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Abstract 

Electricity transmission has become the pivotal industry segment for electricity restructuring. Yet, 

little is known about the shape of transmission cost functions. Reasons for this can be a lack of 

consensus about the definition of transmission output and the complexitity of the relationship 

between optimal grid expansion and output expansion. Knowledge of transmission cost functions 

could help firms (Transcos) and regulators plan transmission expansion and could help design 

regulatory incentive mechanisms. We explore transmission cost functions when the transmission 

output is defined as point-to-point transactions or financial transmission right (FTR) obligations and 

particularly explore expansion under loop-flows. We test the behavior of FTR-based cost functions 

for distinct network topologies and find evidence that cost functions defined as FTR outputs are 

piecewise differentiable and that they contain sections with negative marginal costs. Simulations, 

however, illustrate that such unusual properties do not stand in the way of applying price-cap 

incentive mechanisms to real-world transmission expansion. 

 

Keywords:  Electricity transmission, cost function, incentive regulation, merchant investment, 

congestion management. 
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1 Introduction 

Under the restructuring of electricity sectors around the world electricity transmission has been 

playing a pivotal role. Electricity transmission enables electricity trade within and across countries. 

It can enhance competition. It can increase the reliability of the electricity system and substitute for 

lack of generation in certain areas. Congestion and failure of electricity transmission can lead to 

brownouts and blackouts over large regions. Before restructuring transmission was usually 

vertically integrated with often large generation companies and sometimes also with distribution 

companies. More recently, independent transmission entities (Transcos) have been emerging.  

All these developments have raised interest in electricity transmission services and led to extensive 

research studying the economic properties of transmission systems.
2
 We know that electricity 

transmission differs in many ways from other transportation systems, such as pipelines, railroads or 

the road system, and from other network industries, such as telecommunications. The physical laws 

of electricity make transmission complex and unusual. It is therefore not surprising that – to the best 

of our knowledge - no one so far has characterized a cost function for transmission grids. Two 

specific reasons appear to be responsible for this lack. One is that there is no full agreement on an 

obvious output, to which costs could be related. Thus, there may exist cost characterizations for the 

transmission grid as a set of line capacities, but, in our view, such capacities are definitely not the 

transmission outputs. The second reason for a lack of cost function characterizations is that the 

effects of Kirchhoff’s laws lead to bewildering irregularities in the relationship between outputs and 

capacities. An example of such irregularities is the famous Wu et al. (1996) paper on (the pitfalls 

of) folk theorems on transmission access. As a result transmission cost functions are likely to have 

strange properties that would make them interesting for an audience outside electricity. Where else 

can you expect to have negative marginal costs?  

Thus, the current paper provides a first characterization of the general shapes of transmission cost 

functions (based on a more tentative earlier attempt in Hogan, Rosellón and Vogelsang, 2007; in the 

following: HRV).  

Besides satisfying an intellectual curiosity the knowledge about properties of such cost functions 

can be put to use, among others, as a planning tool for Transcos and regulators. If one knows their 

cost functions one can plan cost-minimizing transmission systems over a wide range of potential 

outputs. This would also take care of reliability issues requiring the availability of alternative paths 

in case of network failures or of unplanned electricity injections at some nodes because of 

                                                      
2
 Examples include Schweppe et al. (1988), Hogan (1992), Bushnell and Stoft (1996, 1997), Chao and Peck (1996), Oren 

et al. (1995), Pérez-Arriaga et al., 1995), Rubio-Oldériz and Pérez-Arriaga (2000), Wu et al. (1996), Joskow and Tirole 

(2000, 2005).  
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generation failure at other nodes. The knowledge of a transmission cost function could also help 

assess investments in renewable energies, such as wind power, that may require substantial 

transmission investments. In addition, the knowledge of transmission cost functions can aid the 

implementation of incentive mechanisms for transmission investment. We will show that 

specifically for the HRV mechanism, but it should in principle hold as well for Bayesian 

mechanisms by using techniques similar to Gasmi et al. (2002). 

The regulatory analyses on incentives for electricity transmission expansion postulate transmission 

cost and demand functions with fairly general properties, and then adapts regulatory adjustment 

processes to the electricity transmission expansion problem. Under well-behaved cost and demand 

functions (and assuming a natural monopoly
3
), appropriate weights (such as Laspeyres weights) 

grant convergence to equilibrium conditions (Vogelsang, 2001, Tanaka, 2007, Rosellón, 2007, and 

Léautier, 2000). A criticism of this approach is that the properties of transmission cost and demand 

functions are little known but are suspected to differ from conventional functional forms (Hogan, 

2000, 2002a, Vogelsang, 2006, and HRV, 2007). Hence the assumed cost and demand properties 

may not hold in a real network with loop-flows since decreasing marginal cost segments and 

discontinuities in the costs can arise during an expansion project. Furthermore, a conventional linear 

definition of the transmission output – similar to the output definition for other economic 

commodities – is in fact difficult since the physical flow through loop-flowed meshed networks is 

complex and highly interdependent among transactions (Bushnell and Stoft, 1997, and Hogan, 

2002a, 2002b). 

In this paper, we study long-run electricity transmission cost functions based upon a definition of 

transmission output in terms of point-to-point transactions or financial transmission right (FTR) 

obligations. We build on the HRV (2007) model which combines merchant and regulatory 

approaches in an environment of price-taking generators and loads.
4
 The HRV model also shows 

that FTR-based cost functions exhibit very normal economic properties in a variety of 

circumstances. This particularly holds if the topology of all nodes and links is given and only the 

capacity of lines can be changed, implying that abnormally behaving cost functions require changes 

to network topology.
5
 We study in more detail these conclusions, and test the behavior of FTR-

based cost functions for distinct network topologies. We focus on two basic cases. In the first we 

                                                      
3
 Dismukes, Cope III and Mesyanzhinov (1998) empirically show the validity of the natural-monopoly assumption for 

electricity transmission. 
4
 The model is an extension of Vogelsang (2001) for meshed projects. While designed for Transcos, it can be applied 

under an ISO setting. 
5
 By a network topology, we mean a set of nodes with their locations and a set of lines with associated impedances 

between these nodes. 
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adjust line capacities, but nodes, lines, impedances and thus the power transmission distribution 

factors (PTDFs) do not change.
6
 This framework allows us to single out the effect of loop-flows on 

transmission costs. In the second case we allow for changes in line impedances (and thus the 

PTDFs) correlated to the changes of line capacities. These cases provide insights about the 

relationship between PTDFs, transmission capacity, and transmission costs. 

The plan of the paper is as follows. In Section 2 we discuss the characterization of transmission 

outputs in terms of FTRs. In Section 3 we address the mathematical cost-function model as well as 

its adaptation to a computer programming model. In this section, we also describe the dataset used 

to make simulations as well as the different functional forms to be tested. The results of simulations 

are presented and discussed for fixed and variable line reactances in Section 4. This section also 

identifies the challenges associated with consideration of the effects on cost functions of changes in 

network topology. In Section 5 we illustrate through simulation results how the properties we found 

for transmission cost functions are conducive to the functioning of the HRV regulatory mechanism. 

Section 6 concludes. 

 

2 Characterization of Electricity Transmission Outputs 

In a vertically separated setting with transmission provided by a stand-alone Transco, the grid is 

used by generators that want to deliver electricity to load-serving entities (loads, or LSEs), and by 

entities that want to purchase from generators with or without the help of intermediaries. 

Transmission makes these transactions possible thus the Transco’s chief service is to provide 

delivery between generation nodes and consumption nodes. Bushnell and Stoft (1997), and Hogan 

(2002a, 2002b) argue that the definition of the output for transmission is difficult since the physical 

flow through a meshed transmission network is complex and highly interdependent among 

transactions. 

Under a network with loop flows, outputs could be defined as bilateral trades between pairs of 

nodes that aggregate to net injections at all nodes. This idea derives from the FTR literature which 

does not consider transmission activity as an output (or throughput) process, but instead 

concentrates on “point-to-point” (PTP) financial transactions based on rights, obligations and 

options (Hogan, 2002b). Physical transmission rights are also discussed in the FTR literature. 

                                                      
6
 The network topology is described by the network incidence matrix (Léautier, 2000, p. 83). Given the topology there is a 

set of power transfer distribution factors (PTDF) that govern the flows on the individual lines. 
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However, as mentioned above tracing the physical flow is impractical. The superiority of FTRs over 

physical rights has been analytically demonstrated as well (Joskow and Tirole, 2000).
7
  

The difference between an FTR and a physical right can be analyzed via a three-node-network 

setting (see Figure 1). Assuming equal line characteristics, power injected and withdrawn at two 

nodes within the system (e.g., 9 MW) will cause 2/3 of the energy (6 MW) to flow on the direct 

connection (n2-n3) and 1/3 (6 MW) will flow over the longer connection (n2-n1, n1-n3). Given a 

transmission amount of 9 MW the corresponding FTR would be a point-to-point right of 9 MW 

from node 2 to node 3, whereas the corresponding physical representation would be a 6 MW right 

for the direct link (n2-n3) and two 3-MW rights for the flow over the other two lines (n2-n1, n1-n3) 

(Figure 1, case 1). Assuming a second injection-withdrawal pair of 3 MW between node 1 and node 

3, the corresponding power flow values will lead to counter flows on the line between node 1 and 

node 2 (Figure 1, case 2).  

The changed market conditions of case 2 have an impact on the underlying physical rights: In case 

netting is not allowed, the counter-flow effect will not be accounted and although only 2 MW will 

flow from node 2 to node 1 both market participants will be required to hold a physical right of 3 

and 1 MW respectively. In case netting is respected, the required physical position of the 9 MW 

injection would change reducing the required capacity right for the counter flow link to 2 MW. 

FTRs do not account for a specific power flow pattern, and thus the holder of the 9 MW FTR will 

not have to alter any position due to changes in the market dispatch. Any impact on the power flow 

and congestion situation will be fully reflected by changes in the nodal prices. 

In this paper, we capture the delivery function of electricity among nodes via FTRs that are defined 

between nodes. An FTR qij represents the right to inject electricity in the amount of q at node i and 

to take delivery of the same amount at node j (this definition for FTRs works for obligations, as 

opposed to other hedging instruments such as options). The FTR does not specify the path taken 

between i and j. It is a flow concept and therefore applies to a discrete point in time and to PTP 

transactions.  

Therefore, to analyze the cost behavior of extending meshed networks we must define the 

transmission output as PTP transactions. Whereas in directed networks like natural gas or oil an 

additional unit of output that normally can be associated with a well-defined cost parameter or 

function, additional output in electricity networks depends on the grid conditions, and cannot be 

considered separately from the output setting. 

                                                      
7
 PTP forward obligations have proved to be the most feasible financial instrument in practice, compared to PTP options 

and flowgate rights. PTP-FTR obligations can be either “balanced” or “unbalanced”. A perfect hedge is achieved through 

a balanced PTP-FTR, while an unbalanced PTP-FTR obligation can be seen as a forward sale of energy. See also Hogan 

(2002b). 
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Figure 1: Power flows and transmission rights 
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3 Model, Topologies and Data 

3.1 The FTR cost-function model 

The potential problems of transmission cost functions alluded to earlier derive from loop-flows that 

may produce decreasing or even negative marginal costs and discontinuities. Theoretically these 

problems can be solved with free disposal, but electricity cannot be freely disposed.
8
 One purpose 

of our study is to establish that the problem of non well-behaved, non-continuous transmission cost 

functions is related to demand changes that lead to a change in network topology (as suggested by 

HRV, 2007). We restrict our analysis to cases where the network topology is not changed, first 

studying cases with no changes in impedances, and then addressing the effects of loop-flows in 

switched networks. 

We define network topology as a set of nodes and their locations and a set of lines between nodes. 

Generation nodes and consumption nodes are naturally given by the set of transmission outputs 

(FTRs), while free nodes are deliberately chosen for optimization of the network topology. A three-

node network could be associated either with three lines connecting all three nodes, with three 

possible combinations of two lines, or with three possibilities of one line. Obviously, in the cases of 

a single line one node would be an orphan and could not be used for injecting or consuming 

electricity. The network topology is described by the network incidence matrix (Léautier, 2000, p. 

                                                      
8 A downward-sloping total cost curve for an FTR (i.e., with negative marginal costs) means that a larger FTR is provided 

at a lower cost. The question is if the unused part of the FTRs can be thrown away. It could be argued that the additional 

amount of FTRs can only be provided by actually injecting and taking out the required additional electricity. This would 

incur an additional cost of generation, which would contradict free disposal.  
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83). For a given network topology we assume that the line capacity is variable so that it can be 

changed between 0 and ∞, but at a cost. There may be a fixed cost at zero capacity.  

To derive an FTR-based cost function for transmission we examine the properties of power-flows in 

meshed networks. We use the DC load-flow model (DCLF) as proposed by Schweppe et al. (1988), 

which focuses on real power-flows and neglects reactive power-flows within a network. Although a 

simplification, the approach still yields reasonable results for locational price signals and grid 

utilization (see e.g., Overbye et al., 2004). 

The complete approximation of the DCLF from the physical fundamentals of transmission lines is 

presented e.g., in Stigler and Todem (2005). The principle of a DCLF is that flows pfij on a line 

depend on the voltage angel difference Θij and the line series susceptance Bij between the two nodes 

i and j: 

     power-flow between i and j 

 (1)

ijijij Bpf Θ⋅=

9
 

The power-flow on one line also has an impact on the energy balance of its connected nodes. For 

each node i in a system the net injection qi must equal the sum of power-flows on connected lines: 

      energy balance at i    (2) =
j

iji pfq

If more energy is to be delivered to or from node i all power-flows and nodes on lines connected to 

that node are affected, continuing throughout the network. Therefore, the resulting power-flow 

pattern depends on all system conditions. 

To assess the costs of transmission, we define the transactions qij between two nodes i and j as the 

relevant output. These FTR PTP transactions are determined as a specific load value, e.g., in MW 

that must be transmitted between the two nodes. There is no pre-specified line utilization associated 

with an FTR. Market participants can bid for specific FTRs and the system operator allocates them 

accordingly, maximizing the revenue from the FTRs given the network’s available transmission 

capacity. FTRs are assumed to be obligations, thus the associated energy transfer can be taken for 

granted. 

                                                      
9
 The reactance X represents the opposition of a line towards alternating current, based on the inductance and/or 

capacitance of the line. Together with the resistance R, they define the impedance of a line and thus determine the amount 

of power flowing over this line given the net injections. The line series susceptance Bij is then derived via: 
22

ijij

ij

ij
RX

X
B

+
=  

Generally, the resistance is assumed to be significantly smaller than the reactance  (X >> R), and thus we do not consider 

it further in this analysis simplifying the susceptance to: 

ij

ij
X

B
1

=  
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We define the transmission costs function c(.) of network extension as the least costs combination 

of line capacities k necessary to satisfy Qij  (the matrix consisting of a specific set of FTR 

combinations qij): 

     transmission cost function   (3) )(min)(
,

ij

ji

ij
k

ij kfQc
i

=

Thus, our approach is one of long-run cost functions, where capacity is optimally adjusted to each 

output.
10

 

Next, each line capacity kij is associated with a specific cost value via an extension function f(.). 

Minimization is subject to technical restrictions representing the network’s power-flow 

characteristics: 

  ijkpf ijij ∀≤    line capacity constraint    (4) 

   energy balance constraint   (5) ipfqq
j

ij

j

ji

j

ij ∀=− 
First, power-flows pfij on the lines must remain within the capacity limits kij defined by the system 

operator when designing the grid (equation 4). Second, at each node i the sum of outgoing FTRs 

(qij) and ingoing FTRs (qji) must equal the sum of power-flows on connected lines pfij (equation 

5).Let  and . Then: Ii ,...,1= Jj ,...,1=

)(min)(
1 1

ij

I

i

ij

J

j

ij kfQc 
= =

=  

)(min
1 1

ij

I

i

ij

J

j

pff
= =

=
 

(...)...(...))....(min 22211

1

IjjIjIjjjjj

J

j

ij ffqptdfqptdfqptdff ++++++= 
=

 

where ptdfij is the power factor distribution factor associated to the line that goes from node i to 

node j. The variables in parenthesis are the , for example: sk ij '

IjIjjjjjij qptdfqptdfqptdfk +++= ....2211  

Marginal costs will then be of the form: 


= = ∂

∂
=

∂

∂ I

i

J

j ij

ij

ij

ij

ij

k

f
ptdf

q

Qc

1 1

)(
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 In practice, transmission costs should presumably also be complemented with adjustment mechanisms (or weights) 

among distinct types of users, specification of governance for changes in capacities and line structures, as well as with 

uncertainty about technology changes (such as in “smart grids”). 
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Since the fij(.) are the costs of individual lines, they are then monotonically increasing functions. 

The marginal costs of FTRs are linear combinations of the marginal costs of all lines. The weights 

of these linear combinations—the ptdfs--  are constant (at least in the same period). As a result, 

marginal costs of FTRs should be well-behaved as long as marginal costs of lines do not differ too 

widely from each other and as long as marginal costs of all individual lines are well-behaved. 

However, the opposite might also be said: if marginal costs differ of each line differ too widely 

from each other then the marginal costs of FTRs will most likely be ill behaved. We will next get 

evidence of this theoretical implications with simulations over simple networks for, first, the case of 

no ptdf change over time and, second, when ptdf changes are allowed. To examine the 

characteristics of the FTR-based cost function in (3) and restrictions (4) and (5), we incorporate the 

model in a General Algebraic Modeling System (GAMS) as a non-linear minimization tool, with 

the overall grid extension costs as an objective function and looped over a specific set of FTRs.  

 

3.2 Network topologies and dataset 

We use a numeric data set representing idealized market characteristics to test our FTR-based cost 

function model. We consider two grid topologies to carry out our simulations (Figure 2):  

1. An initial grid topology that comprises a three-node network with two generation nodes and 

one demand node representing the basic loop-flowed network structure. 

2. An extended six-node network with two generation nodes and one demand node.  

FTRs are defined from the generation node to the demand node, and vary between 1 MW and 

10 MW respectively, to estimate the resulting global-cost function.  

For network extension behavior, we next analyze two cases: 

1. Only the capacity of a line can be changed whereas the line’s reactance remains unchanged. 

Thus, an extension only impacts the transmission capacity of the system, but does not alter 

the power-flow pattern and PTDF structure. This approach is theoretical, since in reality 

pure capacity increases are only possible for small-scale extensions. It assesses the impact 

of loop flows on transmission costs without the interfering influence of power-flow 

changes.  

2. Line extensions are combined with a change of the line’s reactance and the added capacity 

changes the network’s power-flow pattern as well as the PTDFs. This approach resembles 

the real world problem that a new or upgraded line affects the entire network, and leads to 

externalities for other market participants.  
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We test four forms of line extension costs functions fij(kij): constant marginal cost,  decreasing 

marginal cost (economies of scale), increasing marginal costs (diseconomies of scale), and lumpy 

behavior.
11

  

 Linear function (constant marginal cost):    ijijij kbf =

 Logarithmic function (economies of scale):  ( )
ijijijij kbaf += ln

 

 Quadratic function (diseconomies of scale):  
 

2

ijijij kbf =

 Lumpy function:      
 
with  ijijij kbf = +∈ Zkij

The first three extension functions represent a continuous approach, which is a rough approximation 

of the lumpy investment pattern of electricity networks and the fourth directly accounts for the 

integer nature of line extensions. For all scenarios network topology is fixed; new connections 

cannot be built and existing connections cannot be abolished. We assume that each line has the 

same starting characteristics for capacity and reactance. 

When only the line capacities are extended, the presented extension cost functions are sufficient to 

derive a numerical solution. In the case of a connection between extensions and line reactances, the 

law of parallel circuits
12

 is applied to derive a functional connection between capacity extensions 

and line characteristics Bij(kij). Thus, doubling the capacity results in a bisection of a line reactance. 

Whereas the first approach does not require specific start values for line capacities, the latter 

approach needs initial network characteristics to obtain results. We test the cases using a series of 

numerical analyses, varying the underlying parameter. An overview of the basic data set is provided 

in Table 1. 

 

                                                      
11

 Although diseconomies of scale are rather unlikely in electricity networks they are included for the sake of 

completeness. 

12
 In a parallel circuit the total resistance of the system is defined by =

i i

total
R

R
1

1 .  
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Figure 2: Network topologies 
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Table 1: Scenario overview for cost function calculation 

 Fixed line reactances Variable line reactances 

Starting line reactances 1 

Line extension functional 

parameters 

aij = bij = 1 aij = bij = 1 

Starting capacity values [MW] kij = 0 kij = 2 

Three node network  

FTR range [MW] FTR 1 to 3: 1 to 5 

FTR 2 to 3: 1 to 10 

Six node network 

FTR range [MW] 
FTR 1 to 6: 1 to 5 

FTR 5 to 6: 1 to 10 

Source: Own assumptions 

 

4 Scenarios and Results 

We first present the results for the cases with fixed-line reactances and thus the impact of loop 

flows on extension costs. To single out the effects we start with the extension of one FTR while the 

other is kept fixed, and then allow both FTRs to be extended. We then analyze the case with a 

linkage of capacity and reactances – case of variable line reactances – to estimate the combined 

impact on extension costs. We end with a discussion of the results.  
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4.1 Fixed line reactances 

In the fixed-reactance case, the loop flows are predetermined and cannot be altered in any sense 

when the net input is modified at nodes. The resulting cost function will represent a network with 

line capacities that fully resemble the power-flow on each line. 

4.1.1 Extending one FTR 

In the three-node system line 1 (between nodes 1 and 2) is subject to power-flows in opposite 

directions depending on the value of the two FTRs. Given a fixed level of one FTR (1>3, fixed at 

2.5 MW), an increase in the second FTR (2>3) will first lead to a decrease in the flow on line 1 

towards zero until both FTRs have the same value. Afterwards, the flow will again increase, 

although in the opposite direction. The resulting capacity cost for increasing the FTR value will 

show a “kink” at the level of the fixed FTR which in our example is equal to 2.5 (Figure 3, left 

side). In the linear and logarithmic cases the kink can clearly be distinguished. In the quadratic case 

the slope of the line extension function around zero is almost horizontal with gradual changes. 

Thus, the loop-flow kink does not occur. In the lumpy case the needed capacity on the loop-flowed 

line is the lowest when both injections cancel each other out. Any divergence from that state, no 

matter how small, will make it necessary to install the next integer capacity level which results in a 

sharp decrease and increase of the cost function around that point which can be observed at a level 

of 2.5 MW (Figure 3, left side).  

In the six-node case the number of loop-flowed lines is extended to five (lines 1, 2, 5, 6, and 7). 

However, lines 2, 5, and 6 will cancel out their flows at the same FTR level because of network 

symmetry; thus, only three counter-flow kinks are obtained. Furthermore, the counter-flow on line 1 

will only be observed if the FTR from node 1 to node 6 is low compared to the FTR from node 5 to 

6 due to the small power-flow share caused by the second FTR on line 1. For the 2.5 MW case we 

only observe two kinks (Figure 3, right side), one at 1.25 MW (canceling out the flows on line 7) 

and the second at 5 MW (canceling out the flows on lines 2, 5, and 6). The last kink occurs at a FTR 

value of 20 MW, which is outside the observation range. In particular the lumpy-cost curve shows 

the impact of several interacting loop flows: shortly after the first kink resulting from the counter-

flow on line 7 at 1.25 MW, the cost function first increases and then decreases. This negative 

marginal cost range is caused by the reduced power-flow on line 1. Thus, the increasing and 

decreasing ranges of several counter-flows can lead to overlapping cost effects. 
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Figure 3: Cost function fixing one FTR, three-node and six-node network, fixed reactances 
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4.1.2 Extending two FTRs (global cost function case) 

If both FTRs are varied the resulting cost function behavior will still represent the counter-flow 

conditions. In the three-node case, we observe the kink of line 1 moving gradually with the 

increasing FTRs, which is best visualized in the logarithmic case (Figure 4, left side). The same 

holds true for the linear extension case, whereas the quadratic case again shows no signs of kinks.
13

 

The lumpy investment case shows a more varied structure (Figure 4, right side). This is due to the 

combined extension of both FTRs: as the flows split up 2:1 respectively at specific extension steps, 

it becomes necessary to extend two or even all three lines in the system.
14

 Specifically, we see 

several areas with negative marginal costs. Thus, the global cost function is a combination of 

counter-flow based cost reduction on line 1, and possible capacity steps of 1, 2, or 3 MW depending 

on the net injection.  

The same outcome holds true in the six-node case. The resulting global cost function shows three 

kinked lines (which correspond to the previous three kinked points), which again are best visualized 

in the logarithmic case (Figure 5, left side). The kink on the left side is associated with negative 

marginal costs and represents the counter-flow on line 1 which requires a low level of the FTR from 

1 to 6, and a high level of the FTR from 5 to 6. The kink in the middle represents the counter-flows 

on lines 2, 5, and 6, and the right kink represents the flow on line 7. The lumpy investment case is 

                                                      
13

 Linear and quadratic cases are presented in the Appendix. 
14

 For instance, keeping the FTR from 1 to 3 fixed to 0, if the FTR from 2 to 3 is extended from 3 to 3.1 the line 

capacities must all be extended by 1 MW (line 1 and 2 have 1 MW, line 3 has 2 MW). This allows the increased power- 

flow pattern and causes a step of 3 MW.  
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again highly fragmented and shows negative marginal costs (Figure 5, right side) due to the 

interaction of counter-flows and capacity steps. 

 

 

Figure 4: Global cost function, three-node network, fixed reactances 

Lumpy extension costsLogarithmic extension costs

Source: Own calculation 

 

Figure 5: Global cost function, six-node network, fixed reactances 

Lumpy extension costsLogarithmic extension costs

Source: Own calculation 

 

4.2 Variable line reactances 

In reality, there are limitations to extending a line capacity without altering its technical power-flow 

characteristics. Normally, a capacity extension is linked to a change in the reactance of the line. 
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Therefore, in our second scenario capacity extensions are coupled to line reactances via the law of 

parallel circuits. Thus a doubling of a line’s capacity results in a bisection of the line reactance (and 

a change in the ptdf structure). The combined loop-flow nature of power-flows and the change in 

network characteristics due to capacity extensions makes a prediction of the possible outcomes 

more complicated.  

4.2.1 Extending one FTR 

Whereas in the fixed-reactance scenario it was clear beforehand that the power-flow on one line 

will fall to zero for a specific FTR combination, this may not be true in this scenario since the 

canceling-out point can change with the alteration of network characteristics. This can clearly be 

seen in the three- and six-node cases. Cost functions allow no general conclusions regarding the 

status of counter-flows and of potentially negative marginal costs within the system (Figure 6), 

because line 1 is not extended for the three-node case. Increasing the capacity of line 3 will lead to a 

larger power-flow on that line relative to the path over node 1 utilizing line 1 and 2. This allows the 

full utilization of the starting capacity values of those lines (2 MW). Therefore, the cost function 

only resembles the extension cost of increasing capacity on line 3 which consequently is a 

continuous function or an increasing stepwise function in the lumpy case (see Figure 6, left side). 

The same holds true for the six-node case. By extending the most-utilized lines the power-flow 

share on these lines also increases, which avoids further extension. However, contrary to the 3-node 

case more than one line needs to be extended along the FTR range. Thus, kinks can occur when the 

extension includes more lines or when it switches the extended line. In addition we observe for the 

logarithmic case that more capacity is added on a line than is actually utilized, due to the decreasing 

marginal extension cost. The capacity extension has an impact on the power-flow distribution 

regardless of the actual flow over that line. By building more capacity on a line than needed, the 

power-flow pattern can be altered in such a way that less capacity is needed on other lines. Since 

the marginal extension cost in the logarithmic case is the highest for initial extension and decreases 

with capacity, it is less costly to extend a line that may not be fully utilized if other initial capacity 

extension can be avoided. This is the case in the first kink at 3.55 MW (Figure 6, right side). This 

situation may also switch back – making another line the less costly alternative to be extended – if 

the costs for excess capacity are no longer counteracted by a beneficial power-flow distribution. 
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This is the case for the second kink at 5.2 MW where the former extended line 8 is no longer 

extended, and the full additional capacity shifts to line 9, which alters the power-flow pattern.
15

 

 

Figure 6: Cost function fixing one FTR, three-node and six-node network, variable reactances 

FTR 1>3 fixed at 2.5 MW FTR 1>6 fixed at 2.5 MW
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4.2.2 Extending two FTRs (global cost function case) 

If both FTRs are increased simultaneously, the resulting cost function in the three-node case shows 

a decrease at a specific FTR range (Figure 7). These results are obtained in all extension cases 

including the quadratic function (see Appendix). However, this range has no resemblance to the 

kink observed in the fixed reactance case which was solely attributable to the unavoidable counter-

flow on line 1. In this case the decreasing cost range is attributed to the absence of a counter-flow in 

the very first case (FTR from 1 to 3 is “0”). The power-flow within the system therefore is only 

defined by the FTR from 2 to 3 and consequently the flow on line 1 is higher than in all other cases, 

making an extension of this line necessary (or a much larger extension of line 3). Increasing the 

FTR from 1 to 3 produces a counter-flow on line 1 and allows better utilization of the existing 

capacity. This effect makes the overall extension less costly (negative marginal costs both in the left 

and the right figure).  

In the six-node case this dominant effect of a single line is canceled out by the increased number of 

loop-flowed lines. Within the observation range the non-lumpy cost function shows a continuous 

behavior with monotonically increasing global costs for increasing FTR values (Figure 8). The 

                                                      
15

 The inconsistencies of the logarithmic cost function around 5 MW in the six-node case are due to the solve process 

utilizing Baron as GAMS solver. Using Conopt and Coinipot as solvers produces a higher cost function within that range, 

hinting at problems in obtaining the lowest local optimum. 
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lumpy case shows an increasing cost pattern without a large fragmentation. Whether this behavior 

also extends beyond the observation range is not so clear. 

 

Figure 7: Global cost function, three-node network, variable reactances 

Lumpy extension costsLogarithmic extension costs

Source: Own calculation 

 

Figure 8: Global cost function, six-node network, variable reactances 

Lumpy extension costsLogarithmic extension costs

Source: Own calculation 

 

4.3 Discussion 

Table 2 presents a summary that compares the cases addressed in Sections 4.1 and 4.2. We can 

deduce some conclusions regarding the relationship of kinks, negative slopes and loop-flows for the 

non-lumpy cost functions. First, we observe that smoothness is gained with variable reactances in 
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the three-node case. Whereas in the fixed-reactance scenario it was clear that for specific FTR 

combinations the power-flow on one line will fall to zero and cause kinks in both the 1-FTR and 

global-cost function cases, this is not valid in the variable-reactance scenario because the canceling-

out points can change with the alteration of network characteristics. Additionally, for the global-

cost function case the counter-flow structure may imply decreasing ranges of the cost function. 

The analysis for the six-node case is richer because of its complex network topology and loop-flow 

structure. However, in the global-cost function case the same conclusion prevails: the relationship 

among different loop-flows is such that continuity in the cost function is gained when reactances are 

allowed to vary. Non-lumpy cost functions then show a smooth behavior but with increasing global 

costs for increased FTR values. The above results apply to the lumpy extension case where by 

definition, network expansion is carried out within a discontinuous environment. The obvious 

difference is that the gains from considering variable reactances will imply an increasing stepwise 

function. The results indicate that taking into account the full characteristics of electricity networks 

provides a cost framework that is closer to the well-behaved continuous functionality postulated in 

regulatory theory.  

Although not fully general, the above comparative analysis suggests that piece-wise continuity of 

cost functions is a concrete advantage of a transmission cost analysis based on FTRs instead of 

power-flows. This property is crucial for the application of price-cap incentive mechanisms to real-

world expansion projects. Especially when we assume increasing returns to scale, the resulting 

capacity extension pattern includes sudden shifts in the extended lines which in turn cause a 

significant alteration in power-flows. When we define the transmission output as line power-flows, 

the shifts will cause jumps in the resulting cost functions. Whereas the redefinition via a FTR 

approach only takes into account the overall extension costs and thus avoids line specific 

discontinuities. 

A further issue that would generalize this analysis considers a more realistic scenario of electricity 

networks. When cost minimization occurs over the optimal design of the network (i.e., the location 

and number of links and nodes denoted by the transfer-admittance matrix H), the network topology 

is affected accordingly. In this case, H becomes a variable, and a more complicated cost 

minimization problem results.
16

 The problem also leads to new goods (FTRs) for new nodes, and 

these new goods change the costs for all of the old goods. Hence, all FTRs are affected if free nodes 

are added or removed. 

                                                      
16

 We conjecture, however, that in the cases with two generation nodes and one consumption node dealt with in the 

current paper the optimal network architecture may actually be too simple. Our results might become more complex when 

many generation nodes and many consumption nodes are considered. Results may also be different if one adds reliability 

constraints, such as an (n-1) constraint. We plan to address these issues in future work. 
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One way to first address this problem is to consider an incremental change in network architecture. 

The method would calculate the cost function for the changed network, and then compare it to the 

cost function of the original network. If the new cost function lies everywhere below (above) the 

original cost function, the new topology dominates (is dominated by) the original one. Most likely, 

as suggested by our previous simulations, one will dominate the other only over part of its range.   

Another solution is to evaluate ways to minimize costs for the network topology alternatives.  If, for 

simplicity, we assume that the nodes are given by the location of power stations and load centers, 

one has to choose between different line configurations. The number of configurations will grow 

quickly with the number of nodes. But after identifying all cost functions for all topologies, the 

long-term cost function will be the minimum cost locus (the lower envelope convex hull).  

 

Table 2: Overview of results 

Fixed Reactance Variable Reactance  

1 FTR Fixed 2 FTRs 1 FTR Fixed 2 FTRs 

Three 

nodes 

• Resulting capacity cost 

for increasing an FTR value 

will show a “kink” at the 

level of the fixed FTR.  

 

• In the lumpy extension 

case, the kink is 

represented by a jump in 

the step function. 

 

• In the quadratic case the 

slope of the line extension 

close to the origin is almost 

horizontal, thus the loop-

flow kink does not occur. 

 

• The kink of lines moves 

gradually with increasing 

FTRs.  

 

• The lumpy investment 

case is a combination of 

cost reductions based on 

counter-flows and capacity 

steps depending on net 

injections.  

 

• The quadratic case 

shows no signs of kinks.  

 

• No clear correlation 

between counter-flows and 

kinks as the canceling-out 

point of counter-flows 

changes with the alteration 

of network characteristics.  

 

• The cost function will 

resemble the extension cost 

of increasing capacity on 

the most utilized line 

causing a continuous cost 

function. 

 

• The resulting cost 

function can show a 

decreasing part at a specific 

FTR range attributed to the 

missing of a sufficient 

counter-flow. 

 

Six  

nodes 

• Lines 2, 5, and 6 will 

cancel out their flows at the 

same FTR level due to the 

network symmetry, and 

thus three counter-flow 

kinks are obtained.  

 

• The lumpy-cost curve 

shows the impact of several 

interacting loop flows: the 

cost function first increases 

and then decreases again.  

 

• Resulting global cost 

function shows three kinks.  

 

• The lumpy investment 

case is highly fragmented 

due to the interaction of 

counter-flows and capacity 

steps. 

 

• By extending the most 

utilized lines the power-

flow share on those lines 

also increases, and the need 

to extend other lines is 

reduced.  

 

• Kinks can occur when 

the extension includes 

further lines or when it 

switches the extended 

line(s).  

 

• In the logarithmic case 

more capacity is added on a 

line than is actually utilized 

(due to decreasing marginal 

extension costs), altering 

the power-flow pattern so 

that less capacity is needed 

on other lines. 

• The dominant effect of a 

single line is canceled out 

by the increased number of 

loop-flowed lines in the 

system. 

 

• Within the observation 

range the cost functions 

show a continuous behavior 

with increasing global costs 

for increased FTR values.  
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5 Application to a regulatory mechanism for transmission expansion 

Under incentive mechanisms for Transcos proposed by Vogelsang (2001) and HRV (2007), 

investments will continue through time until they converge to an optimal (Ramsey-price) level. 

However, this only holds under the assumptions that transmission’s demand functions are 

differentiable and downward-sloped and that the marginal cost curves cut demands only once. 

However, our observations above (in Figure 3 right, Figure 4 left and right, Figure 5 right and 

Figure 7 left and right) exhibit areas of negative marginal costs (where the total cost function either 

jumps down or has a negative slope). This is something that never happens with "normal" cost 

functions and could potentially violate the assumptions necessary for the working and convergence 

of such mechanisms. The local presence of such anomalities, however, does not necessarily mean 

that the mechanism would not converge or would not converge to the optimum. The firm may end 

up at a local, not global optimum, though.
17

 It appears that these concerns might not always be 

relevant, as the following simulation results by Rosellón and Weigt (2007) illustrate. 

Applying a simple three-node setting as presented in Figure 2, Rosellón and Weigt show that the 

regulatory mechanism grants convergence towards the welfare optimal solution over time. The 

obtained results are robust to changes in the underlying network, demand, and generation 

assumptions. Extending the model approach to represent the North-West European electricity 

market with the Netherlands, Belgium, France, and Germany the obtained results show a 

convergence of price levels within the region due to the extensions carried out by a regulated 

Transco (Figure 9). The network representation with 15 nodes and 28 lines in Rosellon and Weigt 

(2007) exceeds the range of the networks analyzed in this paper and consists of several injection 

points, counter flow situations, and congestion problems. Although, the actual transmission cost 

function in this exercise has not been derived, the results suggest that the conclusions drawn from 

the cost function analysis could also hold for more complex network topologies. 

 

                                                      
17

 The analysis of local or global optima could be further carried out considering cheap and dear nodes where there is a 

trade-off between “lumpy investment in transmission and no investment in generation” vis a vis “no investment in 

transmission and investments in generation”. 
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Figure 9: Price development in the European model 
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6 Conclusion 

We analyzed the cost functions of electricity transmission when the transmission output is redefined 

in terms of FTR point-to-point transactions. We were motivated to do so because smooth, well-

behaved cost functions may not hold in meshed network with loop-flows. Likewise, a conventional 

definition of the electricity transmission is not possible since the physical flow through loop-flowed 

meshed transmission networks obey Kirchhoff’s laws. We explicitly tried to provide more evidence 

for the intuition suggested in the literature that ill-behaved non-continuous transmission cost 

functions are mainly due to capacity changes that modify network topology. We therefore focused 

on fixed topology networks with two cases, one where line capacities could change but not the lines 

reactances, and the other where changes in line reactances linking capacity extensions and power-

flow distribution are allowed. 

Our simulations in general suggest that FTR-based cost functions remain piecewise continuous – as 

well as piecewise differentiable – over the entire FTR range. Regions with negative marginal costs 

could cause concern. However, they seem to shrink, as one moves to more realistic (multi-node) 

networks and includes changes in reactances in the model. This then provides support for 
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applications of mechanisms that use FTRs to promote network expansion. More specifically, our 

results showed that compared with the fixed-network case the introduction of variable line 

reactances significantly changes the possible outcomes. In particular, the introduction of a link 

between capacity and reactance appears to reduce the impact of loop-flows in terms of significant 

kinks. Therefore, one general result is that smoothness of non-lumpy cost functions is gained with 

variable reactances. In a lumpy environment, this result translates to variable reactances, implying 

increasing stepwise functions. 

Overall, our results reveal the difficulties that electricity networks present when applying standard 

approaches. Even for a simple extension, loop-flows can lead to a mathematically complex global 

cost function. This in turn makes the estimation of revenue and profits more complex in a general 

setting. Additionally, the link between capacity extension and line reactances (and thus flow 

patterns) produces results that are highly sensitive to the grid structure.  

For modeling purposes, the logarithmic and lumpy behaviors produce high degrees of nonlinearities 

with non-smoothness, and require further calculations and solver capabilities, the quadratic 

functions show a generally continuous behavior, and the linear extension functions fall somewhere 

between. Most suitable for modeling, therefore, is combining the latter with the piecewise, linear 

nature of the resulting global costs function, making it possible to derive global optima. 

Nevertheless, an analysis of investment incentives in electricity transmission relies on numerical 

analysis to capture the physical nature of the network, so that conclusions remain feasible within a 

range of systems and cases. One challenging subject for future research topic is the examination of 

the external influences (e.g., geographical conditions or different states of nature) which might 

cause dysfunctional behaviors with sudden slope changes. Further research steps would also include 

the derivation of cost functions under the elicitation of FTRs under a mechanism such as HRV 

(2007). In each period, the demand for FTRs (so as to increase transmission capacity) would 

determine marginal costs for transmission which would in turn affect demand for FTRs in the next 

period. This would intertemporally provide a cost function for each specific expansion project. Such 

analysis might be further expanded into more complex settings such as: market power in energy 

FTR markets, a cost function (3) unknown to the regulator, different states of nature, and a 

regulatory mechanism that combines low-power incentive schemes for the long term and high-

power incentive schemes for the short term. Other issues would further include the impacts on the 

cost function behavior of lack of fiscal transfers (so that the fixed-fee allocation among consumers 

might have distortive effects) as well as capacity reserves.   
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The ultimate research challenge, however, is to identify the changes in network topology and the 

alternatives that minimize costs throughout the system. Recognizing that the number of 

configurations increases significantly with the number of nodes, nonetheless an exhaustive analysis 

of the properties of transmission cost functions should suggest future research to pursue. 

Once these challenges have been resolved, the emphasis should be on empirical assessments of line 

costs in order to combine our analytical approach with actual (engineering) data so that actual cost 

functions can be estimated in ways pioneered for telecommunications networks (Gasmi et al., 

2002).  
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Appendix 

 

Figure 10: Global cost function, three-node network, fixed reactances 

Quadratic extension costsLinear extension costs

Source: Own calculation 

 

Figure 11: Global cost function, six-node network, fixed reactances 

Quadratic extension costsLinear extension costs

Source: Own calculation 
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Figure 12: Global cost function, three-node network, variable reactances 

Quadratic extension costsLinear extension costs

Source: Own calculation 

 

Figure 13: Global cost function, six-node network, fixed reactances 

Quadratic extension costsLinear extension costs

Source: Own calculation 
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