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Abstract. We consider the scattering problem for the nonlinear Schrédinger
equation in 1 + 1 dimensions:
i0u+ (1/2)0%u = Alu*u+ plulP 'u, (t,x)eR xR, (*)

where 0 = d/0x, AeR\{0}, ueR, p > 3. We show that modified wave operators for
(*) exist on a dense set of a neighborhood of zero in the Lebesgue space L*(R) or
in the Sobolev space H'(R). The modified wave operators are introduced in order
to control the long range nonlinearity 4|u}*u.

1. Introduction

In this paper we consider the asymptotic behavior in time of solutions to the
Schrodinger equations with power nonlinearities:

idu+(1/2)0%u= f(u), (xR xR, 1.1

where u is a complex valued function on R x R, 6,=8/0t, d=0/dx, and [ is a

complex valued function on €. A typical form of f(u) is the sum of two powers

S =Aul" u+ plulP tu (1.2)

with pzg=1, A4, ueR.

There is a large literature on the equations of the form (1.1) from both
mathematical and physical point of view, see [1-4, 7-17, 19-26, 28-30]. Let H™*
be the weighted Sobolev space defined by

H™ = (e 1 s = (L + PP = 220, < 0}, m,seRR,
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where |||, denotes the norm in L? = IF(IR). We denote by U(¢) the free propagator
exp (i(t/2)0?). Concerning the Cauchy problem for (1.1), the following results are
well known.

() If 5>p=q=1, then for any ¢el? (1.1) has a unique solution
ueC(R; L3)n L@+ DIe= DR [P*1) with dueL}?**~Y(R; H~*°) and u(0)= ¢
([2, 16,241). Moreover, if pc H'*°, then ue CR; H* %)~ C*(R; H %) ([2, 16]).

(2) Assume one of the following three conditions: (a) S>p=q=1. (b)
p=5>q=1with u20.(c) p=g=1 with A, g = 0. Then for any ¢cH>? (1.1) has
a unique solution ue C(IR; H*°)» C}(R; H %) with u(0)= ¢ ([2, 3, 8, 15, 16]).

(3) If p=q =5 with 4, u <0, then (1.1) has blow-up solutions ({2, 10, 26]).

Concerning the asymptotic behavior in time of solutions and the scattering
theory, the following results are well known.

(I) If p = g> (3 + ./17)/2, then there exists ¢, > 0 with the following properties:
For any ¢, eH"® with ¢, ll; 0+ @+ lp+ 1y, <& (1.1) has a unique solution
ue C(R; H''%) such that

TU(=0ut) —p+ 11,020 as t—+oo. (1.3),

For any ¢ _eH"° with {¢_|l; 0+ @_llp+1y, <8 (1.1) has a unique solution
ueC(R; H'°) such that

U(—ut)—¢9_lly0—»0 as t— —o0. (1.3)-

For any ¢eH"® with [[¢]l; 0+ I dlp+1y, <eo there exist unique ¢ eH'°
satisfying (1.3),, where u is a unique solution of (1.1) with u(0) = ¢ ([9, 19]).
(1) If p=q >3 with 4, u>0, then for any ¢peH®~H%! there exist unique
¢, €L? such that
[U(=0u(t) — ¢+ 1,—>0 as t—+ oo, (14)4

where u« is a unique solution of (1.1) with u(0)=¢ ([25]). If 52z p =g >3 with
A, >0, then for any ¢peH®! there exist unique ¢, eL? satisfying (1.4), ([12]).

(IM) If3=g=1 with A #0, 4> 0, then for any ¢eH°\{0} there do not exist
any ¢, eL? satisfying (14),. If 32g=1, 5>p=q with A0, then for any
¢eL*\{0} there do not exist any ¢, eL? satisfying (1.4). ([7, 14, 23]).

As we sec above, a critical number of the L?-scattering theory is g=3. In
the case p>g¢>3 with 4, x>0, any solution u of (1.1) with u(0)eH"°nH®!
behaves like free solutions U(t)¢p, as t— + co. This is because the dispersive
effect is stronger than the nonlinear effect as t— + o0 when ¢ > 3. In the case
32=¢g=1 the nonlinear effect is dominant and any nontrivial solution does not
behave like free solutions. If we regard the nonlinear factor A{u|?™! + ululP ™! as
a potential, the L®-norm of the potential is estimated as O(]¢|”“~"?) as
t— + oo since || u(t)|,, = O(Jt|” V/?) when A, u > 0. We then associate the borderline
q =3 with the decay rate O(|t|” ') of the potential. The same analogy works in
the higher dimensional cases or in potential scattering. In n-dimensional cases the
breakdown of scattering for the nonlinearity f(u) = |u|9” 'u occurs if and only if
g <1+ 2/n. The borderline g =1 + 2/n corresponds to the decay rate O(]z]!) of
the potential |u|?™, since [|u(t)||,, = O(|t|~"?). For the potential V(x)=41|x|"7,
xeR", n=3, the existence and completeness of the usual wave operators
s—limexp (it(H, + V))exp(—itH,) break down if and only if y <1, where Hy =
t—= T oo

—(1/2)A and A denotes the Laplacian in R” [18]. The corresponding decay condition
of the potential should be replaced by the estimate |||x|™ " exp(—itHo)¢ |, = O(|t] ")
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for any ¢eL? with the Fourier transform ¢;eC(‘,°(]R"). The borderline y =1 then
corresponds to the same decay rate O(]t|™') as before. It is customary that
potentials of the decay rate O(|x|~7) as |x|— co with y <1 are called long range
potentials. In the Jong range case we know that the comparison dynamics U(t)¢
should be replaced by a modified free evolution in order to take the long range
interaction into account.

Our purpose in this paper is to find a comparison dynamics for solutions of
(1.1) in the critical case ¢ =3. In order to state the main results we make the
following hypotheses and definitions. In the following we assume that the nonlinear
term f(u) takes the form

S@) = AulPu+ plulPtu (1.5)

with AelR\{0} and ueR. For ¢, eL? we define the phase functions S*(t, x) and
S5 (t, x) by

S*(t,x)= F Alogltll ¢« (™ 0 £ Quf(p = )[t] "2 d (" )P (L6)
S5 (t,x)= Filogltl|d (™ x)I?, (17
respectively, where * denotes the Fourier transform defined by
P& =2n)~ " fexp (— ixEy(x)dx,
For any function (t, x)+ w(t, x) we denote by w(t) the function x— w(t, x).

Theorem 1. Let 3 <p < 5. Then there exists ¢, >0 with the following properties:
(1) For any ¢,eH®* with |¢,ll,<e, (I.1) has a unique solution
ueC(R; L*)n L} _(R; L®) such that for any o with 1/2 <a <1,

loc
lut) —exp (ST U )P+ 1, = O™, (1.8)+
+o 1/4
( [ llu(x)—exp(iS* () U(x)¢ , ]I‘:odt> =0(t™ as t—+ow. (19,
(2) For any ¢_eH®? with |[¢_|, <&, (I.1) has a unique solution
ueC(R; LYN L} (R; L) such that for any o with 1/2 <a <1,
lu(t) —exp (ST U )P - |, = 0(]t]™%), (1.8)_
t 1/4
(_f lu(ry —exp iS™(x))U(t)¢ - ||‘:0d1:> =0(|t|™ as t——oco. (1L.9)_
Corollary 1. Let ¢, and u be as in Theorem 1. Then:
() For any o with 1/2<a< 1,
lu() — exp (iS5 (NUB)P 1 |, = Ot} %) as t—> + oo, (1.10).

where d=min(x,(p —3)/2) if u#0and d=a if u=0.
(2) For any a with 12<a <1,

Nu@®* —1U@¢ 121l = O(1t] ™), (L1,
Hu@ —1U@ ¢l =0(t]"*?) as t— +oo. (1.12),

(3) (T llu(r)ll‘;dr>1/4:0(|t|‘1/4) as - + oo (1.13),
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Theorem 2. Let p > 3. Suppose 1t =0 when p = 5. Then there exists ¢, > 0 with the
following properties: . R

(1) For any ¢, eH>*nH"? with |$,]l,<e, (I6sllo+0Pile<e if
p = 5) (1.1) has a unique solution ue C(R; H*°)n L¥ (R; W) such that for any o
with 12 <a <1,

u(t) — exp (ST (U@ 1 || 1,0 =0 %), (1.14),
+ oo 1/4
(I llu(f)—eXp(iS+(T))U(T)¢+ll;*w,wdr> =0 (1.15),
as t > + oo, where W' = {yeL®; 0 eL°}, 1Y llwio= ¥ ]l o 1 1109 Il .-
(2) Forany ¢ _eH*>nH"? with |§_ |l <er(|¢_ |l + 10§ |l <e, i p25)

(1.1) has a unique solution ueC(R;H?" 0)r\L (R; W'°) such that for any «
with 12 <a <1,

llu(t) —exp (S~ (U@ 1,0 = O[], (1.14)_

1/4
(f lu(z) — exp (IS " (@)U - 11,7 ) =0(t]™) as t—>—o0. (115

loc

Corollary 2. Let ¢, and u be as in Theorem 2. Then:
(1) For any a with 1/2 <a <1,

lu(t) — exp (iS5 (DU B)p 1 ll,0=0(t]%) as t— too. (1.16),
@ lu@®lo=O(lt]"2) as t—+oo. (117)4
Remark. (1) By the inequalities

Wl < Q)™ 2y |
< (2m) 2 inf (0% + %) (0 WG + 1 )2

=Y 152 1 132 < 19 lo,1,

we see that l|¢3+ |, <¢ follow from either |¢. ||, <& or ¢, <& and that
I a¢+ o <€ follows from either ||0¢+ ||; <& or |04 [lo,1 <e.

_(2)In the case where ¢ + have compact support, the assumptions | ¢, 1., <eand
léd+ |, <& may be replaced by the condition |¢ (0)| < & for some 6 > 0. This
follows from a slight modification of the proof given in the next section. Note that
¢ . are continuous on IR.

Theorems 1 and 2 show that in the long range case (1.1) has solutions which
behave like exp (iS*(£))U(t)¢ + as t — =+ oo. The only difference from the short range
case p = q > 3 is the presence of the phase functions S*, which modulate the free
dynamics in order to take the long range nonlinearities into account. Since the
additional factors exp(iS*) have no contribution to the amplitude of the free
dynamics U(t)¢ ., the probability density |u(t)|*> and the amplitude |u(t)| behave
like those of the free dynamics as t — + o0, as described in part (2) of Corollary 1.
A similar property is well known in the Coulomb scattering [18].

By Theorems 1 and 2, the modified wave operators W.:¢,—u(0) are
well-defined maps from a neighborhood of zero in H®? to I? or from a
neighborhood of the zero in H'* n H%3 to H':°. The Cauchy problem is therefore
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solved so that the asymptotic behavior in time of solutions is described as (1.10).
or (1.16), when the initial data are in the ranges of the modified wave operators.
Of course our definition of the modified wave operators is only one of the possible
ones, as is in the scattering theory for Schrodinger operators with long range
potentials. We should mention here that from a different point of view Flato,
Simon & Taflin [5] constructed modified wave operators in order to solve the
Maxwell-Dirac equations globally in time.

We now describe how to find the modified asymptotics for the long range case.
By the analogy with the Coulomb case it is reasonable to except that there is a
solution u such that ||u(®)| —|U()¢+|l,—0 as t> + oo for some ¢,. By the
formula U(t)d)i = M@)D()(M(t)d )", where M(t) =exp (ix%/2t), and (D(tW)(x) =
(it)y”2y(t™ 'x), we have that ||U(t)¢.|— ID()$ .||, —~0, as t— +oco. Hence
Hu(t)] — ]D(t)d) 1, =0, as t - + oo. This leads to the observation that u tends to
the solutions u, of the equations

iz +(1/2)0%us = Alt] ™ P 1 (70 Puy + plt] P2 e )P tu,  (1.18)

as t— 4+ oo. We are thus reduced to looking for approximate solutions for (1.18)
which are written explicitly in terms of ¢ .. This is the reason why the factors
exp (iS*) appear in front of the free dynamics U(t)¢, in the theorems. In fact, the
first candidates exp(iS*(t))U(t)¢ . do not give a satisfactory approximation for
(1.18). Rather, a good approximation is given by the second candidates

v1(t) = exp (iIST(UOM(~1)p . = exp (iS*())M()D()¢ +,

which are shown to satisfy (1.18) up to the rate O(j¢|~*(log|t{)?) in the L?-norm
as t— + oo, essentlally because of the facts that ¢+ are involved in v, (t, x) in the
form ¢ (¢t~ 'x) and that the phase factors exp (iS*) give an approprlate cancellation
for the long range potentials A[t]™ 1| . (¢~ %)|* + ult] P~ V2|$ . (t"'x)|?~*. The
second candidates v, have another advantage that || v, (f) — exp(iS* (t))U(t)d) + |] ,—0
as t— =+ oo. This suggests that we should start with v, construct a solution u of
(1.1), and then go back to the first candidates exp (iS*(t))U(t)¢ ..

We prove the theorem in the next section. The proof proceeds in three steps.
The first step is to solve the integral equations

tw

u(t)=v.()+i [ U= @) — (0, +(1/20%.(@)dr  (119),

in neighborhoods of t = + oo by a contraction method. To this end we define
a function space and a suitable metric so that the space is complete and the
right-hand sides of (1.19), are contraction maps of u in the space. That space is
constructed as a closed ball centered at v, . The proof uses the space-time estimates
of the Strichartz type for the propagator U(r). We remark here that the solutions
of (1.19) also satisfy (1.1) near t = + co. The second step is to extend the solutions
to the whole real line. We use the well known results on the Cauchy problem
described as above to obtain global solutions. In Theorem 2 the restriction x>0
comes from obtaining the described a priori estimates from the conservation of
the energy. The last step is to prove the estimates described in the theorems.

In the sequel different positive constants might be denoted by the same letter
C, and if necessary, by C(x,...,*) in order to indicate the dependence on the
quantities appearing in parentheses.
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2. Proof of the Theorems

In this section we prove Theorems 1 and 2. In the following we only consider the
case t > 0. The other case is treated analogousiy. We start by recalling the following
lemma concerning the space-time estimates for the integral operator

(Gv)(t) = }0 Ut — tv(r)dr.

Lemma 1 (2,15, 261). Let (g,7) satisfy 25 q< 00,4<r< 0,and 12— 1/g=2/r.
Let I = (tg, o0) with ty>0. Then G:v+> Guv is a bounded operator from LX(I;L?) to
LI(I; L% with norm uniformly bounded with respect to t,. Moreover, if veL\I;1?),
then GveC([ty, 0); L?).

We next give preliminary estimates for an approximate solution v, (f)=
exp (iST()U(OM(—1)¢ . = exp iST())M(1)D(t)¢ .. We define the remainder term
F by F(t)=i0,v,(t) +(1/2)0%0.,.(8) — f (v (1)).

Lemma2. (1) If ¢.eH*? then v,ecC R ;H> )nCR,;L*AnH*"?) and
FeC(R,;L?). Moreover, there exists C >0 and T =1 such that for any ¢ ,eH*?
and any t 2 T,

TF@ I, < Ct™2(logtf [+ llo. (L + 11 ¢+ 13752 2.1)

@ If p.eHY? thenv,eC (R ;H* HYnCR ;H*nH> ). If ¢, eH"? n
H®3, then FeC(R ,; HY°). Moreover, there exists C >0 and T = 1 such that for
any ¢, eH"2>nH*? and any t 2 T,

IF(E) 0= Ct™*Aog (s 11,2+ I b+ o)1 + 1 15772
+Ct™og )’ 14 15 5(1 + 1+ 137 3). 2.2)

Proof. Let ¢,€H%? and let S(t, x) = x2/2t + S*(t,x). Then ' vt x)= (i)~ 1% x
exp (iS(t, x))p(t~ 'x). By a straightforward calculation we see that v, e C'(R . ; H> ~*)n
C(R,;I*nH* 2y and F(t,x) = (it) " "% exp (iS(t, x))p (¢t~ 'x), where

b= —i(A/2t™ Hlogt . 0*| G, 1> +i(u/(p — 3~ V2G, 6% !
— (A2t X(log )% 18] 121> — (u¥/2p — 3D~V 0l 1P
+Qapf(p— 3P D logtd 01, 201 |77
— 1At 21ogtdd . 01, > +iQu/(p - 3~ V20 0] P
+(1/2)t728%¢,.

By Holder’s inequality and the Gagliardo—Nirenberg inequality of the form
loy s < CLO*W IS 1Y 1Y (see [6]), we have

NF@l, < Ct™2logt( 2G4 214 12 + 104 1311+ 1)
+ CCr V02, L1115+ 10 1214 1% 72)
+Ct™X(logt)*]| 0, 1214 |13+ Ct=C" V)0, 3] . 12773
+C P D Mot 0d, 201 d, 15 172102 |,
< Ct™(log 82 ¢ (1 ¢ 12 + 1 127 + 1 I
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FUP 2272+ 1du )2 +1)
< Ct™(log )2 102G 4 I,(1 + |+ 12772)

forallt 2 T with T = 1 sufficiently large. This proves (2.1) since | 2d, 1. < ¢>+ llo.25
1. Mo M@ llo,1- Sxmxlarly, we have FeC(R+,L2) We turn to part (2). By a
straightforward calculation we see that v, eC'(R,; H> )nC(R,;H"° nH*>™1)
for ¢,eH"2 Let ¢,eH"2AH3 Then OF(t, x) = (it)” Y2 exp (iS(t, X)) (t ~'x),
where

U(y) = iy(y) — idt " logtd(»)d|d . 1%(y)
+iu/(p— 3PP P (y) + £ 10G(y).

Accordingly, we decompose OF into four terms and denote them as I-1V. We
estimate the first term in [? in the same way as above:

1Ll =1x@ll, < Clixd, |t 2log e[ 2, + 172102 d 1771 |
+ 1t Hlogt)? 81, 23+t ald. 1|12
7 D2 ogt)|0¢, 1211 157 + ¢ 2logt]| 0. |12
HETETI2) 88 120, )18 + 72 x0% |,
< Ct 2ot [ x4 | 107G 4 (1 + 1164 12272 + 172 0(x2¢ )2
<Ct 2 (logt)? [y (L + 194 125D+ Ct 2 )y
<Ct 2(logtf ¢ 1.1+ 1164 127%72)
for all t =2 Twith T = 1 sufficiently large. The next two terms are estimated as
T+ T, £ Ce ™ Hogt 81 d 4 |2 w + P V281G P | I F()
SCt3(og P ¢ o2+ 04 15DINF@ 1,
< Ct 3(ogtP [ 13,0+ b4 13774
< Ct3(logt’ ¢, 12 51+ 4 13773,

where we have used (2 1) and the inequalities |0 |*~ [, £ C |04 || I+ 42 <
Cllgillozl¢s iy forgz2and ¢, llo2 < 11d+ I15511b+ 137> For the last term,
we have

1V, =10,

<SCt 2 logt(0d, 12+ 102G+ 131004 6l Pl + 1831 1214 112)
+CmCI2([0G, 121 152+ 102Ps sl 0d . 6 b f122
o Lt N Y PO EA!
+Ct 3 (1og (1064 12114+ 12 + 1020+ 131064 161l b+ 113)
+CP([0G 2N P4 12274+ 10%G 4 151106 4 6l 4 117772)
+Ct P 2 hog 10§, 121, 1572+ 182D 5106 6l 1571
+Ct3 03,
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éCf“W@ﬂzwﬁ$JMW$+Hi+H$+H£“+H$+HZ+H$+H3'2
A
<ct” 3aog02u¢+uoau-rn¢+u“ 2),

where we have used Holder’s inequality and the Gagliardo—Nirenberg inequalities
(see [6) 10y lle < CUPY 5P I3, 1 0% 13 < CUO* I3 |y I )°. Collecting these
estimates, we obtain (2.2). Similarly, we have FeC(R,;H',%. Q.ED.

For ae(1/2,1), R>0, T =1, and ¢, eH>?, we introduce

X=X4T)= {ueC([T, o), LAY LXT, co; L),

1/4
Supt“(”“(t)“h(t MWa+ <HM(T )~ (@), dT) )éR}

12T

and define on X the metric d(u,,u,) = lu, — u,ll|x, where

1/4
mmﬂw%wnz<wmwm>)
t2T

With this metric X becomes a complete space. We define the map J by

(Jupt)=v. () +i Ofo Ut — ) (u(r) — (0, + (1/2)0*) ., (r))dx

=v,(f)+i }O Ut —1)(f (1)) — f(v4 (1)) — F(z))dr. (23)
Proof of Theorem 1. Let ¢, e H®? and let ue X%(T). We have
o 1/4 © . 1/4 “
(!“h(ﬂ“id‘f) =(};1‘2||¢+|[‘;dr> =t s (2.4)
w 1/4 w 1/4 @ 1/4
(gllu(f)llfodl'> é(g!lu(f)—h(f)ll‘;df) +<§ |lv+(r)|l:3dr>
SR Gy llt T 25)

We prove that J maps X%(T) into itself and is a contraction in the metric on X
if T 1s sufficiently large and Hd) | o is sufficiently small. By Lemma 1 and (2.3),

1/4
()@ —v. @+ <§li(fu)(f )~ v (D5, d1:>

< Cof I f(@)— fo (@) ]dr +C f | F(D) |, dz. (2.6)
By Holder’s inequality, (2.4), and (2.5),

1AW~ 10,9 ode

S C I Uu@IZ + 1o @15 + lu@ 27 + o @15 D u) — v, (x) ] de

t
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o 1/2 © 1/2 0 1/2
éC(<§llu(r)ll‘;dr> +<Illv+(r)ll‘;dr) )(!Ilu(r)—m(r)llidr)

@ (p—1)/4 © (r—1)/4
+C<(I llu(r)ll‘;dr> +<§ ||U+(‘L')[|:Od‘l.'> )

(cf lu(t) — v, (7) ”;/(5_p)dr>(5“p)/4

t

s 1/2
S CR(R*t™** + |I¢A>+||§Ot””2)<jr_2“dr> dr
t

© (5—-p)4
+ CR(RP_lt—(P‘I)d + ”¢+ '|go—1t—(p—1)/4)(j T~4u/(5—p)d.c>
t

< CReHR2Y2 20 4 Rp1G PG Da g 1§ |12 4, 57107 92) (27)
We note here that 1/2 —2a< —1/2, (5—p)/4—(p— Da < —1/2. By (2.1),

o0

JIF@ I de < Ct™  (log s 115 (1 + 14 15772) 23)

for all t = T with T =1 large enough. By (2.6), (2.7), and (2.8),
lJu—v,lix < CRI 4 12, 29

for T =1 large enough. In the same way as above, for uy,u,e X%(T),
@ 1/4
(Juy —Juz)(O) 2 + (I | (Juy — Juz)(r) I);‘odf)
t

< Ctﬁa(thllzkza 4+ RP15—p/4—(p—Da 4 | $+ Hi + “(54. Hgo—1t—(p—3)/2)

sup [ (u; — u)(@) |2,
=1

which leads to

Wuy = Juzllx S Clb o 12 My —usllix (2.10)

for T'> 1 large enough. We see from (2.9) and (2.10) that if || ¢, |l is sufficiently
small, J has a unique fixed point u in X§(7T). Therefore u solves the integral equation

uty=v,(@t)+i T U(t — )(f (u(r)) — (i0, + (1/2)0%)v ,(x))dr (2.11)

forallt=T. Lett >t,=T. Using (2.11), we obtain
U(=0)(u(t) — v (1) = U(—to)(ulto) — v+ (to))

+i i U(—1) (f(u(z)) — (i0, + (1/2)0*) . (t))dx. (2.12)
Noting that

040 = Ult —t0)0,(tg) 1 | Ut — 2)(d, + (1/20%w, (),
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we deduce from (2.12) that u solves the integral equation
ult) = U(t — tou(to)ulte) — i [ Ut — 1) f (u(r))d. (2.13)
fo

It is well known that (2.13) has a unique global solution in C(IR; L*)n L} (R;L*)

Toc

and therefore the solution u of (2.11) extends to all times and satisfies (2.13) for
all teR. By a standard argument, u satisfies (1.1) in H~ % for almost all teR. We
now prove (1.8), and (1.9), . By the inequality |exp (—ix?/2f) — 1| < x?/2|t|, we have

llu(ty—exp(iST(ENUBP 4 |,
< N u() — exp(STEWUOM(—)¢ 4 ||, + llexp ((STO)UOM(—t)p. —d ),
SCtT+ M= — P 1, SCt7*+ 17 g o (2.14)

This proves (1.8),. By the inequalities U@, <t *?|¢|, and
lexp (—ix2/2t) — 1| £ 2|x|>272|t|~34*¢2 for 0 <& < 3/2, we have

| u(t) — exp ((ST(NU ()P + ||
< fu(t) —exp(STOWUOM(— 04 || + Cr 42| x32 72 |y, (2.15)

and therefore
o0 1/4
( ! [l u(z) — exp (IS T ()U(t) 4 |2, dr)

SO+ Gt TR | SCUEHClet T T o 2 (2.16)

Choosing ¢ > 0 so that ¢ < 2(1 — ), we have (1.9) . . We finally prove the uniqueness.
Let u, and u, be solutions of (1.1) satisfying (1.8), and (1.9),. In the same way
as in (2.14)-(2.16) we have u,,u,eX%(T) for some R >0, T = 1. In the same way
as in the derivation of (1.1) from (2.11) we see that u, and u, solve (2.11). By the
uniqueness of solutions of (2.11) we have u{(t) = u,(t) for all t = T. By the uniqueness
of solutions of (2.13), we have u,(t) = u,(f) for all teR. Q.E.D.

Proof of Corollary 1. Let ¢, and u be as in Theorem 1. By (1.8).,
u(®) — exp (iSq (DU Il
< Ju(t) —exp (ST (OHU ) + 12 + [ exp (iS™ (1)) — exp (iSg U1 I,
SCt+ lexp (ST (1) = Sg () — Ul 1 U+ |12
SC ST (O = Sg Ol ps 2 SCL7 e+ Clult™ =22 1271y |,

This proves (1.10},. By (1.8), and the conservation law of the L?-norm
lu(®{, = [[u(0)}, for all teR, we have

Hu©) 2 — 1+ ll2l =lu@® 2~ llexp ST O)U) + |1,
< llu() —exp (ST ()UOP+ [, >0 as t— + oo,
and therefore {|u(t} ||, = |u(0) [}, = || p, |, for all telR. Then, by (1.8},
Hu@? —1U@)+ 14
= [[lu@®)|* — lexp (S ()U®)$ + I |11
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S(lu®)ll2 + llexp (ST @)U O+ 1) | u(®) — exp (ST (1)U 4 |1
=2[l¢+ 2| u(®) — exp(STNUDP + |, = 00"

as t = + oo. This proves (1.11), . Similarly, denoting by (-, ) the L>-scalar product,
we get

Hu@] = U@+ 113 =1 U@+ 15 — lu@) 13 + 2(lu@)], [u@®| ~ U + 1)
=2(lu(®)], 1u()] — lexp (iST ()U()P + |)
S 20 u@ il fu@® —exp (ST UM+ I, = 0 ™)
as t— + oo. This proves (1.12),. We have

lexp (STHNUDP 4 1o = 1UOG 4 1 Sty 72 b o1
so that by (1.9) .,

© 1/4 0 1/4
( ! llu(z) Ilidr> < ( [ lu(m) —exp (ST () U(D) ll‘;df>

© 1/4
+<§ llexp (iS™ () U(t)¢ H‘:Qdf) SCt*+Ct V) by oy

This proves (1.13),. Q.E.D.
For ae(1/2,1), R>0, T2 1, and ¢, eH"? ~H*3, we introduce
Y =YUT) = {ue X§(T); due X3(T), llu—~v,llx+[l0u —0v, |lx < R}
and define on Y the metric d(uy,u,;) = lllu, — uy |y, where [fullly = [l|ulllx + {lcullx.

Proof of Theorem 2. Let ¢ . cH"?>nH®? and let ue Y3(T). We have dv.(t,x) =
(it)” Y2 exp (iS(t, )W . (t ' x), where

Yo () =iy, (y) — ikt~ logtd . (1)dld ., 1A(y)

+iQu/(p— 3N PTG ()81 P (y) + £ 1o+ (),
so that

10040 S CTV2 (|| xP 1 1o+t~ ogtl s 21064 Il
A 1 W LA 7 S PR Rt S
SCt x|+ Ct™ ¥ logt | x|, (1+ {4 271
SCt 2 xd, o + Ct ¥ logtM (¢ ) 2.17)

for all t=T with T 21 large enough, where M, (¢,)=[|¢, o ,(1 + o+ 150
Then, forall t 2 T,

© 1/4 o «©
(!ilau(f)ﬂ‘;dT) §<!I16u(1)—8v+(r)|]‘;d1> +<§i|5v+(f)|l§'odf>1/4

SR+ Cllxdy | otV + CM (¢ )t > logt.  (2.18)

1/4

Moreover,
O S ) =04 (@)l + [0, Ol
SClu®) = v () o+ 1Pt PSCRETC 41, 072 (2.19)
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By (2.19),

°f|| F(R)) —f(04 (@) ds

SC IR RV G 50+ [y 71T
t

Nu(z) — v.(2) ], de
SCRR*' 34 R [ 2072+ |y 571079270 (2.20)
Again by (2.19),
100 () — f@ ()]
< Cu@ )22 + o O 12 ) 0u@®) | I u(t) — v, @)1
+ Cllo 1% Hu@) — v, )1
+ C(u(®) o + I04 Ol 1 8u®) || 0 | 4(®) — 0 (D)5
+Cllo 12 fu@) — v, @)
SCORP 20 De L ReTe 4 |G 272677 D2 4 |t AR dult) ] o
+C([ o 5724 G, |2 R,

which together with (2.18) implies

o]

! 1 0(f () — f(v (D)) 2 dr
© 1/4 w© 3/4 w0 3/4
§CR(I|)6U(T)||:d‘E> (RP'Z(“'T“"*(P—I)a/deT) +R<j',r~8a/3d,[)

N ®© 3/4 N @ 3/4
+ H¢+ Hx;o'l( 51-*4&/3*2(17—2)/3(11) + n ¢+ \lw<51—4a/3~2/3dt> )

+Cll G, |5 R OTI2 L C b, 2R
< CRRE* + || x4 |t ™4+ M, (. )t ¥ log1)
,(Rp—2t3/4—(p-1)a+ Ry3/4~2a H$+ [|1:O-2t1/4—a—(p~3)/2 + ||c]§+ ‘Imt1/4—a)
+Cly |17 R CTI2 L C [ (|2 Rt
SCRY(1+RP™ 24 [, |57t 4+ CR(L+ RP 7)) x, ||t~
+ CRI G 17721 xP s oo + 1 o) 22772
+CR[G s ol Pl + 1 xP [0)e
+CRM (¢ )1 +RP 2+ {|q§+ H{gz)t*l‘“logt 2.21)
for all t = T with T = 1 large enough. By (2.2),

f | 3F(x) | pd < Ct~ '(log 1) Ms(d ) (2.22)
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for all t = T with T = 1 large enough, where

My )=Ud il + 102l )+ 1P 18772 + 1P 15 (1 + 1 4 1372

It follows from (2.8), (2.20), (2.21), and (2.22) that if T =1 is large enough,
Ju—v,eC([T,0); H"YNLYT,co; Wt*) and for all t = T,

1/4
II(Ju—v+)(t)H1,o+<j 1Ju— v )@ .24 >

S CRIGI (1P il + 11X 4 | )t~ (2.23)

We now distinguish between two cases: (1) p < 5. (2) Pz =5

(1) When p <5, we already know that J has a unique fixed point u in X5(T).
From the argument above we show that if ¢, e H2~H%3, then the solution u
belongs to Y%(T).

(2) When p = 5, in the same way as in the derivation of (2.23) we have

WJuy — Juslly S CUHG 4 ol Nl + 11X L)ty — ually (2.24)

for any u,,u,e Y%(T). By (2.23) and (2.24), if || ¢, ||, + | xd ||, is small enough,
then J maps from Y%(T) into itself and is a contraction on Y%(T). Therefore J
has a unique fixed point ue Y4(T).

In either case the solution u of Ju = u also satisfies (1.1)in H *®forall t > T
by the same method as in the proof of Theorem 1 and u extends to all times by
the well known method of the Cauchy problem for (1.1) in the energy space H''°.
We now prove (1.14), and (1.15), . In the same way as in (2.14),, we obtain

16@u(t) — exp S * (U )

< || (u(t) —exp(iS * (VU @OM(— ) )5 + 108 () exp(iS  O)UENP + — M(— )b )2
+ |lexp(iS* (HUROM(—1) b, ||, + || exp(iS* (t)U(t)(a¢+ —M(—1)d¢ )]
SR+ C(t gt 8, I lldy o+ 7220, 1 o 1272)
Npe = M(=0)p 2+ [ OM(—1) b 12 + |6, — M(—1)¢p . |,

SR+ C M ogt|0d 4 ol b o+ T2 Il 1572 s M,
b o e P,

which together with (2.14) proves (1.14), . In the same way as in (2.15), we obtain
for 0 <e<2(1 — ),

8(u(t) — exp (S HHU O +) .
< [l (u(t) — exp (IS T (HUOM(— 1) )|, + 1S * (1)
exp (iST UMDy — M(— )|
+ exp (ST E)UWIM(—1) ¢, |, + | exp (ST () U@ . — M(— i)\,
< || 8(u(t) — exp (ST (UMM (~1)p )|
+Ce)t M og t0d , Pl +1™ 720G, L1574, o
+Ct 2@y llgp + ClE™ > 2 |,



492 T. Ozawa

This and (2.16) prove (1.15),. The required uniqueness follows in the same way
as in the proof of Theorem 1. Q.E.D.

Proof of Corollary 2. Let ¢, and u be as in Theorem 2. In the same way as in
the proof of (1.10),, we have

0(u(r) — exp (iSy (NU M 1) [,
< |l o(u(t) — exp (iS* () UD)p )|, + Il (exp (iS* (1)) — exp (IS (1)) U(1)8¢+ |,
+[1(0ST (1)~ 0Sg UM + I, + 11853 ()exp (iS* (1)) —exp (iSy NV D¢+ |,
SC A Clult™ 2 G 12 0 1 [+ Clult =P 2106, [l b 1224 I
+Clult™ " V2 jog 1|3, [ I s 1% 116 2,

which together with (1.10), proves (1.18),. In the same way as in the proof of
(1.13),, we have

[l < lut) —exp ST @U@+ | + lexp(STENUE P+ 1
< Cllugt) —exp (iST(O)VU O+ 0+ 1P 1712
SCt o+ |t
This proves (1.19),. Q.E.D.
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