0}, p > 0. (3)

In the case of (2) with (3), it is known that the exponent pc = 2/d is a threshold in
view of the long-time behavior of solutions. It is because the equation admits a nontrivial
solution which behaves like the asymptotics of the free solution

(it)−
d
2 ei

|x|2

2t û+

(x
t

)
(4)

for large time, when p > pc. However, if p ≤ pc, then (2) has no solutions which behave
like (4) in L2 (e.g., [1, 36, 37]). In particular, when p = pc, there is the solution that
behaves like a free solution with a logarithmic phase correction

(it)−
d
2 ei

|x|2

2t û+

(x
t

)
exp

(
−µi

∣∣∣û+
(x
t

)∣∣∣
2
d
log t

)
(5)

for a suitable given final data u+ as t→ ∞, where û+ denotes the Fourier transform of u+
(cf. [6, 9, 32]). Here we say that the nonlinearity is short-range if (2) admits a nontrivial
solution which asymptotically behaves like (4) for large time. Also the nonlinearity is
said to be long-range if (2) admits a nontrivial solution which asymptotically behaves
like (5) for large time with a suitable µ ∈ R \ {0}. We further observe that in p = pc,
the asymptotic behavior of the solutions depends on the shape of the nonlinearity. For
instance, when d = 2, F (u) = µ|u|u+λ1u2+λ2u2 with λj ∈ C is short-range if µ = 0 and
long-range if µ 6= 0 (cf. [15, 16, 34]). Eventually, via the Fourier series expansion, Masaki
and the second author [26] treats general nonlinearity satisfying (1), namely, including the
non-gauge-invariant nonlinearity, and prove that if g0 = 0 and g1 ∈ R, then (2) admits
a nontrivial solution which asymptotically behaves like (5) with µ = g1 by introducing a
decomposition of the nonlinearity

F (u) = g0|u|1+pc + g1|u|pcu+
∑

n 6=0,1

gn|u|1+pc−nun (6)

with the coefficients

gn :=
1

2π

∫ 2π

0

F (eiθ)e−inθdθ (7)
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under a summability assumption on {gn}n (see also [28]). In particular, if g0 = g1 = 0
then there exists an asymptotically free solution. We note that if g0 6= 0, then there are
no solutions which behaves like a free solution (cf. [27,29,33,35]). Also, we only consider
the case where the given final data u+ has a very small low-frequency part, because if the
data has a non-negligible low-frequency part, then there appears other kind of asymptotic
behavior (see [10–14, 30, 31]).

Regarding (NLS), under a time decay condition for σ(t), Kawamoto [20], and Ishida
and Kawamoto [17, 18] discover that the quantum particle governed by the energy H0(t)
is decelerated by the harmonic oscillators with velocity v = O(|t|−λ) as t → ∞, but
which is not trapped in studies on the corresponding linear problem. This phenomenon
leads us to expect that we can consider the scattering problem for (NLS) and a kind
of new observation different from (2) appears. Later on, Kawamoto-Muramatsu [23]
studies scattering solutions on the initial value problem for (NLS) with mostly power-like
nonlinearities. In [23], they find that the threshold pc changes from 2/d to 2/d(1−λ) and
specifies the asymptotics of the solutions for large time, corresponding to (5). Also, when
p = pc, Kawamoto [23] proves that (NLS) with (3) admits a nontrivial solution which
behaves like the asymptotics for large time. In this paper, we aim to extend the result
of [23] into general nonlinearities including non-gauge-invariant types, namely, satisfying
(1).

In what follows, in order to investigate large time behavior of solutions to (NLS), we
assume the following time decay condition on the coefficient σ(t):

Assumption 1.1. Let ζ1(t) and ζ2(t) be the fundamental solutions to

ζ ′′j (t) + σ(t)ζj(t) = 0,

{
ζ1(0) = 1,

ζ ′1(0) = 0,

{
ζ2(0) = 0,

ζ ′2(0) = 1.

Then, there exists c > 0, r0 > 0, σ0, c
(k)
1 , c

(k)
2 /∈ {0,∞} and c3 ∈ R, and λ ∈ [0, 1/2) such

that σ ∈ C1([r0,∞),R) with limt→∞ t3σ′(t) = σ0, |ζ2(t)| ≥ c for all t > r0, and for all
k ∈ {0, 1, 2},

lim
t→∞

|ζ (k)1 (t)|
tλ−k

= c
(k)
1 , lim

t→∞

|ζ (k)2 (t)|
t1−λ−k

= c
(k)
2 , lim

t→∞

∣∣∣ζ2(t)− c
(0)
2 t1−λ

∣∣∣
tλ

= c3 (8)

hold.

In the followings, we further assume ζ1(t), ζ2(t) ≥ 0 for any t > r0 for simplicity.

Remark 1.2. If σ(t) = σ1t
−2 for any t ≥ r0 with σ1 ∈ [0, 1/4), then we have two

fundamental solutions tλ and t1−λ of y′′(t) + σ(t)y(t) = 0 with λ = (1 − √
1− 4σ1)/2.

Then ζj(t) can be written as a linear combination of tλ and t1−λ. In various places, we

use the inequality
∣∣∣eiζ1(t)|x|2/(ζ2(t)) − 1

∣∣∣ ≤ C|x|2θ(ζ1/ζ2)θ for θ ∈ [0, 1] and deduce the decay

in t from this term. To obtain the decay, it is necessary that ζ1/ζ2 decays in t and hence
there are some additional conditions in (8).

In order to present the main result, let us briefly recall the decomposition of the
nonlinearity used by [26, 28]. We identify a homogeneous nonlinearity F and 2π-periodic
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function g as follows: A homogeneous nonlinearity F is written as

F (u) = |u|1+ 2
d(1−λ)F

(
u

|u|

)
. (9)

We then introduce a 2π-periodic function g(θ) = gF (θ) by gF (θ) = F (eiθ). Conversely,
for a given 2π-periodic function g, one can construct a homogeneous nonlinearity F =

Fg : C → C by Fg(u) = |u| 2
d(1−λ) g (arg u) if u 6= 0 and Fg(u) = 0 if u = 0. Since g(θ)

is 2π-periodic function, at least formally, g(θ) =
∑

n∈Z gne
inθ holds with (7). Thus, the

expansion gives us (6) with pc = 2/d(1− λ).

Notations

We introduce some notations used throughout this paper. For any p ≥ 1, Lp = Lp(Rd)
denotes the usual Lebesgue space on Rd. Set 〈a〉 = (1 + |a|2)1/2 for a ∈ C or a ∈ Rd.
Let s, m ∈ R. The weighted Sobolev space and the homogeneous Sobolev space on Rd

are defined by Hm,s = Hm,s(Rd) = {u ∈ S ′ | 〈x〉s 〈i∇〉m u ∈ L2} and Ḣs = Ḣs(Rd) =
{u ∈ S ′ | |∇|su ∈ L2}, respectively. Here S ′ is the space of tempered distributions. We
simply write Hm = Hm,0. F [u] = û is the usual Fourier transform of a function u on Rd

and F−1[u] = ǔ is its inverse. ‖g‖Lip stands for the Lipschitz norm of g. We say a pair
(q, r) is an admissible if it satisfies

1

q
+

d

2r
=
d

4
, q > 2, r ≥ 2.

1.1 Main results

Throughout this paper, we always lie in the following condition for λ = λd:

λ1 < 4−
√
15, λ2 <

1

5
, λ3 <

13− 2
√
37

21
. (10)

Remark that it is expected that we can weaken the condition (10), because the case
λ ∈ [0, 1/2] is discussed in [21, 23] on the initial value problem with the gauge-invariant
nonlinearity. Compared with [26, 28], we assume a little stronger assumption for {gn} as
follows:

Assumption 1.3. Assume that the nonlinearity F : C → C is a homogeneous of degree
1 + 2/d(1− λ) such that gn defined by (7) satisfies g0 = 0, g1 ∈ R and

∑

n∈Z

|n|1+a(λ)+η|gn| <∞

for some η > 0, where a(λ) = ad(λ) is a monotone strictly increasing function on the
domain (10) defined by

a1(λ) =
6λ− λ2

4(1− 2λ)
, ad(λ) =

3dλ

4(1− 2λ)
(d = 2, 3).

Note that a(λ) ∈ (0, 1/4) if d = 1, a(λ) ∈ (0, 1/2) if d = 2, and a(λ) ∈
(
0, (2

√
37− 11)/2

)

if d = 3. Here (2
√
37− 11)/2 ∼ 0.097. In particular, g is Lipschitz continuous.
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Our main result is the following:

Theorem 1.4. Suppose that F satisfies Assumption 1.3 for some η > 0. Let d ≤ 3. Set
δ = δd > 0 such that

1 + 4λ− λ2

2(1− 2λ)
< δ1 < min

(
1,

1

2
+ 2a(λ) + 2η

)
(d = 1),

d(λ+ 1)

2(1− 2λ)
< δd < min

(
2, 1 + pc,

d

2
+ 2a(λ) + 2η

)
(d = 2, 3).

(11)

Take δ′ = 1 if d = 1 and δ′ = δ if d = 2, 3. Then, under Assumption 1.1, there exists
ε0 = ε0(‖g‖Lip) > 0 such that for any u+ ∈ H0,δ′ ∩ Ḣ−δ with ‖û+‖∞ < ε0, there exist a

T ≥ r0 and an unique solution u ∈ C([T,∞) ; L2(Rd)) to (NLS) which satisfies

sup
t≥T

tb−λ‖u(t)− up(t)‖2 <∞ (12)

for any b ∈ (2λ, λ+ δ(1− 2λ)/2), where

up(t) = (it)−
d
2 e
i
|x|2ζ′2(t)

2ζ2(t) û+

(x
t

)
exp

(
−i g1
c+

∣∣∣û+
(x
t

)∣∣∣
2

d(1−λ)
log t

)
, c+ = |c(0)2 | 1

1−λ . (13)

Moreover, there exists ε1 > 0 such that the solution satisfies

sup
t≥T

tb−2λ

(∫ ∞

t

〈s〉−λ ‖u(s)− up(s)‖qr ds
) 1

q

<∞ (14)

for any admissible pair (q, r) with qd ≤ q and all b ∈ (2λ, λ+ δ(1− 2λ)/2), where qd = 4
if d = 1 and qd = 2/(1− 2ε1) if d = 2, 3.

Remark 1.5. We need the condition (10) to take δ satisfying (11). In fact, if d = 1,
then (11) reaches to λ2 − 12λ + 3 > 0 which yields λ < 6 −

√
33 ∼ 0.255. When

d = 2, (11) implies λ < 1/5. In d = 3, we also have 21λ2 − 26λ + 1 > 0. This yields
λ < (13 − 2

√
37)/21 ∼ 0.0397. (10) is weaker than that in [22]. Therefore, we improve

the condition of δ as in (11), compared with [22]. However, since the lower bound of δ
is larger than d/2, we impose additional decay rate a(λ) in Assumption 1.3 (see Lemma
4.1). Also, when λ = 0, Assumption 1.3, (11) and the condition for b coincide those in
[26, 28]. The lower bound of δ determined by that of b in Proposition 2.3.

Remark 1.6. σ(t) ≡ 0 satisfies Assumption 1.1. In fact, we can take ζ1(t) = 1, ζ2(t) =
t for any t ≥ 0. Hence, Theorem 1.4 includes the free equation (2) such as [26, 28].
Furthermore, when d = 2, 3, compare with [26, 28], we improve the regularity condition
of u+, by applying Proposition 3.2 and Proposition 3.3.

Remark 1.7. If we take ε1 = 0, then the admissible pairs (qd, rd), d = 2, 3 defined by
(18) below, correspond to the so-called end-point of admissible pairs. To relax the range
of λ more than that in [22], we need to choose the admissible pair near the end-point.
Since the end-point Strichartz estimate for the propagator of H0(t) in d = 2, 3 has not
been proven, for a technical reason, ε1 is demanded. ε1 is precisely specified by (19) and
(20) in Section 2.
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Remark 1.8. When F (u) satisfies Assumption 1.3 and g1 6= 0, Theorem 1.4 tells us that
(NLS) admits a nontrivial solution that behaves like a free solution with the logarithmic
phase correction. Namely, such a nonlinearity is long-range. The typical example of the

nonlinearity is F (u) = |Reu| 2
d(1−λ) Re u. In fact, the corresponding periodic function is

g(θ) = | cos θ| 2
d(1−λ) cos θ, gn = O(|n|− 2

d(1−λ)
−2)

as n → ∞. Further, under Assumption 1.3 and g1 = 0, Theorem 1.4 implies that (NLS)
admits a nontrivial solution with the asymptotic profile

(it)−
d
2 e
i
|x|2ζ′2(t)

2ζ2(t) û+

(x
t

)

corresponding to that of the free solution. Thus, in this case, the nonlinearity is short-

range. We then have the example F (u) = |Re u| 2
d(1−λ) Re u− i| Im u| 2

d(1−λ) Im u with

g(θ) = | cos θ| 2
d(1−λ) cos θ − i| sin θ| 2

d(1−λ) sin θ, gn = O(|n|− 2
d(1−λ)

−2
)

as n→ ∞. For the computation of gn, we refer to [28].

Remark 1.9. Precisely, the uniqueness assertion of the solution is in the following sense:
If ũ ∈ C([T,∞) ; L2(Rd)) solves (NLS) and satisfies (12) and (14) for some b̃ > 0 satisfying
(22) in Proposition 2.2, then u = ũ.

1.2 Strategy of the proof of main results and setting

The strategy of the proof of the main results is based on that of [16, 26, 28]. We now let
U0(t, s) be a propagator for H0(t), that is, the family of unitary operators {U0(t, s)}(t,s)∈R2

on L2(Rn) such that for all t, s, τ ∈ R,

i∂tU0(t, s) = H0(t)U0(t, s), i∂sU0(t, s) = −U0(t, s)H0(s),

U0(t, τ)U0(τ, s) = U0(t, s), U0(s, s) = IdL2(Rn), U0(t, s)D(H0(s)) ⊂ D(H0(s))

hold on D(H0(s)). By using ζ1(t) and ζ2(t), the following factorization formula of U(t, 0)
can be originally obtained by Korotyaev [25], and Kawamoto and Muramatsu [23] rewrites
the formula to employ the factorization technique developed by [9] (see also [2, 3, 22]).

Lemma 1.10 ([23, 25]). For φ ∈ S (Rd), let us define

(M(τ)φ) (x) = e
i|x|2

2τ φ(x), (D(τ)φ) (x) =
1

(iτ)n/2
φ(x/τ).

Then the following holds:

U0(t, 0) = M
(
ζ2(t)

ζ ′2(t)

)
D(ζ2(t))FM

(
ζ2(t)

ζ1(t)

)
. (15)

Hereafter we use the notation

M1(t) = M
(
ζ2(t)

ζ ′2(t)

)
, M2(t) = M

(
ζ2(t)

ζ1(t)

)
.
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Also, set

up(t) = M1(t)D(ζ2(t))ŵ(t), ŵ(t) = û+ exp (−ig1|û+|pc log t/c+) ,

and

G(u(t)) = g1|u(t)|pcu(t), N (u(t)) =
∑

n 6=0,1

gn|u(t)|1+pc−nu(t)n,

R(t) = M1(t)D(ζ2(t))
(
FM2(t)F

−1 − 1
)
.

By using the formulation obtained by Kawamoto [22] (see also [16]), we rewrite (NLS) as
the integral equation

u(t)− up(t) = i

∫ ∞

t

U0(t, s) (F (u(s))− F (up(s))) ds+A(t) + Er(t) + Enr(t), (16)

where

A(t) = i

∫ ∞

t

U0(t, 0)F
−1

(
c+s

ζ2(s)1/(1−λ)
− 1

)
G(ŵ(s)) ds

c+s
,

Er(t) = R(t)ŵ(t)− i

∫ ∞

t

U0(t, s)R(s)G(ŵ(s))
ds

ζ2(s)1/(1−λ)
,

and

Enr(t) = i

∫ ∞

t

U0(t, s)N (up(s)) ds.

In the followings, for all q ∈ [1,∞], we use the notation ‖ · ‖q as the norm on Lq(Rd)
for short. Moreover, for all q, r ∈ [1,∞] and a < b, we define the time-weighted Bochner-
Lebesgue space Lqλ((a, b);L

r(Rd)) (see Kawamoto-Yoneyama [24]) by

Lqλ((a, b);L
r(Rd)) =

{
f ∈ S

′(R1+d)
∣∣∣ ‖f‖Lq

λ((a,b);L
r(Rd)) <∞

}
,

where

‖f‖Lq((a,b);Lr(Rd),λ) =

(∫ b

a

〈t〉−λ ‖f(t, ·)‖qr dt
)1/q

.

Here we denote a function space on which we can construct the contraction mapping. In
[16,26,28], the space equips the same time-weight tb. On the other hand, in our case, the
different weight needs to be equipped in the function space associated with the Strichartz
norm. This fact was found by [22] and hence we also employ the same weighted space.
Let us define

‖f‖q,r,λ,τ =
(∫ ∞

τ

〈s〉−λ ‖f(s, ·)‖qr ds
)1/q

, ‖f‖∞,r,λ,τ = sup
s≥τ

〈s〉−λ ‖f(s, ·)‖r .

7



We introduce a complete metric space

XT,b,R :=
{
φ ∈ C

(
[T,∞) ; L2(Rd)

)
; ‖φ− up‖XT,b

≤ R
}
,

‖φ‖XT,b
:= sup

τ≥T
τ b‖φ‖∞,2,λ,τ + sup

τ≥T
τ b−2λ‖φ‖q,r,λ,τ ,

d(u, v) := ‖u− v‖XT,b

(17)

for R > 0 and T ≥ r0, where (q, r) = (qd, rd) is a certain admissible pair defined by

(q1, r1) = (4,∞), (q2, r2) =

(
2

1− 2ε1
,
1

ε1

)
, (q3, r3) =

(
2

1− 2ε1
,

6

1 + 4ε1

)
. (18)

The main step of the proof of Theorem 1.4 is to show that the right-hand side of (16) is
negligible for large time. The first term does not matter because it can be controlled by the
Strichartz estimate associated with the propagator U0(t, s) stated in Section 2. However,
the restriction of λ comes from this term, due to a use of the Strichartz estimate. The
terms A(t) and Er(t) are also harmless as in previous works [16, 22]. The main issue of
the proof is to estimate the non-resonant term as follows:

Proposition 1.11. Let u+ ∈ H0,δ′ ∩ Ḣ−δ. Then there exists C = C(‖u+‖H0,δ′∩Ḣ−δ) > 0
such that

‖Enr‖∞,2,λ,τ + τ−2λ‖Enr‖q,r,λ,τ ≤ C 〈τ〉− δ
2
(1−2λ)−λ 〈g1 log τ〉⌈δ⌉

∑

n∈Z

|n|1+a(λ)+η|gn|

for all τ ≥ r0.

To establish Proposition 1.11, we follow the argument of [26, 28]. However, one needs
to adapt a regularizing operator and a factorization identity for the propagator, developed
by [16], to (NLS). Then, additional terms appear due to the factorization formula of the
propagator, compared with [26, 28]. Further, to get the necessary time decay for the
additional terms, we need to take it into account for a regularizing operator to degenerate
in the low-frequency region.

The rest of the paper is organized as follows: In section 2, we introduce the Strichartz
estimate with time weight for the propagator and prove the existence of solutions near the
given asymptotic profile corresponding to the main theorem in an abstract form. Then
Section 3 is devoted to summarize useful estimates. In the section, we present estimates
for the fractional derivative of ŵ necessary to improve the regularity condition for the
final data in d = 2, 3. One also states the estimates for A(t) and Er(t) given by [16, 22],
and adapts the regularizing operator and the factorization identity for the propagator to
(NLS). Furthermore, Proposition 1.11 are shown and our main result is established in
Section 4. Finally, Appendix provides us to prove the estimates for ŵ given in Section 3.
Remark that the estimates for a general form of ŵ are treated in the section.

2 Existence of solutions near the asymptotic profile

Let us introduce the so-called Strichartz estimate for associated propagator U0(t, s) which
was firstly obtained by Kawamoto and Yoneyama [24] for the case of the restricted coeffi-
cients σ(t). Subsequently, Kawamoto [20] handles the Strichartz estimate under the more
generalized condition including the assumption 1.1.
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Lemma 2.1 ([20,24]). Let (q, r) and (q̃, r̃) be admissible pairs and s′ denotes the Hölder

conjugate of s, i.e., 1/s+1/s′ = 1. Then for φ ∈ L2(Rd) and F ∈ Lq̃
′

λ ((a, b);L
r̃′(Rd),−λ),

there exists C > 0 which is independent of a, b such that it holds that

‖U0(t, 0)φ‖Lq((a,b);Lr(Rd),λ) ≤ C‖φ‖2
and

∥∥∥∥
∫ t

U0(t, s)F (s)ds

∥∥∥∥
Lq((a,b);Lr(Rd),λ)

≤ C ‖F‖Lq̃′ ((a,b);Lr̃′ (Rd),−λ) .

In d = 2, 3, we fix ε1 > 0 is a sufficiently small constant with

d(λ+ 1)

2(1− 2λ)
+
d(1− λ)λε1

1− 2λ
< δ ⇔ d(λ+ 1)

4
+
d(1− λ)λ

2
ε1 <

δ

2
(1− 2λ), (19)

and

λ + 1 + 2(1− λ)λε1 >
2(1− λ)

d+ (1− 2d)λ− d(1− λ)ε1
(20)

When λ satisfies (10), we have

d(1− λ)

2d+ 2(1− 2d)λ
<
d

4
(λ+ 1),

which ensures that one can take ε1 satisfying (20).
In what follows, we assume λ > 0, since the case λ = 0 can be proven in a similar way

to [26, 28]. Let us consider the integral equation

u(t)− up(t) = i

∫ ∞

t

U0(t, s) (F (u(s))− F (up(s))) ds+ E(t), (21)

where up is the given asymptotic profile (13) and E(t) is an external term. Remark that
our equation (16) is of the form (21). As for the existence of solution to (21), we have the
following:

Proposition 2.2. Suppose that g is Lipschitz continuous. Let (q, r) be the certain ad-
missible pair as in (18). Set û+ ∈ L∞ and up be as in (13). Then there exists a con-
stant ε0 = ε0(‖g‖Lip) > 0 such that if ‖û+‖L∞ ≤ ε0 and if an external term E satisfies
‖E‖XT0,b

6M for some T0 ≥ 1, M > 0, and b = bd with

1 + 8λ− λ2

4
< b1 < λ+

δ

2
(1− 2λ),

d

4
(λ+ 1) + λ+

d

2
(1− λ)λε1 < bd < λ+

δ

2
(1− 2λ) (d = 2, 3),

(22)

then there exists a T1 = T1(M, ‖g‖Lip, b) ≥ T0 such that (21) admits a unique solution

u(t) in XT1,b,2M . Moreover, for any admissible pair (q̃, r̃) with q ≤ q̃, and b̃ ≤ b, there
exists C0 = C0(M) > 0 such that the solution satisfies

sup
t≥T1

tb̃−2λ‖u− up‖q̃,r̃,λ,t 6 C0 + sup
t≥T1

tb̃−2λ‖E‖q̃,r̃,λ,t.
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To prove Proposition 2.2, we now estimate the XT,b norm of the first term of the
right-hand side of (21). This term has been estimated in Lemma 3.3 of [22]. However,
the proof employs a very simple approach to avoid the complex calculations and then the
strong restrictions for the higher and lower bound of b are required. Hence the aim here
is to relax these restrictions.

Proposition 2.3. Assume that g is Lipschitz continuous. Then there exists ε̃0 > 0 and
C > 0 such that

∥∥∥∥
∫ ∞

t

U0(t, s) (F (u(s))− F (up(s))) ds

∥∥∥∥
XT,b

≤ C‖g‖Lip ‖u− up‖XT,b

(
T−ε̃0 ‖u− up‖pcXT,b

+ ‖û+‖pc∞
)

for any b = bd satisfying (22).

Remark 2.4. The upper bound of b in (22) comes from (19), and is not necessary to
prove Proposition 2.3. However, the bound is crucial to prove Theorem 1.4.

Proof. The nonlinear terms can be decomposed as F (u) − F (up) = F (1)(u) + F (2)(u),
where

F (1)(u) = χ{|up|≤|u−up|} (F (u)− F (up)) , F (2)(u) = χ{|up|≥|u−up|} (F (u)− F (up)) , (23)

and χA is a characteristic function on A ⊂ R1+d. Since g is Lipschitz continuous, we see
from [26, Appendix A] that

|F (u)− F (up)| ≤ C‖g‖Lip
(
|u− up|pc+1 + |up|pc|u− up|

)
,

and therefore

|F (1)(u)| ≤ C|u− up|pc+1, |F (2)(u)| ≤ C|up|pc|u− up|.

By the same calculations in [22], we obtain for b < λ+ δ(1− 2λ)/2,
∥∥∥∥
∫ ∞

t

U0(t, s)F
(2)(u(s)) ds

∥∥∥∥
∞,2,λ

≤ Cτ−b ‖û+‖pc∞ ‖u− up‖XT

and
∥∥∥∥
∫ ∞

t

U0(t, s)F
(2)(u(s)) ds

∥∥∥∥
q,r,λ

≤ Cτ−(b−2λ) ‖û+‖pc∞ ‖u− up‖XT
.

Hence it is enough to show that there exists ε̃0 > 0 such that
∥∥∥∥
∫ ∞

t

U0(t, s)F
(1)(u(s)) ds

∥∥∥∥
∞,2,λ

≤ Cτ−b−ε̃0 ‖u− up‖1+pcXT
(24)

and
∥∥∥∥
∫ ∞

t

U0(t, s)F
(1)(u(s)) ds

∥∥∥∥
q,r,λ

≤ Cτ−(b−2λ)−ε̃0 ‖u− up‖1+pcXT
(25)
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for any τ ≥ r0. By the Strichartz estimate, we estimate

∥∥∥∥
∫ ∞

t

U0(t, s)F
(1)(u(s)) ds

∥∥∥∥
∞,2,λ

≤ C

(∫ ∞

τ

〈s〉λ
∥∥|(u− up)(s)|1+pc

∥∥ρ′
κ′
ds

)1/ρ′

=: CL(τ)

with an admissible pair (ρ, κ). Let θ1 + θ2 = 1 + pc, and then by the Hölder inequality
∥∥|u− up|1+pc

∥∥
κ′
≤ ‖u− up‖θ1r ‖u− up‖θ22

with

1

κ′
=
θ1
r
+
θ2
2

⇔ 2

ρ
+

2

q
· θ1 =

1

1− λ
, θ2 = 1 + pc − θ1,

where θ1 ∈ [θ0, pc + 1] with θ0 = 1+λ
1−λ

∈ (1, 2) if d = 1, otherwise, θ1 ∈ (θ0, pc + 1]

with θ0 = λ
1−λ

, in view of the conditions 0 ≤ 1/κ′ − 1/2 = 2/dρ ≤ 1/2 for d = 1 and
0 ≤ 1/κ′ − 1/2 = 2/dρ < 1/d for d = 2, 3. This yields the restrictions

1

r
≤ θ1 − θ0

2θ1
,

1

q
≥ θ0

4θ1
(26)

for d = 1 and

1

r
<
dθ1 − 2θ0

2dθ1
,

1

q
>

θ0
2θ1

. (27)

for d = 2, 3. Hence by the Hölder inequality, we have

L(τ) ≤ C

(∫ ∞

τ

〈s〉λ ‖u− up‖θ1ρ
′

r ‖u− up‖θ2ρ
′

2 ds

)1/ρ′

≤ C

(
sup
s≥τ

〈s〉−λ+b ‖u− up‖2
)θ2 ∥∥∥〈s〉λ/ρ′−bθ2+λθ2 ‖u− up‖θ1r

∥∥∥
Lρ′ ([τ,∞))

.

Using the Hölder inequality again, one has

L(τ) ≤ C ‖u− up‖θ2XT

∥∥∥〈s〉λ/ρ′−bθ2+λθ2+λθ3/ρ′
∥∥∥
LP1 ([τ,∞))

∥∥∥〈s〉−θ3λ/ρ′ ‖u− up‖θ1r
∥∥∥
LP2 ([τ,∞))

,

where 1/P1 + 1/P2 = 1/ρ′, θ1P2 = q and θ3q = θ1ρ
′. Hence this implies

L(τ) ≤ C ‖u− up‖θ2XT

∥∥∥〈s〉λ/ρ′−bθ2+λθ2+λθ1/q
∥∥∥
LP1 ([τ,∞))

‖u− up‖θ1q,r,λ . (28)

In order to guarantee the right-hand side of (28) is bounded, it is necessary to assume

λ

ρ′
− bθ2 + λθ2 +

λθ1
q

+
1

P1
< 0.

Since

1

ρ′
= 1 + θ1

(
d

4
− d

2r

)
+
d− d(θ1 + θ2)

4
= 1 +

θ1
q
− dpc

4
,
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we have

λ

ρ′
+
λθ1
q

+
1

P1
=
λ+ 1

ρ′
+
λ− 1

q
θ1

= λ+ 1 +
2λθ1
q

− dpc(1 + λ)

4
=: Λd,

where we remark that by using (26) and (27), one finds

Λd ≥ λ+ 1− pc(1 + λ)

4
+
λ(pc − 1)

2
=

1 + λ

2

for d = 1 and

Λd > λ+ 1− dpc(1 + λ)

4
+
d(1 + pc)− 2− d

2
λ =

1

2

for d = 2, 3. Hence, (28) holds if b satisfies

b >
Λd
θ2

+ λ. (29)

Under this condition, it follows that

L(τ) ≤ Cτ−bθ2+λθ2+(λ+1)+2λθ1/q−dpc(1+λ)/4+(−b+2λ)θ1‖u− up‖θ1+θ2XT

≤ Cτ−b−pcb+λθ2+(λ+1)+2λθ1/q−dpc(1+λ)/4+2λθ1‖u− up‖1+pcXT
.

Then there exists ε̃0 > 0 such that
∥∥∥∥
∫ ∞

t

U0(t, s)F
(1)(u(s)) ds

∥∥∥∥
∞,2,λ

≤ Cτ−b−ε̃0‖u− up‖1+pcXT
. (30)

for any τ ≥ r0, as long as

−pcb+ λθ2 + (λ+ 1) + 2λθ1/q − dpc(1 + λ)/4 + 2λθ1 < 0,

which is equivalent to

b >
Λd
pc

+
λ

pc
(θ2 + 2θ1) . (31)

Similarly to the above, noting b > b− 2λ, there exists ε̃0 > 0 such that
∥∥∥∥
∫ ∞

t

U0(t, s)F
(1)(u(s)) ds

∥∥∥∥
q,r,λ,τ

≤ Cτ−(b−2λ)−ε̃0‖u− up‖pc+1
XT

(32)

for any τ ≥ r0, as long as (29) and (31) hold. Thus we conclude (24) and (25).
From now on, let us specify θ1. Compared with [22], the suitable choice of θ1 enables

us to find a weaker lower bound for b. Note that both 1/θ2 = 1/(1 + pc − θ1) and
θ2 + 2θ1 = 1 + pc + θ1 are monotone increasing with respect to θ1, and hence right-hand
side of (29) and (31) take minimum on the smallest value of θ1. In d = 1, we can take
θ1 = θ0 of the minimum, because it is allowed us to take the end-point (q, r) = (4,∞).
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However, in the case of d = 2, 3, since the end-points of the admissible pair are excluded,
the minimum of θ1 can not be attained. Hence, we need to take θ1 = θ0+ ε1 for the small
ε1 > 0.

Case d = 1. We take θ1 = pc − 1 = θ0 and θ2 = 2. Then it enable us to take q = 4
only. In terms of (29) and (31), we also notice that

Λd
θ2

+ λ =
1 + 5λ

4
<

1 + 8λ− λ2

4
=

Λd
pc

+
λ

pc
(θ2 + 2θ1)

for any λ satisfying (10). Hence (30) and (32) are valid provided b > (1 + 8λ− λ2)/4.

Case d = 2, 3. We take θ1 = θ0 + ε1 and θ2 = 1+ pc− θ0 − ε1 with the small ε1 > 0 on
(19) and (20). Then one can choose (1/q, 1/r) = (1/2− ε1, (d− 2 + 4ε1)/2d) satisfying
(27). Hence (29) gives us

b > λ+
d(1− λ)

2 {d+ (1− 2d)λ− d(1− λ)ε1}
.

It then follows from (31) that

b >
d

4
(λ+ 1) + λ+

d

2
(1− λ)λε1. (33)

By (20), we conclude (30) and (32) if b satisfies (33), as desired.

Proof of Proposition 2.2. From the integral equation (21), we define the map

Ψ(v(t))− up(t) = i

∫ ∞

t

U0(t, s) (F (v(s))− F (up(s))) ds+ E(t)

on XT,b,R. Let us show that Ψ: XT,b,R → XT,b,R is a contraction map for some R > 0.
Firstly, combining Proposition 2.3 with the assumption, one has

‖Ψ(v)− up‖XT,b
≤ C1‖g‖LipR

(
T−ε̃0Rpc + εpc0

)
+M (34)

for any v ∈ XT,b,R with T ≥ T0 and R > 0. Let us show

d (Ψ(v1),Ψ(v2)) ≤ C2‖g‖Lip
(
T−ε̃0Rpc + εpc0

)
d(v1, v2) (35)

for any v1, v2 ∈ XT,b,R. We estimate

|F (v1)− F (v2)| ≤ C‖g‖Lip|v1 − v2| (|v1 − up|pc + |v2 − up|pc) + C‖g‖Lip|up|pc|v1 − v2|.

Hence we can decompose F (v1)− F (v2) into two parts as in (23). Similarly to the proof
of Proposition 2.3, using

‖|v1 − v2||vj − up|pc‖κ′ ≤ ‖vj − up‖θ1r ‖vj − up‖θ2−1
2 ‖v1 − v2‖2

for j = 1, 2, one obtains (35), where θ1 and θ2 are the same in the proof of Proposition

2.3. Set R = 2M . Taking ε0 = ε
(
‖g‖Lip

)
small enough such that

C1‖g‖Lipεpc0 ≤ 1

4
, C2‖g‖Lipεpc0 ≤ 1

4
,
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we have

‖Ψ(v)− up‖XT,b
≤ 2M, d (Ψ(v1),Ψ(v2)) ≤

1

2
d(v1, v2),

as long as we choose T = T1 ≥ T0 satisfying T−b
1 (2M)pc ≤ εpc0 . This implies that

Ψ: XT1,b,2M → XT1,b,2M is a contraction map. Thus, we have a unique solution in XT1,b,2M .
Let us show the latter assertion. By the interpolation and Proposition 2.3, we obtain

‖u− up‖q̃,r̃,λ

≤
∥∥∥∥
∫ ∞

t

U0(t, s) (F (v(s))− F (up(s))) ds

∥∥∥∥
1−a

q̃,r̃,λ

∥∥∥∥
∫ ∞

t

U0(t, s) (F (v(s))− F (up(s))) ds

∥∥∥∥
a

∞,2,λ

+ ‖E‖q̃,r̃,λ
≤ C 〈t〉−b+2λ (2M) + ‖E‖q̃,r̃,λ
for any t ≥ T1, where a ∈ (0, 1) with q̃(1− a) = q. This implies

tb̃−2λ‖u− up‖q̃,r̃,λ,t ≤ C 〈t〉b̃−b (2M) + ‖E‖q̃,r̃,λ,t,

and thus the desired estimate holds.

3 Preliminary estimates

In this section, we summarize some important estimates. In what follows, we assume that
λ = λd > 0 satisfies (10). Define δ > 0 and δ′ > 0 as constants satisfying (11) and δ′ = 1
for d = 1, δ′ = δ for d = 2, 3. Under (10), we find that 1 + pc > 2 if d = 1, 2 and
1 + pc < 2 if d = 3. Moreover, (11) always fails for d ≥ 4 because λ < 1/2 and hence we
only consider the case d ≤ 3. Also, fix n ∈ Z and we handle estimates for each n

3.1 Estimates for the fractional chain rule

We denote the smallest integer n0 such that n0 ≥ δ by ⌈δ⌉ for any δ ∈ R. Firstly, the
following is valid.

Proposition 3.1. Suppose u+ ∈ H0,δ. Then there exists C > 0 such that

‖ŵ(s)‖Hδ ≤ C 〈g1 log s〉⌈δ⌉ ‖u+‖H0,δ (1 + ‖û+‖pc∞)
⌈δ⌉

for any s ≥ 1.

In [26, 28], in order to weaken the condition on the nonlinearity, they use an inter-
polation technique. Roughly speaking, this technique enables us to improve the upper
bound of ‖|ŵ|1+pc−nŵn‖Hδ from O(n⌈δ⌉) into O(nδ). However, they need stronger regu-
larity conditions for the data in the technique. We here improve the regularity condition
by combining the fractional Leibniz rule and intermediate use of the interpolation. The
key of the removability is δ > 1 so that it is only applied in d = 2, 3.
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Proposition 3.2. Suppose u+ ∈ H0,δ′ . Take γ = δ if d = 1, 2 and γ ∈ (δ, 1 + pc) if d = 3.
Then there exists C > 0 such that

∥∥|ŵ(s)|pc+1−nŵ(s)n
∥∥
Hδ ≤ C 〈n〉γ 〈g1 log s〉⌈δ⌉ ‖u+‖H0,δ′ ‖û+‖pc∞ (1 + ‖û+‖pc∞)

⌈δ⌉

for any s ≥ 1.

Proposition 3.3. Suppose u+ ∈ H0,δ′ . Then there exists C > 0 such that

∥∥∂t
(
|ŵ(s)|pc+1−nŵ(s)n

)∥∥
Hδ

≤ C|g1| 〈n〉1+δ s−1 〈g1 log s〉⌈δ⌉ ‖u+‖H0,δ′ ‖û+‖2pc∞ (1 + ‖û+‖pc∞)
⌈δ⌉

for any s ≥ 1.

We postpone the proof of the above propositions and show the generalized version of
the propositions in the appendix. A use of Proposition 3.1 and Proposition 3.2 gives us
the time decay estimate of the resonant part Er. The following tells us that the resonant
part Er is harmless:

Lemma 3.4. Let (q, r) be an admissible pair. The followings hold:

‖R(τ)ŵ(τ)‖∞,2,λ,τ + τ−2λ‖R(τ)ŵ(τ)‖q,r,λ,τ
≤ Cτ−λ−

δ
2
(1−2λ) 〈g1 log τ〉⌈δ⌉ ‖u+‖H0,δ (1 + ‖û+‖pc∞)

⌈δ⌉
,

and
∥∥∥∥
∫ ∞

t

U0(t, s)R(s)G(ŵ(s))
ds

ζ2(s)1/(1−λ)

∥∥∥∥
∞,2,λ,τ

+ τ−2λ

∥∥∥∥
∫ ∞

t

U0(t, s)R(s)G(ŵ(s))
ds

ζ2(s)1/(1−λ)

∥∥∥∥
q,r,λ,τ

≤ C |g1| τ−λ−
δ
2
(1−2λ) 〈g1 log τ〉⌈δ⌉ ‖u+‖H0,δ′ ‖û+‖pc∞ (1 + ‖û+‖pc∞)

⌈δ⌉

for any τ ≥ r0.

Proof. The strategy is the same as in [16, 22]. Hence we omit the proof.

Regarding A(t), we have the following:

Lemma 3.5 ([22, Lemma 3.4]). Let (q, r) be an admissible pair. Assume u+ ∈ L2. Under
Assumption 1.1, there exists C > 0 such that

‖A(τ)‖∞,2,λ,τ + τ−2λ‖A(τ)‖q,r,λ,τ ≤ C 〈τ〉− δ
2
(1−λ)−λ ‖u+‖2‖û+‖pc∞

for any τ ≥ r0.
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3.2 Properties for the time-dependent regularizing operator

Let ψ ∈ S (Rd), the Schwartz space. In order to obtain the time decay property of the
non-resonant part Enr, Masaki, the second author and Uriya [28] (cf. [16, 26]) introduced
a regularizing operator depending on n and t defined by

ψ

( −i∇
|n|

√
t

)
= F−1ψ

(
ξ

|n|
√
t

)
F .

In this paper, in order to suit (NLS), we modify the operator as

Kψ = Kψ(t, n) := ψ

( −i∇
|n|tρ/2

)
, ρ = 1− 2λ. (36)

Arguing as in the proof of [28, Lemma 2.1], we have the following:

Lemma 3.6. Let ψ ∈ S (Rd). Fix s ∈ R and θ ∈ [0, 2]. Assume ∇ψ(0) = 0 if θ ∈ (1, 2].
For any t > 0 and n 6= 0, the followings hold.

(i) Kψ is a bounded linear operator on L2 and satisfies ‖Kψ‖L(L2) ≤ ‖ψ‖∞. Further,

Kψ commutes with ∇. In particular, Kψ is a bounded linear operator on Ḣs and
satisfies ‖Kψ‖L(Ḣs) ≤ ‖ψ‖∞.

(ii) Kψ − ψ(0) is a bounded linear operator from Ḣs+θ to Ḣs with norm

‖Kψ − ψ(0)‖L(Ḣs+θ,Ḣs) ≤ Ct−
ρ
2
θ|n|−θ.

3.3 Factorization of propagator

We here show the factorization identity for the propagator necessary to analyze the non-
resonant part of the nonlinearity.

Lemma 3.7. Let a, b ∈ R with 4ab 6= −1. Then for all φ ∈ L2(Rd),

eia∆eib|x|
2

φ = (i)d/2e4abi|x|
2/(1+4ab)ea(1+4ab)i∆D(1 + 4ab)φ (37)

holds.

Proof. We mimic the approach of [16, Lemma A.2]. For φ ∈ L2(Rd),

eia∆
(
eib|x|

2

φ
)
(x) =

(
1

4πia

)d/2 ∫

Rd

ei|x−y|
2/(4a)eib|y|

2

φ(y)dy

holds. Here

|x− y|2
4a

+ b|y|2 = |x|2
4a

− x · y
2a

+
|y|2
4a

+ b|y|2

=
|x|2
4a

+
1 + 4ab

4a

(
|y|2 − 2x · y

1 + 4ab

)

=
4ab|x|2

4a(1 + 4ab)
+

1

4a(1 + 4ab)
|x− (1 + 4ab)y|2 .
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Since
∫

Rd

ei|x−(1+4ab)y|2/(4a(1+4ab))φ(y)dy

=
1

(1 + 4ab)d

∫

Rd

ei|x−z|
2/(4a(1+4ab))φ

(
z

1 + 4ab

)
dz

=
1

(−i(1 + 4ab))d/2

∫

Rd

ei|x−z|
2/(4a(1+4ab)) (D (1 + 4ab)φ) (z)dz

=
(4πi(a(1 + 4ab)))d/2

(−i(1 + 4ab))d/2
ea(1+4ab)i∆ (D (1 + 4ab)φ) (z)dz,

we have (37).

Lemma 3.8. The following factorization of the propagator holds:

eiζ1(s)∆/(2ζ2(s))ei(n−1)ζ2(s)ζ′2(s)|x|
2/2 = (i)d/2ei(n−1)ζ2(s)ζ′2(s)|x|

2/(2(1+(n−1)ζ1(s)ζ′2(s)))

× eiζ1(s)(1+(n−1)ζ1(s)ζ′2(s))∆/(2ζ2(s))

×D (1 + (n− 1)ζ1(s)ζ
′
2(s))

for any s ≥ r0.

Proof. The desired identity can be obtained by applying a = ζ1(s)/(2ζ2(s)) and b = (n−
1)ζ2(s)ζ

′
2(s)/2 in Lemma 3.7. Hence all we need to show is 4ab = (n− 1)ζ1(s)ζ

′
2(s) 6= −1.

Thanks to the assumption 1.1, as s→ ∞, ζ1(s) and ζ2(s) satisfy that

ζ1(s) = c1s
λ + o(sλ), ζ2(s) = c2s

1−λ + o(s1−λ)

and

ζ ′1(s) = c1λs
λ−1 + o(sλ−1), ζ ′2(s) = c2(1− λ)s−λ + o(s−λ)

with some non zero constants c1 and c2 (see e.g., Geluk-Marić-Tomic [5]). Thanks to the
condition of discriminant, for all s, we have

1 = ζ1(s)ζ
′
2(s)− ζ ′1(s)ζ2(s) = c1c2(1− 2λ) + o(1),

which yields

(n− 1)ζ1(s)ζ
′
2(s) = (n− 1)(1− λ)c1c2 + o(1) =

1− λ

1− 2λ
(n− 1) + o(1).

as s → ∞. If (n − 1)(1 − λ)/ρ = −1 holds, then λ = n/(n + 1), and which contradicts
that λ ∈ (0, 1/2).

4 Estimates for non-resonant terms

In this section, we shall first prove Proposition 1.11. Set δ > 0 as in (11). To this end,
let us estimate the term associated with N (up(t)). For simplicity, define

V1(ϕ) = ‖ϕ‖pc∞
{
‖ϕ‖Hδ′ (1 + ‖ϕ‖pc∞)

⌈δ⌉
+
∥∥|ξ|−δϕ

∥∥
2

}
,

17



V2(ϕ) = ‖ϕ‖2pc∞

{
‖ϕ‖Hδ′ (1 + ‖ϕ‖pc∞)

⌈δ⌉
+
∥∥|ξ|−δϕ

∥∥
2

}
.

We notice

up(t) = M1(t)D(ζ2(t))ŵ(t) = D(ζ2(t))E(t)ŵ(t),

where

E(t)φ = eiζ2(t)ζ
′
2(t)x

2/2φ(x).

Then by the same scheme as in [26], one rewrites

N (up(t)) =
∑

n 6=0,1

gn |D(ζ2(t))E(t)ŵ(t)|1+pc−n (D(ζ2(t))E(t)ŵ(t))
n

=
∑

n 6=0,1

gn

(
cdn

ζ2(t)1/(1−λ)
D(ζ2(t))E(t)

nφn(t)

)
,

where cdn = i−d(n−1)/2 and φn(t) = |ŵ(t)|1+pc−n (ŵ(t))n. We here set ψ0 ∈ C∞
0 (Rd) such

that

ψ0(y) =

{
1, |y| ≤ 1,

0, |y| > 2,
0 ≤ ψ0 ≤ 1,

and let K := Kψ0(t, n) as in (36). Note that ∇ψ0(0) = 0 and in particular, there are no
upper bound of θ in Lemma 3.6 because of ψ0 ≡ 1 on [−1, 1]. We then decompose N (up)
as N (up(t)) = P +Q with the low-frequency part

P :=
∑

n 6=0,1

gn

(
cdn

ζ2(t)1/(1−λ)
D(ζ2(t))E(t)

nKφn(t)
)

and the high-frequency part

Q :=
∑

n 6=0,1

gn

(
cdn

ζ2(t)1/(1−λ)
D(ζ2(t))E(t)

n (1−K)φn(t)

)
.

4.1 Estimate for Q
The term associated with Q can be estimated as the same argument in [26, 28]. Firstly,
noting ∇ψ0(0) = 0, we see from Lemma 3.6 that

∥∥∥∥
∫ ∞

t

U0(t, s)Q ds

∥∥∥∥
∞,2,λ

≤ C sup
t≥τ

〈t〉−λ
∫ ∞

t

∑

n 6=0,1

|gn| ‖(K − 1)φn(s)‖2
ds

s

≤ C sup
t≥τ

〈t〉−λ
∫ ∞

t

∑

n 6=0,1

|gn||n|−δs−1− δ
2
ρ
∥∥|∇|δφn(s)

∥∥
2
ds

≤ C 〈τ〉−λ− δ
2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|γ−δ|gn|
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for any τ ≥ r0. Moreover, arguing as in the above, by employing Lemma 2.1, one sees
from λ− δρ/2 < 0 that

∥∥∥∥
∫ ∞

t

U0(t, s)Q ds

∥∥∥∥
q,r,λ,τ

≤ C

∫ ∞

τ

〈t〉λ ‖Q‖2 dt

≤ C 〈τ〉λ− δ
2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|γ−δ|gn|

for any τ ≥ r0. Hence conclude the estimate

∥∥∥∥
∫ ∞

t

U0(t, s)Q ds

∥∥∥∥
∞,2,λ

+ τ−2λ

∥∥∥∥
∫ ∞

t

U0(t, s)Q ds

∥∥∥∥
q,r,λ,τ

≤ C 〈τ〉−λ− δ
2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|γ−δ|gn|.
(38)

4.2 Estimate for P
We estimate the term associated with P. Thanks to Lemma 1.10, one has

U0(t, 0) = M1(t)D(ζ2(t))FM
(
ζ2(t)

ζ1(t)

)
= M1(t)D(ζ2(t))U

(
−ζ1(t)
ζ2(t)

)
F ,

where U(t) = eit∆/2. Then U0(t, s)P can be rewritten as

U0(t, s)P = U0(t, 0)F
−1

FU0(0, s)P

= M1(t)D(ζ2(t))U

(
−ζ1(t)
ζ2(t)

)
FU0(0, s).

We calculate the term FU0(0, s)P. Since

D(ζ2(s))
−1M1(s)

−1D(ζ2(s))φ =
1

(iζ2(s))n/2
D(ζ2(s))

−1
(
e−iζ

′
2(s)x

2/(2ζ2(s))φ(x/ζ2(s))
)

= e−iζ
′
2(s)ζ2(s)x

2/2φ(x) = E(s)−1φ,

we have

FU0(0, s)P = U

(
ζ1(s)

ζ2(s)

)
D(ζ2(s))

−1M1(s)
−1

∑

n 6=0,1

gn

(
cdn

ζ2(s)1/(1−λ)
D(ζ2(s))E(s)

nKφn(s)
)

= U

(
ζ1(s)

ζ2(s)

) ∑

n 6=0,1

gn

(
cdn

ζ2(s)1/(1−λ)
E(s)n−1Kφn(s)

)
,

where φn(t) = |ŵ(t)|1+pc−n (ŵ(t))n. Using the lemma 3.8, one has

U

(
ζ1(s)

ζ2(s)

)
E(s)n−1 = id/2ei(n−1)ζ2(s)ζ′2(s)|x|

2/(2(1+(n−1)ζ1(s)ζ′2(s)))

× eiζ1(s)(1+(n−1)ζ1(s)ζ′2(s))∆/(2ζ2(s))D (1 + (n− 1)ζ1(s)ζ
′
2(s)) .
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Here we set

An(s) =
(n− 1)ζ2(s)ζ

′
2(s)

2(1 + (n− 1)ζ1(s)ζ ′2(s))
, Bn(s) =

ζ1(s)(1 + (n− 1)ζ1(s)ζ
′
2(s))

2ζ2(s)
,

Cn(s) = 1 + (n− 1)ζ1(s)ζ
′
2(s).

Then it holds that

U

(
ζ1(s)

ζ2(s)

)
E(s)n−1 = id/2eiAn(s)|x|2eiBn(s)∆D (Cn(s)) ,

which implies

FU0(0, s)D (ζ2(s))E(s)
n = id/2eiAn(s)|x|2eiBn(s)∆D (Cn(s)) . (39)

By using ζ1(s)ζ
′
2(s)− ζ ′1(s)ζ2(s) = 1 for any s ∈ R, we compute

d

ds
An(s) =

(n− 1)(((ζ ′2)
2 + ζ2ζ

′′
2 )(1 + (n− 1)ζ1ζ

′
2)− (n− 1)ζ2ζ

′
2(ζ

′
1ζ

′
2 + ζ1ζ

′′
2 ))

2(1 + (n− 1)ζ1(s)ζ ′2(s))
2

=
(n− 1){n(ζ ′2(s))2 + ζ2(s)ζ

′′
2 (s)}

2(1 + (n− 1)ζ1(s)ζ
′
2(s))

2

and

d

ds
Bn(s) =

d

ds

(
nζ1(s)

2ζ2(s)
+

(n− 1)ζ1(s)ζ
′
1(s)

2

)

= − n

2ζ2(s)2
+
n− 1

2

(
(ζ ′1(s))

2 + ζ1(s)ζ
′′
1 (s)

)
.

Hence

A′
n(s) ∼ s−2λ, B′

n(s) ∼ ns2λ−2. (40)

Here, for any α, β ∈ R, we write F (t, n) ∼ tαnβ if there exist constants C1, C2 > 0 such
that C1t

α|n|β ≤ F (t, n) ≤ C2t
α|n|β for any t ≥ r0 and n 6= 0. Let

An(s) =
(
1 + isA′

n(s)|x|2
)−1

.

One has
∫ ∞

t

U

(
ζ1(s)

ζ2(s)

)
E(s)n−1Kφn(s)

ds

ζ2(s)1/(1−λ)

=

∫ ∞

t

An(s)∂s

(
seiAn(s)|x|2

)
eiBn(s)∆D(Cn(s))Kφn(s)

ds

ζ2(s)1/(1−λ)

= − eiAn(t)|x|2An(t)e
iBn(t)∆D(Cn(t))Kφn(t)

t

ζ2(t)1/(1−λ)

−
∫ ∞

t

eiAn(s)|x|2∂s

(
An(s)

ζ2(s)1/(1−λ)

)
seiBn(s)∆D(Cn(s))Kφn(s)ds

−
∫ ∞

t

eiAn(s)|x|2An(s)e
iBn(s)∆ (∂s + iB′

n(s)∆)D(Cn(s))Kφn(s)
sds

ζ2(s)1/(1−λ)
.
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The identity (39) yields

eiAn(s)|x|2 = i−d/2FU0(0, s)D (ζ2(s))E(s)
nD (Cn(s))

−1 e−iBn(s)∆.

Hence we see that

i

∫ ∞

t

U0(t, s)P(s)ds = iM1(t)D(ζ2(t))U

(
−ζ1(t)
ζ2(t)

)

×
∑

n 6=0,1

gncdn

∫ ∞

t

U

(
ζ1(s)

ζ2(s)

)
E(s)n−1Kφn(s)

ds

ζ2(s)1/(1−λ)

= −i(I1 + I2 + I3),

(41)

where

I1 :=
∑

n 6=0,1

gni
−dn/2D (ζ2(t))E(t)

nD (Cn(t))
−1 e−iBn(t)∆

× An(t)e
iBn(t)∆D(Cn(t))Kφn(t)

t

ζ2(t)1/(1−λ)
,

I2 :=

∫ ∞

t

U0(t, s)D (ζ2(s))
∑

n 6=0,1

gni
−dn/2E(s)nD (Cn(s))

−1 e−iBn(s)∆

× s∂s

(
An(s)

ζ2(s)1/(1−λ)

)
eiBn(s)∆D(Cn(s))Kφn(s) ds,

and

I3 :=

∫ ∞

t

U0(t, s)D (ζ2(s))
∑

n 6=0,1

gni
−dn/2E(s)nD (Cn(s))

−1 e−iBn(s)∆

× s

ζ2(s)1/(1−λ)
An(s)e

iBn(s)∆ (∂s + iB′
n(s)∆)D(Cn(s))Kφn(s) ds.

In order to estimate Ij , we need the following:

Lemma 4.1. Set Gn(t) = An(t)e
iBn(t)∆D(Cn(t))K. Let κ = 2−1 (δ − d/2). Take r > 2.

Then it holds that

‖Gn(t)φn(t)‖2 ≤ Ct−
δ
2
ρ|n|−δ+κ

(
‖φn(t)‖Ḣδ + |ψ0(0)|

∥∥|ξ|−δφn(t)
∥∥
2

)
, (42)

∥∥e−iBn(t)∆Gn(t)φn(t)
∥∥
r
≤ Ct

ν−δ
2
ρ|n|−δ+κ

(
‖φn(t)‖Ḣδ + |ψ0(0)|

∥∥|ξ|−δφn(t)
∥∥
2

)
(43)

for any t ≥ 1 and n 6= 0, 1, where ν = d
(
1
2
− 1

r

)
.

Proof. We here remark that

An(t) ∼ tρ, Bn(t) ∼ t−ρn, Cn(t) ∼ n. (44)

Let us first show (42). The triangle inequality gives us

‖Gn(t)φn(t)‖2 ≤
∥∥An(t)

(
eiBn(t)∆ − 1

)
D(Cn(t))Kφn(t)

∥∥
2

+ ‖An(t)D(Cn(t)) (K − ψ(0))φn(t)‖2

21



+ |ψ0(0)| ‖An(t)D(Cn(t))φn(t)‖2
=: In + IIn + IIIn.

Combining the Hölder inequality and Sobolev embedding with the fact

|eiBn(t)|ξ|2 − 1| ≤ C|Bn(t)|θ|ξ|2θ

for any θ ∈ [0, 1], it holds that

In ≤ C ‖An(t)‖p1
∥∥∥∥|∇|

n
p1 |Bn(t)|

1
2

(
δ− d

p1

)

|∇|δ−
d
p1D(Cn(t))Kφn(t)

∥∥∥∥
2

≤ C|tA′
n(t)|−

d
2p1 |Bn(t)|

1
2

(
δ− d

p1

)

|Cn(t)|−δ
∥∥|∇|δKφn(t)

∥∥
2

≤ Ct−
δ
2
ρ|n|−δ+

1
2

(
δ− d

p1

)

‖φn(t)‖Ḣδ

for any p1 ≥ 2. Note that we are able to choose p1 such that

1

2

(
δ − d

p1

)
≤ 1

2

(
δ − d

2

)
= κ.

Also, Lemma 3.6 (ii) tells us that for any p2 ≥ 2,

IIn ≤ C ‖An(t)‖p2
∥∥∥|∇|

d
p2D(Cn(t)) (K − ψ0(0))φn(t)

∥∥∥
2

≤ C|tA′
n(t)|−

d
2p2 |Cn(t)|−

d
p2

∥∥∥|∇|
d
p2 (K − ψ0(0))φn(t)

∥∥∥
2

≤ Ct
− d

2p2
ρ|n|−

d
p2 |t|− θ2

2
(1−2λ)|n|−θ2 ‖φn(t)‖

Ḣ
d
p2

+θ2

≤ Ct−
δ
2
ρ|n|−δ ‖φn(t)‖Ḣδ

Here we choose p2 ≥ 2 and θ2 ≥ 0 such that d
p2

+ θ2 = δ. Finally, let us consider the

estimate of IIIn. Note that |x|θ|An(t)| ≤ C(tA′
n(t))

− θ
2 for any θ ∈ [0, 2]. Therefore it is

obtained that

IIIn ≤ C(tA′
n(t))

− δ
2 |ψ0(0)|

∥∥|ξ|−δD(Cn(t))φn(t)
∥∥
2

≤ C(tA′
n(t))

− δ
2 |Cn(t)|−δ|ψ0(0)|

∥∥|ξ|−δφn(t)
∥∥
2

≤ Ct−
δ
2
ρ|n|−δ|ψ0(0)|

∥∥|ξ|−δφn(t)
∥∥
2
.

Collecting these above, we conclude (42). Let us move on to the proof of (43). By using
the Gagliardo-Nirenberg inequality, we estimate

‖Gn(t)φn(t)‖r ≤ C ‖Gn(t)φn(t)‖1−ν2 ‖∇Gn(t)φn(t)‖ν2 , (45)

where ν = d
(
1
2
− 1

r

)
. In terms of ‖∇Gn(t)φn(t)‖2, applying

|∇An(t)| ≤ C(tA′(t))
1
2 |An(t)|

for any t ≥ 1, one has

‖∇Gn(t)φn(t)‖2 ≤ C(tA′
n(t))

1
2 ‖Gn(t)φn(t)‖2

+
∥∥An(t)∇eiBn(t)∆D(Cn(t))Kφn(t)

∥∥
2
.

(46)
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As for the second term in the above right-hand side, we here define a regularizing operator
by K̃ = Kψ̃0

with ψ̃0 ∈ C∞
0 (Rd) satisfying ψ̃0(x) = 1 (|x| ≤ 2), ψ̃0(x) = 0 (|x| > 2) and

0 ≤ ψ̃0 ≤ 1. It then follows from ψ0ψ̃0 = ψ0 that K̃K = K. Noting

D(Cn(t))K̃ = D(Cn(t))ψ̃0

( −i∇
|n|tρ/2

)
= ψ̃0

(−iCn(t)∇
|n|tρ/2

)
D(Cn(t)),

we have

∥∥An(t)∇eiBn(t)D(Cn(t))Kφn
∥∥
2
≤

d∑

j=1

∥∥∥An(t)∂je
iBn(t)D(Cn(t))K̃Kφn

∥∥∥
2

≤
d∑

j=1

∥∥∥∥An(t)∂jψ̃0

(−iCn(t)∇
|n|tρ/2

)
eiBn(t)D(Cn(t))Kφn

∥∥∥∥
2

.

Here denote K̃j = ψ̃j

(
−iCn(t)∇

|n|tρ/2

)
with ψ̃j(x) = xjψ̃0(x), which has the relation

∂jψ̃0

(−iCn(t)∇
|n|tρ/2

)
=
i|n|t ρ2
Cn(t)

K̃j.

We compute

∥∥∥An(t)∂je
iBn(t)D(Cn(t))K̃Kφn

∥∥∥
2
≤ |n|tρ/2

|Cn(t)|
∥∥∥An(t)K̃je

iBn(t)D(Cn(t))Kφn
∥∥∥
2
.

A commutator calculation shows
[
An(t), K̃j

]
= An(t)

[
K̃j, itA

′
n(t)|ξ|2

]
An(t)

=
tA′

n(t)Cn(t)

|n|tρ/2 An(t)
(
ξ · (∇K̃j) + (∇K̃j) · ξ

)
An(t)

=
2tA′

n(t)Cn(t)

|n|tρ/2 An(t)ξ · (∇K̃)An(t)

+
itA′

n(t)(Cn(t))
2

|n|2tρ An(t)(∆K̃)An(t),

where we remark that ∇K̃ and ∆K̃ are defined by

∇K̃ = F−1∇ψ̃0

(
Cn(t)ξ

|n|tρ/2
)
F , ∆K̃ = F−1∆ψ̃0

(
Cn(t)ξ

|n|tρ/2
)
F .

This tells us that

∥∥∥
[
An(t), K̃j

]
(An(t))

−1
∥∥∥
L(L2)

≤ C

√
|tA′

n(t)|
tρ/2

≤ C.

From An(t)K̃j = K̃jAn(t) +
[
An(t), K̃j

]
and

∥∥∥K̃j

∥∥∥
L (L2)

≤ C, we deduce that

∥∥An(t)∇eiBn(t)D(Cn(t))Kφn
∥∥
2
≤ Ctρ/2

∥∥An(t)e
iBn(t)D(Cn(t))Kφn

∥∥
2
.
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Together with (46), one sees from the above that

∥∥An(t)∇eiBn(t)D(Cn(t))Kφn
∥∥
2
≤ Ctρ/2 ‖Gnφn‖2 .

Combining (42) with (45), this implies

‖Gn(t)φn(t)‖r ≤ Ct
νρ
2 ‖Gn(t)φn(t)‖2

≤ Ct
ν−δ
2
ρ|n|−δ+κ

(
‖φn(t)‖Ḣδ + |ψ(0)|

∥∥|ξ|−δφn(t)
∥∥
2

)
.

This completes the proof.

Let us go back to the estimate for P. Let a(λ, η) = a(λ) + η and we note that, by
taking γ near δ for d = 3, we have −δ+κ+ γ ≤ a(λ, η) since κ = 2−1 (δ − d/2) < a(λ, η).

Estimation of I1.
We first estimate the term I1. Clearly

‖I1‖∞,2,λ ≤ C
∑

n 6=0,1

|gn| sup
t≥τ

〈t〉−λ ‖Gn(t)φn(t)‖2

holds. By means of Proposition 3.2 and (42), we deduce that

〈t〉−λ ‖Gn(t)φn(t)‖2 ≤ C 〈t〉− δ
2
ρ−λ |n|−δ+κ

(
‖φn(t)‖Ḣδ +

∥∥|ξ|−δφn(t)
∥∥
2

)

≤ C 〈t〉− δ
2
ρ−λ 〈g1 log t〉⌈δ⌉ |n|a(λ,η)V1(û+)

for any t ≥ τ , which implies

‖I1‖∞,2,λ ≤ C 〈τ〉−λ− δ
2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|a(λ,η)|gn|.

On the other hand, simple calculation shows

∥∥D(ζ2(t))E(t)
nD(Cn(t))

−1Φ
∥∥
r
= |ζ2(t)|−d(1/2−1/r)

∥∥E(t)nD(Cn(t))
−1Φ

∥∥
r

≤ Ct−2(1−λ)/q |n|2/q ‖Φ‖r
for any t ≥ τ . Note that 2/q = d (1/2− 1/r). Using Proposition 3.2 and (43) again, we
obtain

‖I1‖q,r,λ ≤ C
∑

n 6=0,1

|n| 2q |gn|
(∫ ∞

τ

〈t〉−λ−2(1−λ)
∥∥e−iBn(t)∆Gn(t)φn(t)

∥∥q
r
dt

)1/q

≤ CV1(û+)
∑

n 6=0,1

|n| 2q−δ+κ+γ |gn|
(∫ ∞

τ

〈t〉− δ
2
ρq−1−λ 〈g1 log t〉⌈δ⌉ dt

)1/q

≤ C 〈τ〉− δ
2
ρ−λ

q 〈g1 log τ〉⌈δ⌉ V1(û+)
∑

n 6=0,1

|n| 2q+a(λ,η)|gn|

for any τ ≥ r0, since

−λ− 2(1− λ) +
2/q − δ

2
(1− 2λ)q = −δ

2
ρq − 1− λ.
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Therefore, together with 2/q ≤ 1, it holds that

‖I1‖∞,2,λ,τ + 〈τ〉−2λ ‖I1‖q,r,λ,τ
≤ C 〈τ〉−λ− δ

2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|1+a(λ,η)|gn|. (47)

Estimation of I2.
We here estimate I2. By the simple calculation, we get

∂s

(
An(s)

ζ2(s)1/(1−λ)

)
=

(An(s))
′ (ζ2(s))

1/(1−λ) − (1− λ)−1ζ ′2(s)ζ2(s)
λ/(1−λ)An(s)

(ζ2(s))2/(1−λ)

= (ζ2(s))
−1/(1−λ)(An(s))

′ − (1− λ)−1(ζ2(s))
−(1+1/(1−λ))ζ ′2(s)An(s)

with

(An(s))
′ =

−iA′
n(s)|x|2 − isA′′

n(s)|x|2
(1 + isA′

n(s)|x|2)2

= − s−1
An(s) + s−1

A
2(s)− A′′(s)

A′(s)

(
A (s)− A

2(s)
)
.

Recall that ζ2 ∈ C3([r0,∞)) and c|s|1−λ−j < |ζ (j)2 (s)| < C|s|1−λ−j with constants 0 < c <
C for 0 ≤ j ≤ 3 and any |s| ≥ r0. Thus A

′′
n(s) ∼ s−1−2λ, where we use

ζ
(3)
2 (s) = (−σ(s)ζ2(s))′ = −σ′(s)ζ2(s)− σ(s)ζ ′2(s) ∼ s−2−λ.

Therefore, since |An(s)| ≤ 1, there exists a function Bn(s) so that |Bn(s)| ≤ C|s|−1 and

s∂s

(
An(s)

ζ2(s)1/(1−λ)

)
= Bn(s)An(s) (48)

for any s ≥ r0. Then by employing Lemma 2.1 with an admissible pair (q, r), we obtain

‖I2‖q,r,λ ≤ C

∥∥∥∥∥D(ζ2(s))
∑

n 6=0,1

gnG1,n(s)s∂s

(
An(s)

ζ2(s)1/(1−λ)

)
G2,n(s)φn(s)

∥∥∥∥∥
1,2,−λ

with G1,n(s) = E(s)nD(Cn(s))
−1e−iBn(s)∆ and G2,n(s) = eiBn(s)∆D(Cn(s))K. One sees

from (48) that

‖I2‖q,r,λ ≤ C
∑

n 6=0,1

|gn|
∫ ∞

τ

〈t〉λ ‖Gn(t)φn(t)‖2
dt

t
. (49)

By Proposition 3.2 and (42), recalling δ > 2λ/(1− 2λ), it holds that

‖I2‖q,r,λ ≤ CV1(û+)
∑

n 6=0,1

|n|a(λ,η)|gn|
∫ ∞

τ

〈t〉−1+λ− δ
2
(1−2λ) 〈g1 log t〉⌈δ⌉ dt

≤ C 〈τ〉λ− δ
2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|a(λ,η)|gn|
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for any τ ≥ r0. On the other hand, we easily find

‖I2‖∞,2,λ ≤ C
∑

n 6=0,1

|gn| sup
t≥τ

〈t〉−λ
∫ ∞

t

‖Gn(s)φn(s)‖2
ds

s

≤ C 〈τ〉−λ− δ
2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|a(λ,η)|gn|

for any τ ≥ r0. Hence we conclude that

‖I2‖∞,2,λ,τ + 〈τ〉−2λ ‖I2‖q,r,λ,τ
≤ C 〈τ〉−λ− δ

2
ρ 〈g1 log τ〉⌈δ⌉ V1(û+)

∑

n 6=0,1

|n|a(λ,η)|gn|. (50)

Estimation of I3.
Similarly to the estimate of I2, we have

‖I3‖∞,2,λ,τ

≤ C
∑

n 6=0,1

|gn| sup
s≥τ

〈s〉−λ
∫ ∞

s

∥∥An(t)e
iBn(t)∆ (∂t + iB′

n(t)∆)D(Cn(t))Kφn(t)
∥∥
2
dt

(51)

for any τ ≥ r0. Further, Lemma 2.1 tells us that

‖I3‖q,r,λ,τ
≤ C

∑

n 6=0,1

|gn|
∫ ∞

τ

〈t〉λ
∥∥An(t)e

iBn(t)∆ (∂t + iB′
n(t)∆)D(Cn(t))Kφn(t)

∥∥
2
dt

(52)

for any τ ≥ r0. Let us here estimate

∥∥An(t)e
iBn(t)∆ (∂t + iB′

n(t)∆)D(Cn(t))Kφn(t)
∥∥
2
.

Firstly we note that

∂t (D(Cn(t))Φ(t, ·)) (x)

=
1

(iCn(t))d/2

(
(∂tΦ)(t, x/Cn(t))−

C ′
n(t)

Cn(t)

(
d

2
Φ(t, x/Cn(t)) +

x

Cn(t)
· (∇Φ) (t, x/Cn(t))

))

= D(Cn(t))

(
∂t −

C ′
n(t)

Cn(t)

(
d

2
+ x · ∇

))
Φ(t, ·),

and

∆ (D(Cn(t))Φ(t, ·)) = Cn(t)
−2D(Cn(t)) (∆Φ(t, ·)) .

These imply

(∂t + iB′
n(t)∆)D(Cn(t))Kφn(t)

= D(Cn(t))

(
∂t +

iB′
n(t)

Cn(t)2
∆− C ′

n(t)

Cn(t)

(
d

2
+ x · ∇

))
Kφn(t).
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Here, we define the operators K1 = Kψ1 , K2 = Kψ2 , where

ψ1(x) = x · ∇ψ(x), ψ2(x) = |x|2ψ(x).

Applying the relations

∂tK =
ρ

2
t−1K1 +K∂t, ∆K = −|n|2tρK2, (53)

one obtains

(∂t + iB′
n(t)∆)D(Cm(t))Kφn(t) =

ρ

2
t−1D(Cn(t))K1φn(t) +D(Cn(t))K∂tφn(t)

− |n|2tρ iB
′
n(t)

Cn(t)2
D(Cn)K2φn(t)

− dC ′
n(t)

2Cn(t)
D(Cn)Kφn(t) +

C ′
n(t)

Cn(t)
D(Cn)x · ∇Kφn(t).

In view of
B′
n(t) ∼ nt−1−ρ, Cn(t) ∼ n, C ′

n(t) ∼ nt−1,

we then estimate
∥∥Am(t)e

iBm(t)∆ (∂t + iB′
m(t)∆)D(Cm(t))Kφm(t)

∥∥
2

≤ Ct−1
∥∥An(t)e

iBn(t)∆D(Cn(t))K1φn(t)
∥∥
2

+ C
∥∥An(t)e

iBn(t)∆D(Cn(t))K∂tφn(t)
∥∥
2

+ C|n|t−1
∥∥An(t)e

iBn(t)∆D(Cn(t))K2φn(t)
∥∥
2

+ Ct−1
∥∥An(t)e

iBn(t)∆D(Cn(t))Kφn(t)
∥∥
2

+ Ct−1
∥∥An(t)e

iBn(t)∆D(Cn(t))x · ∇Kφn(t)
∥∥
2

=: J1 + J2 + J3 + J4 + J5.

(54)

In terms of Jj for j = 1, 2, 3, 4, sinceK1 and K2 are of the form (36) and ψ1(0) = ψ2(0) = 0,
one sees from (42) and that

J1 ≤ Ct−1− δ
2
ρ|n|−δ+κ ‖φn(t)‖Ḣδ ,

J2 ≤ Ct−
δ
2
ρ|n|−δ+κ

(
‖∂tφn(t)‖Ḣδ + |ψ(0)|

∥∥|ξ|−δ∂tφn(t)
∥∥
2

)
,

J3 ≤ Ct−1− δ
2
ρ|n|−δ+1+κ ‖φn(t)‖Ḣδ ,

J4 ≤ Ct−1− δ
2
ρ|n|−δ+κ

(
‖φn(t)‖Ḣδ + |ψ(0)|

∥∥|ξ|−δφn(t)
∥∥
2

)
.

(55)

Let us deal with J5. To get the necessary decay of t, we need to take it into account for
the regularizing operator to degenerate in the low-frequency region.

Lemma 4.2. Let κ = 2−1 (δ − d/2). Then the estimate

∥∥An(t)e
iBn(t)∆D(Cn(t))x · ∇Kφ(t)

∥∥
2
≤ Ct−

δ
2
ρ|n|−δ+1+κ ‖φ(t)‖Ḣδ .

holds for any t ≥ 1.
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Proof of Lemma 4.2. By using the relation

eiBn(t)∆x = (x+ 2iBn(t)∇) eiBn(t)∆,

we see from (53) that

∥∥An(t)e
iBn(t)∆D(Cn(t))x · ∇Kφ(t)

∥∥
2

≤ |Cn(t)|−1
∥∥An(t)e

iBn(t)∆x · D(Cn(t))∇Kφ(t)
∥∥
2

≤ |Cn(t)|−1
∥∥An(t) (x+ 2iBn(t)∇) eiBm(t)∆ · D(Cn(t))∇Kφ(t)

∥∥
2

≤ |Cn(t)|−1
∥∥An(t)xe

iBn(t)∆ · D(Cn(t))∇Kφ(t)
∥∥
2

+ 2|Cn(t)|−2|Bn(t)|
∥∥An(t)e

iBn(t)∆D(Cn(t))∆Kφ(t)
∥∥
2

≤ C|n|−1
∥∥An(t)xe

iBn(t)∆ · D(Cn(t))∇Kφ(t)
∥∥
2

+ C|n||t|−1
∥∥An(t)e

iBn(t)∆D(Cn(t))K2φ(t)
∥∥
2

=: J51 + J52.

Since J52 is the same as J3, one has

J52 ≤ Ct−1− δ
2
ρ|n|−δ+1+κ ‖φ(t)‖Ḣδ .

As for J51, it holds that

J51 ≤
C|n|−1

√
|tA′

m(t)|

d∑

j=1

∥∥|An(t)|1/2eiBn(t)∆D(Cn(t))∂jKφ(t)
∥∥
2
.

We here define the regularized operator by K3j = Kψ3j
with ψ3j(x) = xjψ0(x), which has

the relation

∂jK = i|n|t ρ2K3j . (56)

Noting ψ3j(0) = 0, arguing as in Lemma 4.1, one estimates

∥∥|An(t)|1/2eiBn(t)∆D(Cn(t))K3jφ(t)
∥∥
2

≤
∥∥|An(t)|1/2

(
eiBn(t)∆ − 1

)
D(Cn(t))K3jφ(t)

∥∥
2

+
∥∥|An(t)|1/2D(Cn(t)) (K3j − ψ3j(0))φ(t)

∥∥
2

=: IV + V.

Therefore, it is deduced that

IV ≤ C ‖An(t)‖1/2p3/2

∥∥∥∥|∇|
n
p3 |Bn(t)|

1
2

(
δ− d

p3

)

|∇|δ−
d
p3D(Cn(t))K3jφ(t)

∥∥∥∥
2

≤ Ct−
δ
2
ρ|n|−δ+

1
2

(
δ− d

p3

)

‖φ(t)‖Ḣδ

for any p3 > d. We remark that we are able to choose p3 such that

1

2

(
δ − d

p3

)
=

1

2

(
δ − d

2

)
+
d

2

(
1

2
− 1

p3

)
< κ+ 1.
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Also, it follows from the property of K3j that for any p4 ≥ 2,

V ≤ C ‖An(t)‖1/2p4/2

∥∥∥|∇|
d
p4D(Cn(t)) (K3j − ψ3j(0))φ(t)

∥∥∥
2

≤ Ct
− d

2p4
ρ|n|−

d
p4 |t|− θ3

2
ρ|n|−θ3 ‖φ(t)‖

Ḣ
d
p4

+θ2

≤ Ct−
δ
2
ρ|n|−δ ‖φ(t)‖Ḣδ

Here we choose p4 > d and θ3 ∈ [0, 1] such that d
p4

+ θ3 = δ. Combining these estimates

with (56), together with tA′
n(t) ∼ tρ, one has

J51 ≤ C

d∑

j=1

∥∥|An(t)|1/2eiBn(t)∆D(Cn(t))K3jφ(t)
∥∥
2
≤ Ct−

δ
2
ρ|n|−δ+1+κ ‖φ(t)‖Ḣδ

Hence we conclude that

∥∥An(t)e
iBn(t)∆D(Cn(t))x · ∇Kφ(t)

∥∥
2
≤ Ct−

δ
2
ρ|n|−δ+1+κ ‖φ(t)‖Ḣδ .

Let us go back to estimate J5. Lemma 4.2 leads to

J5 ≤ Ct−1− δ
2
ρ|n|−δ+1+κ ‖φn(t)‖Ḣδ .

Collecting the above, (54) and (55), we see from Proposition 3.2 and Proposition 3.3 that

∥∥An(t)e
iBn(t)∆ (∂t + iB′

n(t)∆)D(Cn(t))Kφn(t)
∥∥
2

≤ Ct−
δ
2
ρ|n|−δ+κ

(
‖∂tφn(t)‖Ḣδ +

∥∥|ξ|−δ∂tφn(t)
∥∥
2

)

+ Ct−1− δ
2
ρ|n|−δ+1+κ

(
‖φn(t)‖Ḣδ +

∥∥|ξ|−δφn(t)
∥∥
2

)

≤ Ct−1− δ
2
ρ 〈g1 log t〉⌈δ⌉ |n|1−δ+κ+γ (V1(û+) + V2(û+)) .

Here note that −δ + κ + γ ≤ a(λ, η). Therefore, from (51) and (52), together with
λ < δρ/2, it is obtained that

‖I3‖∞,2,λ,τ + 〈τ〉−2λ ‖I3‖q,r,λ,τ
≤ C 〈τ〉−λ− δ

2
ρ 〈g1 log τ〉⌈δ⌉ (V1(û+) + V2(û+))

∑

n 6=0,1

|n|1+a(λ,η)|gn|. (57)

In conclusion, Proposition 1.11 is established from (41), (47), (50) and (57).

4.3 Proof of Main results

Proof of Theorem 1.4. Take b0 > 0 as in (22). Combing Lemma 3.4 with Lemma 3.5 and
Proposition 1.11, Proposition 2.2 tells us that there exists a constant ε0 = ε0(‖g‖Lip) > 0
such that if ‖û+‖L∞ ≤ ε0, then there exists a T0 := T (b0) ≥ r0 such that our integral
equation (16) admits an unique solution u ∈ C([T0,∞) ; L2) with ‖u‖XT0,b0

≤ M for

some M > 0. Let us show that the solution u satisfies ‖u‖XT0,b
< ∞ for any b ∈
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(2λ, λ+ δ(1− 2λ)/2). Since ‖u‖XT0,b
< ∞ for any b ∈ (2λ, b0] is trivial, we will prove

‖u‖XT0,b
< ∞ for all b ∈ (b0, λ + δ(1 − 2λ)/2). Fix b1 ∈ (b0, λ + δ(1 − 2λ)/2). Applying

Proposition 2.2 again, there exists a T1 = T (b1) ≥ r0 such that there exists a unique
solution u1 ∈ C([T1,∞) ; L2) with ‖u1‖XT1,b1

≤ M . Without loss of generality, we assume

T1 ≥ T0. One sees from b1 > b0 that for any t ≥ T1 ≥ 1,

tb0−λ‖u1 − up‖∞,2,λ,t + tb0−2λ‖u1 − up‖q,r,λ,t ≤ T1
b0−b1‖u1‖XT1,b

≤M,

which implies ‖u1‖XT1,b0
≤ M . Hence u, u1 ∈ XT1,b0,M . By the uniqueness property of

XT1,b0,M , it holds that u = u1 on [T1,∞). Hence we can extend the existence time of u1
as T1 = T0, that is, T0 does not depend on any b. Denoting this T0 by T , we then have
‖u‖XT,b

<∞ for any b ∈ (2λ, λ+ δ(1−2λ)/2). Combining an estimate as in (35) with the
standard argument of the uniqueness, the assertion for the uniqueness stated in Remark
1.9 is immediate. Moreover, the estimate (14) follows from Proposition 2.2. Hence, the
proof is completed.

Appendix

In this appendix, we shall prove the generalized version of Proposition 3.1 - Proposition
3.3, replacing ŵ by the generalized form φ exp(iη|φ|α). From now on, we set η, µ ∈ R

and let α ≥ 1 if d = 1, 2 and α ∈ (1/2, 1) if d = 3. Other notations are same as in the
beginning of section 3.

Proposition 4.3. Let d ≤ 3. There exists C > 0 such that

‖φ exp(iη|φ|α)‖Hδ ≤ C‖φ‖Hδ (1 + |η|‖φ‖α∞)
⌈δ⌉

for any φ ∈ Hδ.

Proposition 4.4. Let d ≤ 3. Set Ψ = φ exp(iη|φ|α) with φ ∈ Hδ′. Then there exists
C > 0 such that

∥∥|Ψ|α+1−nΨn
∥∥
Hδ ≤ C 〈n〉γ 〈η〉⌈δ⌉ ‖φ‖α∞ ‖φ‖Hδ′ (1 + ‖φ‖α∞)

⌈δ⌉
.

When Ψ = φ exp(iν|φ|α log t), a direct computation shows

∂t
(
|Ψ|α+1−nΨn

)
=
iν

t
n|Ψ|2α+1−nΨn.

Noting 2α ≥ 1, arguing as in Proposition 4.4, we easily verify the following:

Proposition 4.5. Set Ψ = φ exp(iν|φ|α log t) with φ ∈ Hδ,0. Then there exists C > 0
such that

∥∥∂t
(
|Ψ|α+1−nΨn

)∥∥
Hδ ≤ C|ν|t−1 〈n〉1+δ 〈ν log t〉⌈δ⌉ ‖φ‖2α∞‖φ‖Hδ′ (1 + ‖φ‖α∞)

⌈δ⌉
.

In order to prove the above Propositions, we need the following lemmas:
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Lemma 4.6. Let α > 0 and n ∈ Z. If α ≥ 1, then

∣∣|z|α−nzn − |w|α−nwn
∣∣ ≤ C|n|

(
|z|α−1 + |w|α−1

)
|z − w| (58)

for any z, w ∈ C. Further, when α ∈ (0, 1), the following holds:

∣∣|z|α−nzn − |w|α−nwn
∣∣ ≤ C|n|α|z − w|α. (59)

Proof. (58) is immediate from the standard calculation. (59) is given by [7, Lemma
2.4].

Lemma 4.7 ([8,19]). Let s > 0, 1 < r <∞, 1 < p1, p2, q1, q2 ≤ ∞ and 1/r = 1/p1+ q1 =
1/p2 + 1/q2. Then we have the following fractional Leibniz rule:

‖|∇|s(fg)‖Lr ≤ C (‖|∇|sf‖Lp1‖g‖Lq1 + ‖f‖Lp2‖|∇|sg‖Lq2 ) .

Lemma 4.8 ([38]). Let F be a Hölder continuous function of order 0 < ρ < 1. Suppose
that 0 < σ < ρ, 1 < p <∞ and σ/ρ < s < 1. Then

‖|∇|σF (f)‖Lp ≤ C‖f‖ρ−σ/sL∞ ‖|∇|sf‖σ/s
Lpσ/s.

Lemma 4.9. When d = 2, 3, the estimate

∥∥|∇|δ−1
(
|φ|α−nφn

)∥∥
2δ
δ−1

≤ C 〈n〉γ−1 ‖φ‖α+1−δ
∞ ‖∇φ‖δ−1

2δ .

holds. Moreover, if d = 2, then

∥∥|∇|δ−1 exp (iη|φ|α)
∥∥

2δ
δ−1

≤ C|η|δ−1‖φ‖(α−1)(δ−1)
∞ ‖∇φ‖δ−1

2δ .

When d = 3, the following holds:

∥∥|∇|δ−1 exp (iη|φ|α)
∥∥

2δ
δ−1

≤ C|η| δ−1
γ−1‖φ‖(

α
γ−1

−1)(δ−1)
∞ ‖∇φ‖δ−1

2δ .

Proof of Lemma 4.9. Firstly, we shall show the first estimate in d = 2. By |∇ (|φ|α−nφn) | ≤
C 〈n〉 |φ|α−1|∇φ|, the Gagliardo-Nirenberg inequality implies

∥∥|∇|δ−1
(
|φ|α−nφn

)∥∥
L

2δ
δ−1

≤ C
∥∥|φ|α−nφn

∥∥2−δ

∞

∥∥∇
(
|φ|α−nφn

)∥∥δ−1

2δ

≤ C 〈n〉δ−1 ‖φ‖α+1−δ
∞ ‖∇φ‖δ−1

2δ ,
(60)

where we note the identity

δ − 1

2δ
− δ − 1

d
=

(
1

2δ
− 1

d

)
(δ − 1).

This completes the proof of the first estimate in d = 2. Let us prove the case d = 3. The
Gagliardo-Nirenberg inequality gives us

∥∥|∇|δ−1
(
|φ|α−nφn

)∥∥
2δ
δ−1

≤
∥∥|φ|α−nφn

∥∥1−(δ−1)/s0

∞

∥∥|∇|s0
(
|φ|α−nφn

)∥∥(δ−1)/s0

2δ/s0
, (61)
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where s0 = α − ε and ε ∈ (0, α − δ + 1) is chosen later. Here |φ|α−nφn are α-Hölder
continuous functions, since by (59) it holds that

||z1|α−nzn1 − |z2|α−nzn2 | ≤ C|n|α|z1 − z2|α.

Hence, a use of Lemma 4.8 yields

∥∥|∇|s0
(
|φ|α−nφn

)∥∥
2δ/s0

≤ C|n|α‖φ‖α−
s0
s

∞ ‖|∇|sφ‖
s0
s
2δ
s

for any s ∈ (s0/α, 1). Applying the Gagliaro-Nirenberg inequality, we have

‖|∇|sφ‖ 2δ
s
≤ C‖φ‖1−s∞ ‖∇φ‖s2δ,

which implies

∥∥|∇|s0
(
|φ|α−nφn

)∥∥
2δ/s0

≤ C|n|α‖φ‖α−s0∞ ‖∇φ‖s02δ.

Thus we see that

∥∥|∇|δ−1
(
|φ|α−nφn

)∥∥
2δ
δ−1

≤ C|n| α
α−ε

(δ−1)‖φ‖α+1−δ
∞ ‖∇φ‖δ−1

2δ .

Taking ε > 0 small such that α
α−ε

(δ − 1) ≤ γ − 1, the desired estimate is established.
Let us show the second estimate. Set ψ = exp (iη|φ|α). In light of |∇ψ| ≤ C|η||φ|α−1|∇φ|,

arguing as in (60), we have

∥∥|∇|δ−1ψ
∥∥

2δ
δ−1

≤ C‖ψ‖2−δ∞ ‖∇ψ‖δ−1
2δ ≤ C|η|δ−1‖φ‖(α−1)(δ−1)

∞ ‖∇φ‖δ−1
2δ

as desired in d = 2. When d = 3, in the same manner of (61), one has

∥∥|∇|δ−1ψ
∥∥

2δ
δ−1

≤ C ‖|∇|s0ψ‖(δ−1)/s0
2δ/s0

.

Noting |ψ(z1)−ψ(z2)| ≤ C|η||z1− z2|α, where ψ(z) = exp (iη|z|α), it follows from Lemma
4.8 and the Gagliaro-Nirenberg inequality that

‖|∇|s0ψ‖2δ/s0 ≤ C|η|‖φ‖α−
s0
s

∞ ‖|∇|sφ‖
s0
s
2δ
s

≤ C|η|‖φ‖α−
s0
s

∞

(
‖φ‖1−s∞ ‖∇φ‖s2δ

) s0
s

≤ C|η|‖φ‖α−s0∞ ‖∇φ‖s02δ.

for any s ∈ (s0/α, 1). Hence, we conclude

∥∥|∇|δ−1ψ
∥∥

2δ
δ−1

≤ C|η| δ−1
γ−1‖φ‖

(
α
s0

−1
)
(δ−1)

∞ ‖∇φ‖δ−1
2δ ,

taking γ − 1 = s0. This completes the proof.

32



Proof of Proposition 4.3. Set
ψ(φ) = exp (iη|φ|α) .

Let us first show the case d = 1. Lemma 4.7 gives us

‖φ exp(iη|φ|α)‖Ḣδ ≤ C (‖φ‖Ḣδ‖ψ‖L∞ + ‖φ‖L∞‖ψ‖Ḣδ)

≤ C (‖φ‖Ḣδ + ‖φ‖L∞‖ψ‖Ḣδ) .

Using (58), we see that for any z1, z2 ∈ R,

|ψ(z1)− ψ(z2)| ≤ C|η|
(
|z1|α−1 + |z2|α−1

)
|z1 − z2|,

since α ≥ 1. By the representation of Ḣδ-norm via the Gagliardo semi-norm (see [4,
Proposition 3.4]), one sees that

‖ψ‖Ḣδ ≤ C

(∫∫

Rn×Rn

|ψ(x)− ψ(y)|2
|x− y|d+2γ

dxdy

)1/2

≤ C|η|‖φ‖α−1
L∞ ‖φ‖Ḣδ .

Combining these above, it holds that

‖φ exp(iη|φ|α)‖Ḣδ ≤ C‖φ‖Ḣδ (1 + |η|‖φ‖αL∞) .

Since the estimate ‖φ exp(iη|φ|α)‖L2 ≤ ‖φ‖L2 , we have desired estimate.
We shall deal with the case d = 2, 3. One computes

∇ (φψ) = ∇φψ + iηα
(
|φ|α−2φ2∇φ+ |φ|α∇φ

)
ψ.

Denote F1(φ) = |φ|α−2φ2 and F2(φ) = |φ|α. Applying Lemma 4.7, we see from the Hölder
inequality that

‖φ exp(iη|φ|α)‖Ḣδ ≤ C‖φ‖Ḣδ + ‖∇φ‖2δ
∥∥|∇|δ−1ψ

∥∥
2δ
δ−1

+ C|η|
(∥∥|∇|δ−1F1(φ)

∥∥
2δ
δ−1

+
∥∥|∇|δ−1F2(φ)

∥∥
2δ
δ−1

)
‖∇φ‖2δ

+ C|η|‖φ‖αL∞‖φ‖Ḣδ + C|η|‖φ‖αL∞‖∇φ‖2δ
∥∥|∇|δ−1ψ

∥∥
2δ
δ−1

.

When d = 2, combing Lemma 4.9 with the Gagliardo-Nirenberg inequality

‖∇φ‖2δ ≤ C‖φ‖1− 1
δ

∞ ‖φ‖
1
δ

Ḣδ , (62)

one obtains

‖φ exp(iη|φ|α)‖Hδ ≤ C‖φ‖Hδ + |η|δ−1‖φ‖α(δ−1)
∞ ‖φ‖Ḣδ

+ C|η|‖φ‖α∞‖φ‖Ḣδ + C|η|δ‖φ‖αδ∞‖φ‖Ḣδ

≤ C‖φ‖Hδ (1 + |η|‖φ‖α∞)
δ
.

When d = 3, combing Lemma 4.9 with (62), we conclude

‖φ exp(iη|φ|α)‖Hδ ≤ C‖φ‖Hδ

(
1 + |η| δ−1

γ−1‖φ‖
α

γ−1
(δ−1)

∞ + |η|‖φ‖α∞ + |η|1+ δ−1
γ−1‖φ‖(1+

δ−1
γ−1)α

∞

)

≤ C‖φ‖Hδ (1 + |η|‖φ‖α∞)
1+ δ−1

γ−1 .

This completes the proof.
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Proof of Proposition 4.4. Let us first show the case d = 1. We see from the Gagliardo-
Nirenberg inequality that

∥∥|Ψ|α+1−nΨn
∥∥
Ḣδ ≤ C ‖φ‖α(1−δ)∞ ‖φ‖1−δ2

∥∥|Ψ|α+1−nΨn
∥∥δ
Ḣ1

A direct computation shows

|∇
(
|Ψ|α+1−nΨn

)
| ≤ C 〈n〉 |Ψ|α|∇Ψ|.

Applying Proposition 4.3, we have

∥∥|Ψ|α+1−nΨn
∥∥
Ḣ1 ≤ C 〈n〉 ‖φ‖α∞ ‖φ‖Ḣ1 (1 + |η|‖φ‖αL∞) ,

form which the desired follows.
Let us move on to the case d = 2, 3. Combining Lemma 4.9 with Proposition 4.3, we

see from Lemma 4.7 and (62) that

∥∥|Ψ|α+1−nΨn
∥∥
Ḣδ ≤

∥∥∇
(
|Ψ|α+1−nΨn

)∥∥
Ḣδ−1

≤ C 〈n〉γ
(
‖φ‖α+1−δ

∞

(
‖φ‖1− 1

δ
∞ ‖Ψ‖

1
δ

Ḣδ

)
δ + ‖φ‖α∞

∥∥|∇|δΨ
∥∥
2

)

≤ C 〈n〉γ ‖φ‖α∞ ‖φ‖Hδ (1 + |η|‖φ‖α∞)
⌈δ⌉
,

as desired. This completes the proof.
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