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Abstract. Accurate representation of soil organic matter

(SOM) dynamics in Earth system models is critical for fu-

ture climate prediction, yet large uncertainties exist regard-

ing how, and to what extent, the suite of proposed relevant

mechanisms should be included. To investigate how various

mechanisms interact to influence SOM storage and dynam-

ics, we developed an SOM reaction network integrated in

a one-dimensional, multi-phase, and multi-component reac-

tive transport solver. The model includes representations of

bacterial and fungal activity, multiple archetypal polymeric

and monomeric carbon substrate groups, aqueous chemistry,

aqueous advection and diffusion, gaseous diffusion, and ad-

sorption (and protection) and desorption from the soil min-

eral phase. The model predictions reasonably matched ob-

served depth-resolved SOM and dissolved organic matter

(DOM) stocks and fluxes, lignin content, and fungi to aerobic

bacteria ratios. We performed a suite of sensitivity analyses

under equilibrium and dynamic conditions to examine the

role of dynamic sorption, microbial assimilation rates, and

carbon inputs. To our knowledge, observations do not exist

to fully test such a complicated model structure or to test the

hypotheses used to explain observations of substantial stor-

age of very old SOM below the rooting depth. Nevertheless,

we demonstrated that a reasonable combination of sorption

parameters, microbial biomass and necromass dynamics, and

advective transport can match observations without resorting

to an arbitrary depth-dependent decline in SOM turnover

rates, as is often done. We conclude that, contrary to asser-

tions derived from existing turnover time based model for-

mulations, observed carbon content and 114C vertical pro-

files are consistent with a representation of SOM consisting

of carbon compounds with relatively fast reaction rates, ver-

tical aqueous transport, and dynamic protection on mineral

surfaces.

1 Introduction

Soil organic matter (SOM) represents a large stock of carbon

that can be exchanged with the atmosphere over short (sec-

onds to weeks; Trumbore, 2000), intermediate (months to an-

nual; Baldocchi et al., 2001), and long time frames (decades

to centuries; Baisden et al., 2002; Ciais et al., 2012; Hsieh,

1993). Current estimates are that more than three times as

much carbon is stored in terrestrial soils (2344 Pg C) than is

in the atmosphere (Jobbagy and Jackson, 2000), although re-

cent estimates for high-latitude systems indicate that value

for soil carbon may be an underestimate (Schuur et al., 2009;

Tarnocai et al., 2009). Soil temperature and moisture are ex-

pected to change as climate changes over the 21st century

and are important controllers of the rate at which soil carbon

is retained or released to the atmosphere (Parton et al., 1987;
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Todd-Brown et al., 2013). Therefore, SOM dynamics could

generate important feedbacks to climate change. However,

recent reviews have indicated that current site and global land

biogeochemical (BGC) models do not represent the suite of

mechanisms necessary for prediction of future SOM stocks

(Conant et al., 2011; Dungait et al., 2012; Schmidt et al.,

2011), and that their SOM predictions have large uncertain-

ties (Friedlingstein et al., 2006; Todd-Brown et al., 2013).

At a particular place in the soil, temporal variation in

organic carbon in its various phases may depend on de-

composing surface litter, root mortality and exudation, dis-

solved organic matter (DOM) and inorganic carbon diffu-

sion and advection, colloidal transport, gross carbon fluxes

adsorbing and desorbing from soil mineral surfaces, biomin-

eral aggregate formation and destruction, carbon assimilation

and release from microbes, transport into plants, and others

(Dungait et al., 2012). Each of these fluxes has specific, and

mostly poorly characterized, controlling mechanisms with

different environmental sensitivities, and predicting their net

impact at any particular location in the soil is therefore dif-

ficult. Relevant environmental controllers on these fluxes in-

clude soil temperature and moisture, pH, redox state, alterna-

tive electron acceptor, chemical and physical inhibitors, soil

structure, and others (e.g., Conant et al., 2011; Schimel and

Schaeffer, 2012). These controllers are also affected by the

wide range of relevant temporal scales (minutes to millennia)

and spatial heterogeneity, making prediction of the carbon

feedbacks between soil and atmosphere even more difficult.

Although the mechanisms impacting SOM stocks men-

tioned above have been hypothesized, and sometimes

demonstrated, to impact SOM dynamics, studying their ef-

fects using observations or experiments within the complex

soil environment is difficult, since synergistic and compet-

ing processes may mask the effect of any particular mecha-

nism. A complimentary approach is to develop mechanistic

numerical models that specifically represent processes hy-

pothesized to be relevant. However, biogeochemical models

always require some process simplification, and those sim-

plifications may not represent all relevant interactions. We

discuss some examples of this conundrum below, but note

that the level to which mechanistic detail needs to, or can, be

included in land models remains unclear. One goal of the cur-

rent work is to begin to develop a modeling structure where

hypotheses regarding model complexity can be addressed.

Given the importance of SOM dynamics in affecting atmo-

spheric greenhouse gas (i.e., CO2, N2O, and CH4) concentra-

tions and soil nutrient availability for plant growth (Denman

et al., 2007), developing mechanistic and reliable numeri-

cal models that can be integrated in general circulation or

Earth system models (GCMs or ESMs, respectively) is cru-

cial. However, the current suite of land models integrated in

ESMs represent at most only a few of the mechanisms de-

scribed above, making it impossible to analyze the impact of

individual or interacting mechanisms using this suite of mod-

els. Current ESM belowground biogeochemistry submodels

range from very simple, single-pool, turnover-time models to

those that broadly follow the single soil layer structure of the

Century Model or its progeny DayCent and ForCent (Parton

et al., 1987, 1998, 2010). Recently, a few models applied, or

designed to be applied, at climate-model resolution have con-

sidered vertically resolved SOM processes (e.g., Braakhekke

et al., 2011; Jenkinson et al., 2008; Koven et al., 2013; Tang

et al., 2013) imposed on a Century-like carbon pool structure.

However, none of these models explicitly represent the pro-

cesses discussed above (such as adsorption and protection,

desorption, and microbial activity).

The Century (Parton et al., 1987, 1998, 2010) and RothC

models (Jenkinson and Coleman, 2008; Jenkinson et al.,

2008) are archetypes of the most common belowground car-

bon biogeochemistry models. This type of model represents

carbon moving from aboveground and root litter into several

carbon pools, with the distribution of inputs determined by a

metric of litter quality (e.g., lignin content, C : N ratio). SOM

decomposition is predicted from pre-determined carbon pool

turnover times that are modified based on temperature, soil

moisture, and clay content. These models do not explicitly

represent microbial activity, although several recent publica-

tions have highlighted its importance in terrestrial BGC mod-

els (Singh et al., 2010; Tang and Riley, 2013; Wang et al.,

2013; Wieder et al., 2013; C. G. Xu et al., 2011). A growing

body of evidence also suggests that soil mineralogy plays a

large role in determining SOM stocks and turnover times, es-

pecially below the active root zone (Masiello, 2004; Masiello

et al., 2004; Mikutta et al., 2006; Torn et al., 1997). The in-

clusion of soil texture or clay content in some models has

been proposed as a proxy for organo-mineral interactions.

The field studies cited above document large differences in

soil carbon stock and turnover times that could be explained

by mineralogy but not by texture or clay content.

There are a group of models that have not applied the in-

trinsic turnover time concepts underlying Century, and these

models do include some of the important processes described

above. Perhaps the most robust example is the ecosys model

(Grant et al., 2003, 2012), which explicitly represents mul-

tiple microbial functional groups, coupled reaction kinetics

constrained by oxidation-reduction energy yields, transport,

impacts of plants, spatial heterogeneity, and interactions with

the atmosphere. These models form an important proof of

concept for the type of model developed here, which at-

tempts to resolve complex simultaneous reaction–diffusion–

advection networks, yet has a design compatible with inte-

gration into a global climate model.

It has been suggested that the next generation of land BGC

models to be used for climate prediction should include, ex-

plicitly or implicitly, representation of vertical carbon trans-

port, microbial activity, mineral surface interactions, temper-

ature and moisture controls on independent processes, and

nutrient dynamics (Schmidt et al., 2011). However, because

of the complex nature of the expected interactions when this

complex group of mechanisms is integrated into a reactive
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transport framework, the high computational cost of per-

forming these types of simulations, and the issues associated

with vertical and horizontal heterogeneity, a promising first

step would be to develop and apply one-dimensional mech-

anistic modeling frameworks that can be applied at the site

scale. Model reduction techniques (e.g., Riley, 2013), param-

eter inversion (e.g., (Luo et al., 2009; Vrugt et al., 2008)), and

spatial scaling methods will likely be required in translating

these approaches into representations appropriate for ESMs.

Toward this end, we develop here a model of SOM dy-

namics (called BAMS1; Biotic and Abiotic Model of SOM

version 1) by integrating into a subsurface reactive transport

model (TOUGHREACT; Gu et al., 2009; Maggi et al., 2008;

Xu, 2008; Xu et al., 2011) a microbially mediated reaction

network with two functional groups (heterotrophic aerobic

bacteria and fungi), dynamic adsorption and desorption, mul-

tiple SOM species with varying parameters representing dif-

ferent aspects of reactivity, and mineral surface exchanges.

To make this first attempt at developing a tractable model

structure, we have omitted several of the mechanisms de-

scribed above, including soil aggregation and its potential

for protecting SOM, colloidal transport, and nutrient interac-

tions. After describing the model structure, we present com-

parisons against observations from a compilation of grass-

land sites in several western US states. We then present a

series of analyses designed to test the relative importance of

the mechanisms described above in affecting long-term SOM

dynamics.

2 Methods

2.1 Reactive transport solver

The numerical code we used to solve the BAMS1 reac-

tion network and transport is TOUGHREACT (Xu, 2008),

a three-dimensional reactive transport simulator based on the

TOUGH model (Pruess et al., 1999) into which an arbitrary

reaction network can be integrated. The model can repre-

sent a large suite of processes, including aqueous, gaseous,

and sorbed phases; advection and diffusion; multiple com-

peting microbial populations; adsorption and desorption; hy-

drology; the soil energy budget; and equilibrium and non-

equilibrium chemical reactions. TOUGHREACT has been

applied to analyze many aspects of soil systems, including

near-surface carbon and N cycling (e.g., Gu et al., 2009; Gu

and Riley, 2010; Maggi et al., 2008; Spycher et al., 2009; Xu

et al., 2004). Details of the numerical methods and process

representations used in TOUGHREACT can be found in the

model’s technical guide (Xu et al., 2013).

For BAMS1, we applied a one-dimensional version of

TOUGHREACT, which solves simultaneous mass balance

equations for aqueous and gaseous phase tracer concentra-

tions (Ci (mol-C L−1)):

∂Ci

∂t
= −

∂

∂z

[

D
∂Ci

∂z
+vCi

]

+
∑

m

∂Ci

∂t

∣

∣

∣

∣

m

, (1)

where t (s) is time, z is depth (m), D (m2 s−1) is the effective

aqueous or gaseous diffusivity, and v (m s−1) is bulk aque-

ous or gaseous velocity. The first and second right hand side

terms of Eq. (1) account for diffusive and advective trans-

port and the third right hand side term accounts for an arbi-

trary number (m) of sources, sinks, and exchanges between

phases.

2.2 Carbon decomposition reaction network

For this first version of the model, we assumed the active de-

composers in soils consist of heterotrophic aerobic bacteria

and fungi. We chose these two microbial groups because they

are known to have specific affinities to decompose plant litter

and other SOM compounds (DeAngelis et al., 2013; Neely et

al., 1991; Romani et al., 2006; Thevenot et al., 2010) and to

produce different necromass (Frostegard and Baath, 1996).

Although including only two functional groups of microbes

substantially under-represents observed functional diversity

in soils (Goldfarb et al., 2011), several factors influenced our

choice: (1) observations sufficient to develop models of mul-

tiple SOM decomposing microbial functional groups are not

available, nor has there been an attempt to synthesize obser-

vations in a manner amenable for inclusion in the type of

model applied here (although see Bouskill et al. (2012) for

an example of a trait-based approach applied to nitrification)

and (2) our goal is to make a first attempt at analyzing in-

teractions between the processes hypothesized to be impor-

tant for SOM dynamics, not to fully constrain every possible

complexity in the system. The numerical relationships and

baseline parameters (and sensitivity analyses around these

baseline values) needed to simulate microbial dynamics are

discussed in the next section.

Soil organic matter consists of thousands of plant and mi-

crobe synthesized and degraded compounds, and numeri-

cal models cannot represent this complexity in its entirety.

Further, partitioning these compounds into groups accord-

ing to properties relevant to SOM dynamics is difficult be-

cause the many relevant processes are controlled by dif-

ferent compound traits. For example, the set of rules used

to group compounds into classes of intrinsic decomposition

rates may be different than the classification needed to char-

acterize sorptive interactions with mineral surfaces. Other

compound classifications of interest for SOM cycling would

reflect the influence of the compound chemistry on carbon-

use efficiency (Brant et al., 2006; Frey et al., 2013; Sins-

abaugh et al., 2013), high-affinity interactions with soil min-

erals (Gordon and Millero, 1985; Gu et al., 1994; Kleber et

al., 2005; Mikutta et al., 2007), susceptibility to exoenzyme

decomposition (Allison et al., 2010; Schimel and Weintraub,

2003; Sinsabaugh and Shah, 2012), and process-dependent
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temperature sensitivity (Conant et al., 2011; Davidson and

Janssens, 2006). The impacts of these mechanisms depend

strongly on the environment in which they operate. Carbon

use efficiency, for example, depends on the metabolic dispo-

sition of the decomposer biomass, and varies depending on

whether the microbial community at a given point in time

is disposed to grow (to incorporate C) or in need of a criti-

cal nutrient that requires an energy consuming, dissimilatory

metabolic mode. It is thus not always defensible to charac-

terize a given substrate as having a certain carbon use effi-

ciency, as suggested by some authors (e.g., Frey et al., 2013).

In this first attempt at integrating some of these processes into

a reactive transport model, we implemented an approach that

is more mechanistic while capturing variations in substrate

chemistry.

Our approach is to group compounds by quantifiable prop-

erties that can be considered to be relevant for metabolic pro-

cessing, i.e., oxygen : carbon (O / C) ratio, positive or nega-

tive charge, and degree of polarity (Table 1). The rationale

behind this strategy is that organic compounds that are al-

ready oxidized (as expressed by the O / C ratio) will require

less oxygen and lower energy inputs to be fully oxidized to

CO2 than more reduced compounds. Polar compounds will

be more soluble and thus more mobile in a largely aqueous

soil system than non-polar compounds. Ionization state and

the sign of an electrical charge are determinants for protec-

tive sorptive and other interactions with both the mineral ma-

trix and charged organic colloids. Our approach is designed

to be flexible enough to incorporate other hypotheses regard-

ing controls on decomposition and transport such as accessi-

bility and aggregation.

The model’s decomposition reaction network consists

of four groups of organic compounds: (1) above and be-

lowground litter and root exudates; (2) organic polymers;

(3) simpler organic monomers; and (4) fungal and bacterial

biomass (Fig. 1). Carbon is brought into the system through

aboveground litter, belowground litter, and root exudates.

Through implicit (i.e., not explicitly represented as a separate

pool) exoenzyme activity, the litter can be degraded into sev-

eral simpler organics (i.e., monosaccharides, amino sugars,

organic acids, amino acids, phenols, lipids, and nucleotides)

in proportions that can be manipulated in the model for sen-

sitivity analyses (baseline values shown in Fig. 2). Root exu-

dates are considered to be simple monomeric organics.

The model assumes fungi and bacteria can assimilate

the polymeric and monomeric organics directly, resulting in

biomass increases and CO2 production. The proportions of

compounds that can be assimilated by either microbial pop-

ulation are set as baseline values (Fig. 2) and can be manipu-

lated in sensitivity analyses. Carbon in microbial necromass

is returned to solution (Fig. 1) and can participate in further

reactions, be transported vertically, or interact with soil grain

surfaces. We parameterized a fraction (fm) of the micro-

bial necromass as peptidoglycan, which is intended to rep-

resent polymeric cell wall material (Fig. 1). The remaining

necromass carbon is returned to the monomer pools, in pro-

portions that can be manipulated for a particular simulation

(Fig. 2). Microbial exudation or carbon overflow (Tempest

and Neijssel, 1992) from stoichiometric imbalance can be an

important contributor to overall microbial carbon turnover in

some cases. However, we have not included them in the cur-

rent version of the model.

2.3 Decomposition reactions of organic monomers

We assume the decomposition of monomers (monosaccha-

ride, amino acid, amino sugar, organic acid, lipid, and nu-

cleotide) is carried out by aerobic heterotrophic bacteria,

which utilize monomers as a source of energy and carbon for

biomass growth and maintenance, thus leading to biomass

yield and CO2 production. The reaction describing decom-

position of 1 mole of generic monomer kCi , with k carbon

atoms can be written as follows:

kCi + RO,i (1 − a)kO2 → akBA + (1 − a)kCO2, (2)

where BA (mg C-wet-biomass L solution−1) is the aero-

bic heterotrophic bacteria biomass concentration, a is the

assimilation-to-respiration ratio describing the fraction of

carbon atoms being assimilated into the cell as compared

to the fraction released as CO2, and RO,i is the oxidative

ratio of the compound, which describes the contribution of

aqueous O2 uptake as compared to the O2 available from the

substrate. The biomass yield coefficient Yi = ak for BA de-

scribes the microbial biomass gain per mole of consumed

substrate ((g wet-biomass) (mol substrate)−1). The effect of

temperature on the decomposition rate was not included in

Eq. (2). We leave the determination of an appropriate param-

eterization for the temperature effect and related analyses to

future work.

2.4 Stoichiometry for fungal depolymerization of

organic compounds

Large polymers (represented in this model as cellu-

lose (C6HO5)n, hemicellulose (C9H15O7.5)n, and lignin

(C10H12O3)n) can be decomposed (depolymerized) into

monomers by fungi. The fungi may then assimilate part of

the carbon from the substrate polymer, consume O2, pro-

duce energy and CO2, and release free monomers available to

other microorganisms such as aerobic bacteria. The specific

monomer products vary with the source polymer (Fig. 2). A

general depolymerization reaction of polymer mj Ci , with k

carbon atoms made of n monomers mj Cj with mj carbon

atoms, is derived from stoichiometric constraints:

mj Ci+RO,i (1−a)kO2→

(

1−
W

∑

mjxj

n

)

(akBF+(1−a)nk)+W
∑

x
mj

j Cj , (3)

where BF (mg wet-biomass L−1) is the fungal biomass con-

centration, W is the depolymerization efficiency describing
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Table 1. Simplified overview of possible molecular functionalities (often dependent on solution pH, monomers only), number of repeating

units for polymers, O / C ratios (R(O/C)), oxidative ratio (RO), and the sorption partitioning coefficient (kf

/

kr) for relevant compound classes.

Y indicates that compound class possesses this particular option to interact with other molecules or surfaces (YY = possesses the option in

extraordinary fashion).

OM Representative n RO/C RO Negatively Positively Polar Non-Polar Unfolding Ranking kf/kr

Group Molecular Structure Charged Charged

Cellulose (C6H10O5)n 6000 0.97 1.0 –

Hemicellulose (C6H10O5)n 150 0.83 1.0 –

Lignin (C10H12O3)n 200 0.30 1.13 –

Peptidoglycan (C22H32N4O13)n 100 0.59 1.0 –

Monosaccharides C6H12O6 – 1.0 1.0 Y 1 700

Aromatic−OH (e.g., phenols) C20H22O6 – 0.3 1.0 3 1400

Amino Acids C5H10O3 – 0.5 1.13 Y Y Y Y 4 2100

Amino Sugars C6H13NO5 – 0.83 1.0 Y Y YY 4 2100

Low molecular weight Organic Acids C4H6O5 – 1.25 0.75 Y Y 5 2400

Lipids C18H33O2 – 1.11 1.38 Y Y Y Y Y 4 2100

Heterocyclic N (e.g., nucleotides) C10H14N4O8P – 0.84 1.0 YY Y Y 2 1100

Pep$doglycan	  
(C22H32N4O13)n	  

CO2	  

Cellulose	  
(C6H10O5)n	  

Hemicellulose	  
(C6H10O5)n	  

Lignin	  
(C10H12O3)n	  

Phenols	  
C20H22O6	  

Monosaccharides	  
C6H12O6	  

Amino	  sugars	  
C6H13NO5	  

Amino	  acids	  
C5H10N2O3	  

Lipids	  	  
C18H33O2	  

Organic	  acids	  
C4H6O5	  

Nucleo$des	  
C10H14N4O8P	  

AER	  

FUN	  

Biomass	  

Inputs	  

Solid/protected	  

Solute	  

Polymers	  

Monomers	  

Output	  

C	  input	  

Depolymeriza$on	  

Monomer	  uptake	  

Respira$on	  

Death	  cells	  

Woody	  LiRer	  

Root	  Exudates	  

Leaf	  LiRer	  

Figure 1. Reaction Network Diagram. FUN and AER stand for fungi and heterotrophic aerobic bacteria, respectively.

the fraction of carbon released in the monomers, and xj are

the stoichiometric coefficients in Eq. (2) for each monomer.

In Eq. (3), the biomass yield coefficient Yi is

Yi =

(

1 −
W

∑

mjxj

n

)

ak. (4)

Note that Eq. (3) can also describe depolymerization reac-

tions by exoenzymes (i.e., no direct assimilation and biomass

growth) when W = 1 (i.e., Yi = 0).

2.5 Biological reaction rates

The microbial decomposition rate of substrate mj Ci is

generically described using Michaelis–Menten kinetics (e.g.,

Maggi et al., 2008):

∂Ci

∂t

]

d

= −µi

Ci

Ki+Ci

O2

KO2+O2

B

Yi

f (θ)g (pH)h(T ), (5)

where ∂Ci

∂t

]

d
is the rate of change of Ci for decomposi-

tion (mol m−3 s−1); subscript d represents decomposition;

µi (s−1) is the maximum specific consumption rate of

substrate i (s−1) (i.e., the intrinsic decomposition rate);

O2 (mol O2 m−3) is aqueous O2 concentration; B (mg wet-

biomass L−1) is biomass of bacteria (BA) or fungi (BF); Yi is

the biomass yield on substrate i; and Ki and KO2 (mol L−1)

are half-saturation coefficients for Ci and O2, respectively

(Table 2). The functions f (θ), g (pH), and h (T ) describe the

www.geosci-model-dev.net/7/1335/2014/ Geosci. Model Dev., 7, 1335–1355, 2014



1340 W. J. Riley et al.: Long residence times of rapidly decomposable soil organic matter

Source Pool

D
es

tin
at

io
n 

P
oo

l

Ex
ud

at
es

Le
af

 L
itt

er
W

oo
d 

Li
tte

r
B 

D
ea

th
F 

D
ea

th
C

el
lu

lo
se

H
em

iC
el

lu
lo

se
Pe

pt
id

og
ly

ca
n

Li
gn

in

 

 
Cellulose

Hemicellulose

Peptidoglycan

Lignin

Monosaccharaides

Amino Acids

Amino Sugars

Organic Acids

Phenols

Lipids

Nucleotides

0  

0.1

0.2

0.3

0.4

Figure 2. Partitioning of the various carbon source pools into the

eleven SOM destination pools. The values in each column sum to

1.0; each value indicates the fraction of the source pool allocated to

a particular destination pool.

environmental effects on microbial activity of soil moisture,

pH, and temperature T , respectively (Maggi et al., 2008). In

the current suite of experiments, we did not include the ef-

fects of pH or soil water stresses (i.e., g (pH) and f (θ) are

set to 1) on decomposition rates, although these factors can

be important (e.g., Schimel et al., 2011). We note that re-

cent work has shown that Michaelis–Menten kinetics may be

inaccurate when simulating complex consumer-substrate in-

teractions (Tang and Riley, 2013), but leave incorporation of

these effects into the model for later work.

O2 is consumed during aerobic microbial respiration on

monomers and fungal depolymerization (Fig. 1) with rate:

∂O2

∂t

]

d

= RO,i (1 − a)
∂Ci

∂t

]

d

. (6)

CO2 is produced in both reactions with rates that depend

on the carbon content in the substrate and the reaction struc-

ture. The reaction rates for monomer oxidation and depoly-

merization are

∂CO2

∂t

]

d

= −(1 − a)
∂Ci

∂t

]

d

(7)

∂CO2

∂t

]

d

= −

(

1 −
W

n

∑

mjxj

)

(1 − a)k
∂Ci

∂t

]

d

, (8)

respectively, where W is the depolymerization efficiency, k

is the number of carbon atoms in Ci , n is the number of

monomers in the polymer, and mj is the number of carbon

atoms in the product monomer Cj .

The decomposer biomass grows as substrate is assimi-

lated, and declines as cells die, according to the following:

∂B

∂t
= −

n
∑

i=1

Yi

∂Ci

∂t

]

d

− δB, (9)

where δ (s−1) is microbial death rate.

We followed the hypothesis of Kleber (2010) that the O / C

ratio (RO/C,i) of relatively simple organic compounds pro-

vides a proxy for the maximum specific consumption rate

(Table 2). We fit a simple exponential curve to the observa-

tions shown in Fig. 2 of Kleber (2010), and normalized the

result to the rate associated with monosaccharides:

µi=

(

1.15 × 10−12 s−1
)(

0.006e2.0137RO/C,i

)

µMsac. (10)

For peptidoglycan, Eq. (10) was not used but a relatively

slow intrinsic rate and higher adsorption rate were imposed

to represent the tendency of these larger molecules to decom-

pose more slowly (Miltner et al., 2012).

2.6 Abiotic processes

CO2 gas dissolution is calculated assuming local equilibrium

between aqueous and gaseous phases (Maggi et al., 2008).

Diffusivities are estimated based on the molecular weight of

each component and the Millington and Quirk (1961) ap-

proach to account for tortuosity. Water flow is modeled using

the Darcy–Richards equation (Pruess et al., 1999) and the

van Genuchten (1980) relationships for matric potential and

hydraulic conductivity with soil water saturation. Advective

gaseous transport as a result of pressure gradients was not

considered in the present study, although it can be included

using the equations of states available in the TOUGHREACT

standard features.

Adsorption and desorption are complex processes that de-

pend on characteristics of the organic molecules, soil mineral

surfaces and properties, and aqueous chemistry (Dudal and

Gerard, 2004). Further, there are large differences in temper-

ature sensitivities for the various sorption mechanisms (Co-

nant et al., 2011), motivating explicit representation of these

processes in models. To examine the impact of sorption on

predicted SOM stocks, we imposed forward (adsorption; kf

(s−1)) and reverse (desorption; kr (s−1)) rates. In the absence

of competing sources and sinks of a particular species, this

formulation would result in an effective equilibrium linear

sorption relationship: Kd = kf/kr. In our formulation, sorp-

tion reactions are subsumed in the
∑

m

∂Ci

∂t

∣

∣

∣

m
terms of Eq. (1),

kf is taken to be 6.6 × 10−8 s−1, and sorbed species are pro-

tected from decomposition.

Linear isotherms have been commonly applied in soil

sorption studies (e.g., Neff and Asner, 2001). However, other

studies (Gu et al., 1994; Kothawala et al., 2008, 2009; Mayes

et al., 2012) concluded that DOM sorption in soils more
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Table 2. Parameters defining decomposition of organic matter pools by bacteria and fungi for maximum specific consumption rate (µ),

assimilation-to-respiration ratio (α), and yield (Y).

Bacteria Fungi

µ e Y Y µ e Y Y

(s−1) (–) (g wet-biomass mol−1) (mg carbon mg−1) (s−1) (–) (g wet-biomass mol−1) (mg carbon mg−1)

Monosaccharaides 5.98 × 10−8 0.12 86.4 0.4 – – – –

Amino Sugars 2.72 × 10−8 0.077 55.2 0.4 – – – –

Organic Acids 8.57 × 10−8 0.16 74.4 0.4 – – – –

Amino Acids 1.38 × 10−8 0.092 55.2 0.1 – – – –

Phenols 1.30 × 10−8 0.033 78.0 0.3 – – – –

Lipids 8.33 × 10−9 0.034 73.2 0.1 – – – –

Nucleotides 2.41 × 10−8 0.042 48.0 0.3 – – – –

Lignin – – – – 4.20 × 10−9 0.018 84.0 0.5

Cellulose – – – – 5.46 × 10−9 0.001 84.0 0.5

Hemicellulose – – – – 1.68 × 10−8 0.039 84.0 0.5

Peptidoglycan 3.98 × 10−12 0.018 48.0 – – – –

closely follows a Langmuir relationship than a linear rela-

tionship. We note that both of these approaches assume equi-

librium between the sorbed and aqueous phases, although

the Langmuir relationship implies a partitioning dependent

on soil properties and the sorbed concentration. We intend

to examine the impact of the functional form of the sorption

isotherm on SOM dynamics in future work.

Soil aggregation (Six et al., 2001, 2004) is another impor-

tant process that can lead to carbon persistence in soil. The

density of aggregates and rates of aggregation and disaggre-

gation in soil depend on many ecosystem properties (Conant

et al., 2011), so properly representing their impacts on pro-

tected SOM may be important in climate change studies. Al-

though important for SOM residence times, the density of

aggregates and rates of aggregation and disaggregation have

not yet been represented in the model.

2.7 Climate forcing, boundary conditions, and initial

conditions

Climate forcing (precipitation, evapotranspiration, temper-

ature) and carbon inputs used in the BAMS1 simulations

were taken from a CLM4 (Lawrence et al., 2011) simula-

tion of a US Great Plains grassland. CLM4 is the land model

integrated in the Earth system model called CESM1 (http:

//www.cesm.ucar.edu/models/cesm1.0/), and represents sur-

face and subsurface hydrology, ecosystem energy exchanges

with the atmosphere, and plant and soil biogeochemistry.

The equilibrium simulations for comparison to SOM obser-

vations were forced with repeated 1948–1972 cycles from

Qian et al. (2006). For the BAMS1 simulations, we imposed

the CLM4 predicted infiltration and carbon inputs from leaf,

wood, and root litter partitioned into the soil using expo-

nentially decaying depth profiles with length scales of 1, 7,

and 12 cm, respectively. Baseline simulations were run for

10 000 years from initial conditions of no soil carbon and for

constant climate forcing. This spin-up period was sufficient

to ensure that overall changes in SOM stocks were less than

0.01 % yr−1 by the end of the simulation.

Having a fully coupled model that includes reactive trans-

port capabilities and the aboveground process representa-

tions in CLM4 would be the preferred model structure to

perform the analyses we are presenting here because it would

allow for the coupling between above and belowground pro-

cesses. However, to our knowledge such a capability does not

currently exist (although efforts are underway, e.g., Tang et

al., 2013).

2.8 Comparison to SOM and 1
14C observations

In this work we were primarily interested in exploring hy-

potheses that could explain variations in SOM residence

times; therefore, our comparisons to SOM observations were

designed to engender confidence that the suite of processes

we have included were internally consistent and produced re-

alistic SOM predictions, but not that they describe precisely

the conditions and SOM profiles of a specific site. We there-

fore compared the predicted SOM profiles using the baseline

set of parameters to observations from grasslands located be-

tween 39◦ N and 43◦ N latitude across Nebraska and Col-

orado. Compiled vertically resolved observations of SOM

content from the National Soil Carbon Database (NSCN;

available at http://www.fluxdata.org/nscn/SitePages/Home.

aspx) included 618 observations in that region; Fig. 3). Along

with SOM profiles, root profiles from grasslands in the same

region were selected from the Global Root Distribution Pro-

file database (Schenk and Jackson, 2005).

As another check on model simulations, we compiled ob-

servations of the fraction of total biomass that are fungi and

bacteria. To this end, a database of microbial soil vertical pro-

files from existing literature was compiled with data from Al-

varez et al. (1995), Anderson and Domsch (1989), Ekelund et

al. (2001), Fierer et al. (2003), Zhou et al. (2008), Selvam et

al. (2010), Tsai et al. (2007), Agnelli et al. (2004), and Yeates

et al. (1997).
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Figure 3. Predicted and observed SOM content. Observed values

are represented as average and standard deviation of 618 observa-

tions from grasslands extracted from the NSCN database.

SOM radiocarbon (114C) profiles are potentially valuable

tracers of the integrated suite of processes affecting verti-

cal SOM profiles and have recently been applied to evaluate

climate-scale land surface model SOM predictions (Jenkin-

son and Coleman, 2008; Koven et al., 2013). We predicted

SOM 114C values in the year 2003 by running a parallel sim-

ulation to the bulk SOM simulation, but imposing a first order

decay term (with turnover time of 8267 year corresponding

to the 14C radioactive decay rate) for each modeled compo-

nent in both aqueous and protected phases. To impose the

“bomb” atmospheric 14C content, we applied the northern

hemispheric values from Levin and Hesshaimer (2000) for

1950–1976 and Levin and Kromer (2004) for 1977–2003.

2.9 Model analyses

We performed ten sensitivity tests (Table 3) and a number

of model experiments to explore how system properties and

changes in soil microclimate may impact SOM dynamics.

To investigate the relative importance of adsorption and des-

orption rates from soil mineral surfaces on equilibrium SOM

stocks, we performed simulation scenarios varying the sorp-

tion rates kf and kr (Table 3). First, we modified kf and kr con-

currently by factors of 0.8 (S1) and 1.2 (S2) (resulting in an

unchanged value of Kd). Next, we investigated the impacts

of the different temperature sensitivities of desorption and

adsorption. As noted in Conant et al. (2011), warmer tem-

peratures favor desorption for high-affinity soil OM–mineral

interactions (e.g., non-covalent bonds) and favor adsorption

for low-affinity soil OM–mineral interactions. For sensitiv-

ity analyses S3 and S4, we assumed a mean temperature in-

crease throughout the profile that led to a relative increase

in desorption (kr) of a factor of 1.2 (S3; high affinity) and

a relative increase in adsorption (kf) of a factor of 1.2 (S4;

low affinity). Although this sensitivity analysis substantially

under-represents the complexity of the temperature depen-

dencies of sorption and protection mechanisms, it does al-

low us to qualitatively investigate the impact of temperature-

dependent sorption on vertically resolved SOM content. We

note that protection associated with occlusion and aggrega-

tion will also have temperature sensitivities (Conant et al.,

2011); we did not analyze those affects here.

We also manipulated the microbially mediated transfor-

mation rates by multiplying µi by factors of 0.8 (S5) and

1.2 (S6). Because interactions between sorption and the frac-

tion of each compound accessible to decomposition (i.e., in

the aqueous phase) will impact SOM content, we performed

perturbations to µi in combination with perturbations to kf

and kr (scenarios S7, S8, S9, and S10). Total SOM profiles

for these scenarios were again compared to the baseline sce-

narios. For all the sensitivity analyses we also estimated the

114C SOM vertical profile.

To further examine carbon and microbial dynamics in the

system, we performed an experiment with two 500-year sim-

ulations, both starting from the end of the 10 000-year sim-

ulation. The first simply continued the 10 000-year simula-

tion for an additional 500 years. In the second simulation, we

doubled all chemical species initial concentrations in the top

20 cm from those at the end of the 10 000-year simulation,

and performed a 500-year simulation. Differences between

these simulations over the 500-year period were used to in-

vestigate coupled C, microbial, and transport dynamics.

Finally, we performed pulse carbon input experiments by

doubling the steady-state concentration of all compounds in

seven depth intervals (0–10, 10–20, 20–30, 30–40, 40–75,

75–125, and 125–200 cm) independently and tracking car-

bon flows throughout the column. These simulations were

performed to analyze the effective turnover and transit times

of the various organic carbon inputs as they move be-

tween pools and with depth in the soil column. From the

10 000-year spin-up initialization state, the model was run for

5000 years, and comparisons were made to the baseline sim-

ulation, which was also run for 5000-year post initialization

state. Anomalies of total SOM were calculated against the

baseline simulation, and normalized to the amount of carbon

injected for each experiment. Although the responses of indi-

vidual compounds and of total SOM are complex and do not

generally follow first-order dynamics, we calculated a sim-

ple effective first-order turnover time for total SOM and total

DOM as a function of depth interval by treating them as sin-

gle pools with constant turnover times. We also discuss the

complexity of interpreting turnover times in a complex reac-

tion network such as the one proposed here.
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Table 3. Description of parameters and mechanisms used in the sensitivity analysis. The three multipliers indicate the factors applied to the

parameter for each sensitivity scenario. The last two columns indicate the impacts of each sensitivity scenario parameter changes on 0–50 cm

and 50–200 cm total SOM contents.

Scenario Scenario kf kr µi Impact SOM Impact SOM

Description multiplier multiplier multiplier 0–50 cm (%) 50–200 cm (%)

Baseline 1 1 1

S1 Reduce adsorption and desorption rates,

maintain ratio

0.8 0.8 1 10 −10

S2 Increase adsorption and desorption rates,

maintain ratio

1.2 1.2 1 −10 0

S3 Increase desorption rate (high affinity) 1 1.2 1 −10 −10

S4 Increase adsorption rate (low affinity) 1.2 1 1 10 0

S5 Decrease microbial growth rate 1 1 0.8 110 220

S6 Increase microbial growth rate 1 1 1.2 −30 −50

S7 Decrease adsorption rate, decrease microbial

growth rate

0.8 1 0.8 80 190

S8 Decrease adsorption rate, increase microbial

growth rate

0.8 1 1.2 −30 −50

S9 Decrease desorption rate, decrease microbial

growth rate

1 0.8 0.8 160 240

S10 Decrease desorption rate, increase microbial

growth rate

1 0.8 1.2 −10 −40

3 Results

3.1 Equilibrium predictions for the grassland sites

Using the baseline set of parameters (Table 2), climate, car-

bon inputs, and a 10 000-year simulation, the model esti-

mated total SOM contents roughly in agreement with the

grassland observations we compiled (Fig. 3). At steady state,

most of the input polymers (cellulose, hemicellulose, lignin)

were predicted to be in the top meter of soil (Fig. 4a), con-

sistent with the depth-distribution of the source carbon and

the assumed inability of protected-phase compounds to move

vertically. Lignin had the largest concentration of the input

polymers, with a peak at about 10 cm depth. The fraction of

total SOM predicted to be lignin was highest (∼ 1–2 %, as

compared to more than 20 % for leaf and root C inputs) in

the zone where direct carbon inputs occurred and decreased

to ∼ 0 % by 1 m depth (Fig. 5b). The mean predicted pro-

portion was about 1 % between 0 and 50 cm depth and com-

pared well with the values from the synthesis by Thevenot

et al. (2010), who reported a range for grasslands of ∼ 0.7–

2.7 %. Cellulose and hemicellulose concentrations had flatter

vertical concentration gradients and levels about an order of

magnitude lower than that of lignin.

Monomers protected (sorbed) on surfaces (Fig. 4b) had a

deeper concentration profile than the input polymers, con-

sistent with their ability to partition into the aqueous phase

and move vertically with water advection and through dif-

fusion. Of the sorption-protected monomers, the predicted

relative concentration ranking, from highest to lowest, was

monosaccharides, amino acids, lipids, phenols, and organic

acids. Very little amino sugars or nucleotides were predicted

to persist in the protected phase.

The vertical profile shape of the predicted total dissolved

monomer content was similar to that for protected-phase

monomers, while the relative abundances were 2–3 orders

of magnitude lower (Fig. 4c). Dissolved monosaccharides

had the highest predicted concentrations, followed by amino

acids, lipids, phenols, and organic acids. The other dissolved

monomers were predicted to have much lower concentra-

tions.

The proportion of total microbial biomass predicted to

be fungal was largest at the surface and declined rapidly to

∼ 0 % at 40 cm depth (Fig. 5a), consistent with the expecta-

tion that fungi inhabit the portion of the soil column domi-

nated by recent plant carbon inputs and the few observations

available for comparison (Ekelund et al., 2001; Zhou et al.,

2008).

3.2 Sensitivity analysis for total SOM

To better understand the interactions among the represented

controls on SOM dynamics, we analyzed sensitivity to var-

ious model parameters (S1–S10; Fig. 6; Table 3). Scenarios

S1–S4 examined changes to sorption parameters only. First,

we modified kf and kr concurrently by factors of 0.8 (S1)

and 1.2 (S2) (resulting in unchanged partitioning coefficients

compared to the baseline simulations). These perturbations,

which were applied throughout the soil column, had small

impacts on the SOM profile or total stocks (Fig. 6a; Table 3).

We then investigated the impacts of asymmetric changes in kr

and kf consistent with a temperature perturbation leading to
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Figure 4. Predicted steady state (a) protected-phase polymers;

(b) protected-phase monomers; and (c) dissolved monomers as a

function of depth after 10 k year of simulations in the grassland.

a factor of 1.2 increase in desorption rates (S3) and factor of

1.2 increase in adsorption rates (S4) (Fig. 6a). These changes

also had very small impacts on predicted SOM content.

Modifying the bacterial SOM consumption rates (µi) on

all aqueous compounds by factors of 0.8 (S5) and 1.2 (S6)

had relatively larger impacts on SOM content (Fig. 6b).

As expected, decreasing µi led to increased SOM contents,

while increasing µi led to lower SOM contents throughout

the soil column. As discussed below, these changes highlight

the potential impacts of a temperature-dependent microbial

growth rate.

Finally, modifying kf, kr, and µi concurrently also had

large impacts on SOM (Fig. 6c). Decreasing kf and µi si-

multaneously (S7) led to increases in both 0–50 cm and 50–

200 cm SOM content that were comparable (but slightly

smaller) to those from S5 (which only decreased µi). De-

creasing kf and increasing µi simultaneously (S8) led to

about a 30–50 % reduction in SOM, consistent with the im-

pact of increasing µi alone and the very small impact of de-

creasing kf alone. Decreasing kr and µi simultaneously (S9)

resulted in large increases in SOM throughout the column.

Finally, decreasing kr and increasing µi (S10), which alone
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Figure 5. Proportion of biomass that is fungal (a) and proportion of

total SOM that is lignin (b) as functions of depth.

have opposite impacts, led to a moderate decrease in SOM

content. In these sensitivity scenarios, the impacts of changes

in microbial growth rate dominated the impacts from changes

in sorption parameters.

3.3 Sensitivity analysis for 1
14C of total SOM

The baseline simulation resulted in 114C profiles in soils that

had a qualitative shape (i.e., monotonic depletion with depth)

and values at depth consistent with observations (Fig. 6d),

although the near-surface values were too depleted com-

pared to the few observational data sets published for grass-

lands. We discuss potential reasons for this mismatch be-

low, but note here that we did not attempt to tune a sepa-

rate non-equilibrium pool near the soil surface that would al-

low for a better match with this expectation. We expected the

114C value at about 1 m depth to be in the range [−600 ‰,

−400 ‰], based on pasture and grassland observations at

Paragominas, Brazil (Trumbore et al., 1995) and Riverbank,

California and Judgeford, New Zealand (Baisden and Parfitt,

2007).

For scenarios S1, S2, S3, and S4, the predicted changes

in the 114C value of total SOM at 1 m depth were between

∼ 0 and −80 ‰. Using a simple one-box donor-controlled

turnover model (i.e., first order loss) implies that the 14C-

inferred changes in turnover times between, e.g., S1 and the

baseline simulations at 50 cm depth, were relatively larger

than those predicted for the total SOM content changes (33 %

versus 7 %, respectively). This pattern was consistent across

scenarios S1, S2, S3, and S4 for all depths. Decreasing the

microbial growth rate (µi ; S5) and increasing µi (S6) while

holding all other parameters constant led to enhanced de-

pletions of about 50 ‰ in 114C below about 0.5 m depth

(Fig. 6e). Scenarios S7–S10 all led to enhanced 14C deple-

tion compared to the baseline (Fig. 6f), with the largest en-

hanced depletion (∼ 100 ‰) corresponding to S9 (decreasing

kr and decreasing µi) and S10 (decreasing kr and increasing
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Figure 6. Total SOM content (top row) and 114C of total SOM (bottom row) at end of 10 000-year simulation for the ten sensitivity scenarios

(a and d: S1–S4; b and e: S5–S6; c and f: S7–S10) that varied combinations of kf, kr, and µi (Table 3).

µi) and the smallest (∼ 30 ‰) to S7 (decreasing kf and µi)

and S8 (decreasing kf and increasing µi).

3.4 Transient pulse experiments

We performed several transient pulse experiments to inves-

tigate SOM turnover dynamics, vertical transport, and effec-

tive turnover times of the various compounds in the system.

First, we applied a pulse of all compounds by doubling the

initial concentrations in the top 20 cm of the soil column and

performing a 500-year simulation starting with conditions

from the end of the 10 000-year baseline simulation. Concen-

tration differences compared to a 500-year simulation with

baseline parameters (i.e., effectively continuing the 10 000-

year spin-up simulation another 500 years) varied widely be-

tween the various simulated carbon compounds (Fig. 7). The

anomalies are shown as log10 transformations of the absolute

% differences from the baseline 500-year simulation; nega-

tive anomalies are indicated by white contours.

Anomalies in cellulose and hemicellulose were 0.01–

0.1 % in the top 5 cm of soil and persisted for the entire simu-

lation. Negative anomalies (i.e., priming) were predicted be-

tween about 10 and 20 cm out to about 300 years. Lignin

anomalies in the top 5 cm of soil had similar patterns to cel-

lulose, but in contrast the positive perturbation of about 1 %

below about 5 cm persisted for decades. Both aerobic bacte-

ria and fungi were predicted to have ∼ 10 % increases in the

top 20 cm of soil shortly after the perturbation, and these in-

creases were predicted to persist for many decades. It appears

that the microbial biomass has moved into another relatively

persistent state.

The largest anomalies in protected monomers were pre-

dicted in the amino acids, amino sugars, phenols, and lipids

pools, all of which showed perturbations of about 10 % in

the top 20 cm of soil for hundreds of years. Beyond the poly-

mer species, only the monosaccharides and organic acids

were predicted to have negative anomalies, and the mag-

nitudes of these anomalies were relatively small (less than

∼ 1 %). Anomalies in total SOM were predicted to be ∼ 1 %,

0.1 %, and 0.01 % in the 0–10, 10–100, and 100–200 cm

depth ranges, respectively, by the end of the 500-year sim-

ulation.

We also performed a series of pulse experiments by dou-

bling the initial total SOM in explicit depth intervals (0–10,

10–20, 20–30, 30–40, 40–75, 75–125, and 125–200 cm) to

characterize the dynamic response of the system as it re-

equilibrates. We analyzed the predicted perturbed concen-

trations over 5000 years as scaled anomalies from the base-

line simulation by normalizing total SOM and total DOM re-

sponses to the predictions immediately following the pulse

input (Fig. 8a and b). For all depth intervals there were

large predicted decreases in the SOM and DOM anomalies

(∼ 30–60 % and ∼ 40–90 %, respectively) in the first few

www.geosci-model-dev.net/7/1335/2014/ Geosci. Model Dev., 7, 1335–1355, 2014
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Figure 7. Time and depth profiles of microbial and chemical species concentration anomalies (log10( % |anomaly|) compared to the baseline

simulation) for the perturbation experiment that doubled all chemical species concentrations in the top 20 cm of soil as an initial condition.

To highlight important features, we: (1) used different ordinate axes for cellulose, hemicellulose, and lignin; (2) excluded anomalies less

than 0.001 %; and (3) used solid filled contours where the anomalies were positive and white contour lines surrounding regions where the

anomalies were negative (e.g., for the monosaccharides below about 20 cm after about 200 years).

years associated primarily with rapid microbial responses

and advective transport. We applied a first-order approxi-

mation to estimate the turnover time (τ) for total SOM and

DOM anomalies to re-equilibrate as a function of the depth

interval of the perturbation (Fig. 8c).

The SOM and DOM turnover times followed the same

qualitative pattern with depth: a slight increase from an inter-

mediate value down to 30 cm, an increase to about 1 m, and

then a relatively constant τ below 1 m. However, the DOM

τ was always lower than the total SOM τ , with the ratio be-

tween them being ∼ 100 down to ∼ 70 cm and a ratio of ∼ 3

below ∼ 70 cm. Turnover times estimated from the radiocar-

bon profiles show modest coherence with the pulse-based es-

timates for total SOM, but much higher turnover times for

DOM dynamics.

4 Discussion

4.1 Model predictions

Our model reproduced observed profiles of SOM 114C val-

ues by representing several mechanisms that empirical stud-

ies have postulated to be important: sorption, advection,

microbial dynamics (fungal and bacteria groups), and car-

bon compound specific properties. For example, the ver-

tical DOM advection predicted by the model was consis-

tent with that inferred in observational (e.g., Rumpel et al.,

2002; Sanderman and Amundson, 2008) and other mod-

eling analyses (Braakhekke et al., 2013). The model pre-

dicts that there are significant interactions between SOM

and DOM beyond those expected from simple non-reactive

transport of DOM from surficial layers (Sanderman et al.,

2008), and that these interactions are responsible for the pre-

dicted older SOM and DOM 114C values (Fig. 6) and long

turnover times inferred from discrete pulse experiments and
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the 114C values (Fig. 8c). The prediction that total DOM

concentrations were three orders of magnitude lower than

protected-phase SOM concentrations (Fig. 4) is consistent

with observations of a vertisol grassland (Don and Schulze,

2008), mollisol grassland, and ultisol forest sites (Sander-

man et al., 2008). However, DOM concentrations are much

more variable than SOM, so this ratio is not in general a

good metric for comparison with model predictions. Com-

bining all the dissolved monomer concentrations with the

water flux through the system resulted in a predicted annual

DOM leaching flux of 6.2 g m−2 year−1, which matches very

well the estimate by Kindler et al. (2011) for grasslands of

5.3 ± 2 g m−2 year−1.

The role of microbial cell wall components as stable car-

bon compounds in soils has been discussed in several recent

articles (e.g., Clemente et al., 2012). In the reaction network

developed here, the compound we assigned to represent cell

wall material (peptidoglycan) accounted for 5–10 % of SOM

at steady state; this is a large enough fraction of SOM that

resolving uncertainty in the partitioning of new microbial

necromass into different species would be very useful.

Different model structures have reproduced observed de-

creases in SOM content with depth in a variety of ecosystems

(Jenkinson et al., 2008; Koven et al., 2011, 2013; Tang et al.,

2013). However, because there are many ways that multiple-

pool SOM models can be calibrated against bulk SOM obser-

vations, we do not take the match of our vertical profile SOM

content predictions with observations (Fig. 3) to be a particu-

larly strong validation of our model structure. Since so many

different model structures and parameterizations can match

bulk SOM observations, the development of clear falsifiable

hypotheses for these observed patterns remains an important

goal for SOM model development.

Vertical profiles of 114C values of total and dissolved or-

ganic carbon are a valuable constraint on process represen-

tation in SOM dynamics models. Although we did not sim-

ulate a particular site with 114C observations, our predic-

tions are consistent with the general structure of a mono-

tonic decrease in 114C value with depth to values less than

−400 ‰ by ∼ 1 m depth. The decreasing 114C values with

depth occur because of a decrease in the decomposition rate

with depth associated with decreasing substrate concentra-

tions and therefore microbial biomass, rather than transport

times from the surface, as also seen in sensitivity analyses in

Koven et al. (2013). Over time, the accumulation of material

on the mineral surfaces and 14C decay leads to a relatively

114C depleted SOM profile at depth.

SOM pools were more 114C depleted in the top ∼ 30 cm

of the soil column than most observations suggest. We did

not try to tune or optimize an arbitrary vertically variable

mechanism to account for this deficit, as has been done for

discrepancies with 14C observations in other modeling ex-

ercises (e.g., Jenkinson and Coleman, 2008; Koven et al.,

2013), because our main goal was to explore the effects of

different mechanisms rather than to match a particular data

set. We leave it to future work to propose and test specific

alternative mechanisms that might lead to a larger proportion

of younger carbon in the top portion of the soil column. How-

ever, for context, we estimated that an increase of ∼ 30 % in

SOM concentrations resulting from plant inputs over the past

several decades would lead to a close agreement with obser-

vations. Thus, an additional young and protected carbon pool
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of modest size (Fig. 3), and effectively not in equilibrium

with the aqueous phase, can explain the bias between our

predicted and commonly observed 114C values near the soil

surface. Our model allows for an additional non-equilibrium

carbon pool that could be tuned to match these 114C and

SOM profiles, but we have avoided that type of tuning here.

Processes that may be good candidates for this level of pro-

tection include aggregation and formation of colloids, which

have been shown to substantially affect chemical mobility

and carbon decomposition rates in soils (Daynes et al., 2013;

Kausch and Pallud, 2013; Six et al., 2000). Development of

process representations that will improve these comparisons

is a task we leave for future research.

Other mechanisms not currently included in our model

have also been hypothesized, and in some cases demon-

strated, to play a role in the dynamics of deep SOM and its

relatively depleted 114C values. First, because the relative

abundance of substrates at depth is low, physical separation

between microbes and substrates could limit decomposition

rates (Chabbi et al., 2009; Ekschmitt et al., 2008). The in-

accessibility of substrates is expected to increase nonlinearly

with soil drying. Models for this particular mechanism have

been proposed by considering the effective diffusivity of sub-

strate material as a function of pore geometry and moisture

content (Or et al., 2007). Second, the density of mineral sorp-

tion sites increases with depth, which can lead to an effective

inhibition of exoenzyme activity as these enzymes interact

with mineral surfaces instead of substrate (Quiquampoix et

al., 2002; Tietjen and Wetzel, 2003). Third, on the long time

scales that we have simulated here, bioturbation may be an

important vertical mixing mechanism, although it has been

shown to be negligible in a forest soil (Braakhekke et al.,

2013). As a final example, formation of aggregates that ef-

fectively shield SOM from decomposition could also play a

role in some soils (see the review by Six et al., 2004).

Characterizing model structural uncertainty requires a

more complete set of observational metrics that are specific

to the model structure being tested. For a Century-like model

without observationally defined pools, even with carefully

constrained carbon inputs, one can only compare modeled

and observed total SOM content and 114C values. But, since

specific combinations of SOM content and 114C values in

these types of models can be achieved with various combi-

nations of parameters (Jenkinson and Coleman, 2008; Koven

et al., 2013), and since the carbon content and 114C value

of modeled individual pools cannot be measured separately,

it is difficult to tell if the partitioning of carbon between

pools, vertical transport of material, and protection mecha-

nisms were properly represented. This particular problem is

partly alleviated in a model like the one described here; the

problem then becomes finding observations of the specific

carbon compounds and their partitioning between phases.

More generally, modeling mechanisms or pools that can be

approximated by measured quantities should enable much

more informative testing and model development.

An additional technique to assess model structural uncer-

tainty would be that of building a set of increasingly simpli-

fied models based on the one presented and analyzed here,

and then comparing their goodness of fits against existing

metrics after parameter estimation. We did not apply such

an approach here since we did not have sufficient observa-

tions from one specific site, but could only assess model per-

formance against trends from heterogeneous observations.

However, testing model structural uncertainty will be per-

formed in future work to gain confidence in the model struc-

ture and to inform the level of complexity required for a par-

ticular application.

4.1.1 Sensitivity analyses

Our sensitivity analyses were designed to better understand

system dynamics and to highlight areas of uncertainty that

could motivate future observations. We found that uncer-

tainty in sorption rates (S3, S4; Fig. 6), designed to mimic

sorption sensitivity to warming, had only a small effect on

total-column SOM after 10 000 years. Of course, SOM dy-

namics under decadal-scale climate change will be influ-

enced by many different temperature dependencies and their

interactions.

Microbial growth rates had asymmetric impacts on SOM

profiles. In particular, increased microbial growth rates (S6)

decreased SOM content to a lesser degree than decreased

growth rates (S5) increased SOM content. These scenarios

both led to more 114C depleted total SOM compared to the

baseline, but with a larger decline associated with increased

growth rates. Even though the high-growth scenario (S6) had

less stabilized SOM at depth than scenario S5, the increased

microbial growth rates led to about a doubling of peptido-

glycan (i.e., microbial cell wall residuals after death) levels

compared to the baseline. These compounds were strongly

adsorbed and had low reactivity, thus they had relatively de-

pleted 114C values compared to the other protected species

and resulted in 14C depletion of the total SOM pool.

In the experiments manipulating sorption rates (kf, kr) and

microbial growth rate (µi), all four combinations led to SOM

contents mostly outside the standard deviations of the obser-

vations. The largest biases were associated with both des-

orption and intrinsic microbial growth rates being simultane-

ously decreased (S9). Both scenarios that increased the mi-

crobial growth rate (S8, S10) led to low SOM content and

all four scenarios led to more depleted SOM 114C values as

compared to the baseline simulation.

4.1.2 Pulse experiments

The pulse injection experiments demonstrated the temporal

and vertical complexity of SOM responses. For example,

some quantities peaked shortly after the addition of substrate

and then declined and many had multiple increases and de-

creases in stock over long periods of time (Fig. 7), indicating
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a relatively long memory in this dynamic system. In a real

system with continuously or seasonally pulsing inputs, such

a signal would be indistinguishable after a few carbon-input

pulses. Some of the chemical species’ had negative anoma-

lies from the baseline that only manifested several decades

after the perturbation. Although these anomalies were rel-

atively small compared to the perturbation, they show that

the overall system responses can have interesting transients

and other complexities. Critically, the intrinsic rates affecting

carbon turnover that are integrated in the model are faster

than the overall system response characteristic time. Thus,

the prediction that the total SOM characteristic response time

is longer than these intrinsic rates indicates a substantial

amount of recycling of carbon species between the aqueous,

microbial, and protected pools.

The pulse injection experiment, where SOM was in-

jected and followed for 5000 years, also showed relatively

longer total SOM (∼ 100–300 years) and shorter DOM (0.5–

10 years) simplified first-order turnover times down to about

30 cm (Fig. 8c). The decrease, and then increase, in turnover

times with depth for this transient case is different than that

inferred from our predictions of a monotonically decreasing

114C profile of DOM and total SOM at steady state (Figs. 6d

and 8c). This discrepancy highlights the differences in inter-

pretation of SOM turnover rates based on the metric used

to characterize turnover. Further, there appear to be at least

two characteristic turnover times each for DOM and SOM in

the pulse experiments: ∼ 1 year (Fig. 8a) and > 100 years

(Fig. 8b).

4.2 Development of new SOM models

The model structures introduced by the Century (Parton et

al., 1987) and RothC (Jenkinson and Coleman, 2008; Jenk-

inson et al., 2008) models include several SOM pools with

pre-assigned turnover times that are modified by soil temper-

ature, soil moisture, and soil texture. In that class of models,

the input path of carbon to the various SOM pools may de-

pend on the input lignin content, soil texture, or other ecosys-

tem properties. Those models depend on the wide range in

imposed SOM turnover times (months to centuries) to make

equilibrium predictions consistent with observations, yet it

is not possible to explicitly measure or identify the groups

of compounds existing in any of the assumed pools. Further,

several important aspects of that model structure have been

challenged based on recent analyses using fine-resolution vi-

sualization (e.g., Lehman et al., 2008), molecular character-

ization (e.g., Kleber et al., 2010), field studies (e.g., Torn et

al., 1997), and isotopic probes (e.g., Gleixner, 2013).

Because existing models do not represent many of the

ecosystem processes that have strong climate dependencies,

predictions of global terrestrial carbon cycle responses to

climate change over the next century may be substantially

in error. This contention is supported by recent analyses of

Earth system model predictions (Todd-Brown et al., 2013).

We believe that the (1) recognition that important climate-

relevant processes are missing from land models; (2) impor-

tance of terrestrial carbon dynamics on atmospheric green-

house gas levels and climate; and (3) poor performance of

these ESMs with respect to SOM dynamics, all argue for a

re-evaluation of the methods used to predict carbon dynamics

in land models.

Over the past decade, there have been major changes in the

conceptual framework of SOM dynamics, evolving from one

of carbon pools defined by assumed characteristic turnover

times, to one in which organic material is cycled among pools

of different physical-chemical state (such as adsorbed to a

mineral surface or occluded in an aggregate) with turnover

times primarily determined by the interaction of microbial

and physical-chemical factors. This move away from a re-

liance on intrinsic recalcitrance to explain dynamics follows

a parallel new understanding that soil organic matter com-

prises only a small amount of selectively preserved plant in-

puts and is composed more of microbial necromass and rel-

atively simpler organic molecules with higher intrinsic de-

composability (Miltner et al., 2012). The observed longevity,

quantity, and vertical distribution of SOM profiles are incon-

sistent with a high level of decomposability, and are con-

sidered to be the result of various protection mechanisms

(e.g., mineral interactions, aggregation), physical separation

of substrates and their consumers, microbial population dy-

namics and activity (Allison et al., 2010; Lawrence et al.,

2009; Tang and Riley, 2013; Wang et al., 2013), and trans-

port mechanisms (Sanderman and Amundson, 2008). Since

these mechanisms have different soil temperature and mois-

ture sensitivities, have different characteristic temporal and

spatial scales, and affect the various components of SOM dif-

ferently, characterizing the impact of any single mechanism

on emergent, vertically resolved SOM dynamics is difficult

without a model capable of representing this coupled system.

The model structure proposed here is a start toward devel-

oping that type of process representation. Many other pro-

cesses could also be included for a robust assessment of the

emergent system behavior of soils under changing climate,

changing vegetation type and status, and spatially varying

soils, hydrology, and vegetation properties.

4.3 Observations needed to improve SOM models

The model structure described in this paper includes several

of the processes and concepts recently identified as important

in soil organic matter dynamics, including transport; min-

eral surface association and protection; explicit representa-

tion of fungi and bacteria; and explicit representation of input

polymers, monomers, and recycling of microbial necromass.

While improvements in representing these processes are

needed, for global change predictions it would also be valu-

able to integrate and test the importance of mechanistic rep-

resentation of at least seven additional processes: (a) aggre-

gation (Segoli et al., 2013; Six et al., 2001); (b) formation and
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transport of colloids (Flury and Qiu, 2008; Thompson et al.,

2006); (c) surface interactions (Conant et al., 2011); (d) en-

zyme dynamics (Allison et al., 2010); (e) nutrient–microbe

interactions; (f) microbe-plant interactions; and (g) represen-

tation of subgrid-scale heterogeneity in soil properties and

climate.

We propose that a new modeling methodology is needed

that uses observations to improve explicit representation

of the relevant processes while characterizing uncertainty

and avoiding parameter equifinality (i.e., multiple parame-

ter value-combinations resulting in a comparable match to

the emergent-scale observations; Tang and Zhuang, 2008).

In our study, moderate parameter perturbations caused large

changes in predicted profile SOM content (Fig. 6), highlight-

ing the value of coherent observational data sets that can

be used to better constrain model parameter estimation and

test model predictions (Moorhead et al., 2013). Although

we argue for a more complex model structure to represent

the many processes affecting SOM dynamics, the resulting

system complexity makes determining individual parameter

values difficult, especially if only observations of the emer-

gent properties and behaviors of the system are used. For

example, it has been common practice to use surface CO2

flux measurements to infer temperature sensitivity of het-

erotrophic respiration. However, a careful analysis of the ver-

tically resolved temperature and CO2 production indicates

that such an approach may be overly simplistic (Gu et al.,

2004; Phillips et al., 2013; Tang and Riley, 2013).

For parameter calibration in a complex SOM model, it

may be useful to use observations that target a specific mech-

anism under controlled conditions. For example, laboratory

sorption experiments could be carried out in sterilized soil

with known aqueous composition and temperature. Control-

ling observations in this manner reduces the influence of

other processes (e.g., plant inputs, microbial decomposition,

bulk transport), but we also recognize that laboratory exper-

iments have artifacts and rates tend to be much faster in the

laboratory than in situ. Uncertainty in the parameter values

should be propagated through the remainder of the full model

(Luo et al., 2009) and tested under relatively controlled field

conditions. With careful calibration and uncertainty charac-

terization, confidence in the coupled model predictions is en-

hanced or, if the total-system uncertainty is large, submodels

that significantly reduce predictability could be identified for

further work. Finally, such an uncertainty quantification and

parameter estimation framework could also inform the level

of complexity required to answer a particular question.

4.4 Application to regional- and climate-scale models

As with almost all soil biogeochemistry models, we have

only applied the model introduced here in a one-dimensional

column, but terrestrial ecosystems have spatial heterogene-

ity that affect SOM dynamics in edaphic properties (Bird et

al., 2002), soil moisture (Riley and Shen, 2014; Sivapalan,

2005) and temperature (Davidson and Janssens, 2006), veg-

etation (Turner et al., 2004), and so on. While spatial vari-

ability in SOM dynamics occurs at scales from pore (King

et al., 2010; Molins et al., 2012) to meters (Frei et al., 2012;

King et al., 2010; Mishra and Riley, 2012) to km (Li et al.,

2008), in climate models (typical resolution ∼ 100 km) the

spatial heterogeneity in ecosystem properties is typically rep-

resented by spatially non-specific tiling of, e.g., plant func-

tional types (Lawrence et al., 2011). In the absence of al-

ternatives, it is often taken as an article of faith that single-

column representations of SOM dynamics can be spatially

scaled by simple area averaging, but whether this approach

gives a reasonable approximation to existing or future SOM

stocks is not well tested. Addressing this question will re-

quire a suite of modeling approaches combined with finely

resolved observations. In the modeling context, we contend

that it is important to represent the underlying mechanisms

of SOM dynamics at the spatial resolution at which they can

be observed, at least in benchmark or exploratory models. It

is unlikely, however, that a robust three-dimensional reactive

transport solver will be developed in the near-term that can

operate regionally or globally yet also simulate the very long

time scales (> 1 K year) and fine spatial heterogeneity (µm –

10 km) known to affect SOM dynamics. Thus, two promis-

ing strategies in the near term are to investigate soil system

behavior on relatively smaller domains commensurate with

the scale and availability of observations and to apply model

reduction techniques (e.g., Olson et al., 2012; Robinson et

al., 2012; Riley, 2013) to the full model.

5 Conclusions

The field of soil biogeochemistry faces pressing questions

about how the many mechanisms known to be important for

SOM cycling interact, which processes are most important

for explaining current patterns, and which will be important

for predicting future dynamics and transient responses. The

model presented here takes a step towards addressing these

questions by including sufficient complexity to explore com-

peting hypotheses for explaining observed patterns in SOM

stocks and turnover times. The model includes representa-

tions of two microbial functional groups, an equilibrium pro-

tection mechanism (sorption), and vertical transport. With

these mechanisms, relatively rapid microbial transformation

rates yielded SOM turnover times up to several thousand

years at depth because of the transformation of plant mate-

rial to microbial necromass that tended to be protected on

mineral surfaces and low concentrations of dissolved, assim-

ilable substrates. In other words, the persistence of theoreti-

cally rapidly decomposable substrates and increase in SOM

turnover times with depth could be explained by microbial

activity and transformation, sorption kinetics, and, to a lesser

extent, vertical transport. The model also predicted complex

transient responses to a perturbation in plant inputs, which
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would be difficult to determine experimentally. By showing

that simple extrapolations to the future may not be accurate,

these results confirm the need for models that are testable

yet mechanistic enough to explore system responses to novel

conditions such as those under climate change. Perform-

ing more sophisticated sensitivity analyses, parameter inver-

sions, and perhaps developing reduced order models should

allow a determination of the trade offs between increasing

model complexity, parameter uncertainty, and model struc-

tural uncertainty.
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