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Abstract

This paper examines key facts about the U.S. housing market. The price to rent ratio

is highly volatile and signi�cantly autocorrelated. Returns on housing are positively

autocorrelated. The price to rent ratio is negatively correlated with future returns on

housing and future rent growth. Finally, housing returns exhibit signi�cant time varying

volatility. I show that a benchmark rational expectations general equilibrium asset

pricing model is inconsistent with these facts. I modify the model in two ways to improve

its �t with the data. First, I allow for pricing frictions so prices adjust slowly to their

fundamental value. Second, I assume the agent does not know if housing fundamentals,

captured by rental �ows, are stationary or non-stationary and has changing beliefs

depending on how well each model �ts the current data. I �nd that these modi�cations

allow the model to increase the volatility of the price to rent ratio and to match the

autocorrelation of housing returns. The price to rent ratio then negatively forecasts

returns and rent growth. Finally the model generates time varying volatility consistent

with the data.
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1 Introduction

Given the recent boom and bust in housing markets there is renewed interest in understand-

ing the determinates of U.S. house prices. This paper examines the equilibrium housing price

in a general equilibrium asset pricing framework. First I outline several facts about housing

prices and rents which are at odds with the standard rational expectations framework. First,

there is evidence of excess volatility in house prices. The standard deviation of the price to

rent ratio is 15% and the standard deviation of housing returns is 6%, while the standard

deviation of the underlying housing rents is only 2.3%. Second, housing returns are signi�-

cantly positively autocorrelated. Finally, the price to rent ratio is negatively correlated with

future returns and rent growth and housing returns show evidence of time varying volatility.

I begin with a standard consumption-based asset pricing model and use a log-linear

approximation to the Euler equation as in Campbell (1993) and Restoy and Weil (2011) to

solve for the equilibrium house price. The equilibrium house price then depends on future

expectations of fundamentals (housing preferences) and consumption. I show that this model

is unable to explain the facts outlined in the previous paragraph. Therefore, I adapt the

standard model in two ways. First, I allow for prices to adjust slowly to their fundamental

value. Second, I assume the agent does not know the true model for housing preference

shocks. Speci�cally, they are unsure if preference shocks are permanent or temporary. They

use a Bayesian learning model as in Cogley and Sargent (2005) to learn if the preference

process is stationary or non-stationary. Their beliefs change over time depending on how

well each model �ts the data. While the true process is stationary, the agent does not know

this. He puts excessive weight on the non-stationary process, overreacting to temporary

changes in market preferences.

Two features of the housing preference processes makes this learning signi�cant. The

�rst is the well know fact that unit root and near unit root processes are very di�cult to tell

apart in small time series samples. See, for example, Cochrane (1988); Stock (1991). As a

result, the agent will almost always put some weight on the non-stationary process even if

the true process is stationary. Additionally, after a random sequence of shocks which moves

housing preferences away from their long run trend the agent will put additional weight

on the non-stationary model. Second, analogous to the analysis of the permanent income

hypothesis (see for example Deaton (1992)) if the individuals believes the true process is a

unit root process then shocks are permanent. As a results, they will react strongly to news

about fundamentals and return volatility will increase.
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The sticky price assumption and the learning mechanism allow the model to better match

the data. Learning ampli�es volatility over the rational expectations benchmark. I �nd that

the learning model generates increased volatility in both housing returns and the HP-�ltered

house price. Sticky prices allow the model to match the autocorrelation of housing returns.

Learning about the true nature of the preference process creates a negative correlation be-

tween the price to rent ratio and future returns and rent growth. Additionally, the learning

model generates time varying volatility consistent with the data. The learning model gen-

erates excessive kurtosis of returns. Data from the learning model is consistent with the

positive autocorrelation of squared returns and the estimation of GARCH e�ects in U.S.

data.

There is a large literature incorporating housing into macroeconomic models beginning

with the contributions of Benhabib et al. (1991) and Greenwood and Hercowitz (1991). These

models modify the standard real business cycle (RBC) framework to include housing and

home production. Davis and Heathcote (2005) extend this framework to allow for housing

speci�c productivity shocks but �nd that the model underpredicts the volatility of house

prices and predicts a counterfactually negative correlation between house price growth and

new home construction. Iacoviello (2005)and Iacoviello and Neri (2010) incorporate housing

as a transmission mechanism for monetary policy in a New-Keynesian framework and �nd

that preference shocks are important for explaining house price volatility. While much work

has been done incorporating housing into standard macroeconomic models, these models

still struggle to explain the volatility of housing prices given observed fundamentals. This

observation motivates the current paper as well as other recent work, e.g. Miao et al. (2014)

who amplify housing prices in a model where housing is used as collateral by �rms engaged

in production.

A second strand of literature attempts to explain house prices using supply and demand

models with city-speci�c shocks and search frictions beginning with the work of Wheaton

(1990) and Krainer (2001). Recent contributions include: Glaeser and Gyourko (2006); Head

et al. (2012). These models use a wide variety of fundamentals to explain the cross section

of house price volatility across cities, e.g. shocks to local amenities and income. The goals

of this paper di�er, in that I am concerned about explaining the macroeconomic time series

of house prices and returns, speci�cally focusing on return predictability and time varying

volatility while this literature is concerned about the cross section and autocorrelation of

price growth across metropolitan areas.

My paper also relates to the literature that models housing within an asset pricing frame-
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work. Piazzesi et al. (2007) model housing jointly as an asset and a consumption choice

in an otherwise standard consumption based asset pricing model. They show that hous-

ing increases the risk premium and predicts excess returns in equity markets. Lustig and

Nieuwerburgh (2005) reach a similar conclusion in a model where housing is an important

source of collateral. Flavin and Nakagawa (2008) explore how the illiquidity of housing in-

�uences the stochastic discount factor in a consumption based asset pricing model. Ayuso

and Restoy (2006) apply the asset pricing framework of Restoy and Weil (2011) and show

that a large part of the �uctuations in Spanish house prices can not be explained with ob-

served fundamentals. The present paper uses the asset pricing framework of Restoy and

Weil (2011) to explain house prices, but di�ers from the above papers by focusing on the

volatility and predictability of housing returns and considering a learning based model of

expectation formation.

Many recent papers have tried to explain the recent U.S. housing boom and bust in ra-

tional expectations models using various institutional features and frictions in the housing

market. For example, Chu (2014) uses the fall in down payment requirements as an ex-

planation for the increase in house prices during the boom period. However, the model is

unable to explain why interest rates remained low at the same time. Similar mechanisms

are explored in Chambers et al. (2009) and Iacoviello and Pavan (2013) with the former

examining the impact of down payment requirements on the rise in homeownership rates

during the boom and the later arguing a tightening of credit constraints can lead to a large

drop in home production though these papers take the path of house prices as given. Corbae

and Quintin (2013) and Garriga and Schlagenhauf (2009) explore how leverage lead to an

increase in foreclosures during the house price bust, but treat the path of prices as exogenous.

Titman et al. (2014) and Chatterjee and Eyigungor (2009) argue overbuilding was an impor-

tant contributor to the bust in housing prices, however they have di�culty explaining the

positive correlation between house prices and residential investment. Favilukis et al. (2013)

combine foreign capital in�ows, relaxed credit constraints and �nancial market liberalization

to explain the �uctuations in the price-to-rent ratio during the boom and bust. The model

has considerable success explaining the volatility of house prices and returns and generates

predictability in housing returns as well. However, agents are aware of this predictability

and therefore expectations of future returns are low when the price to rent ratio is high.

This result is in contrast to expected returns in my model and data on survey expectations

discussed below.

One of the �rst papers to examine data on house price expectations is Case and Shiller
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(2003). They �nd that home buyers have unrealistic expectations concerning future house

price increases, predicting double digit increases annually over the next ten years. Households

also are unlikely to view housing as a risky investment. Case et al. (2012b) replicate these

results and argue that long run expectations (10-year) house price expectations the primary

driver of the house price boom and present evidence of extrapolative behavior in agents

expectations formation. Piazzesi and Schneider (2009) argue for the presence of momentum

traders in the housing market, agents who are always optimistic about price changes, based

on data from the Michigan Survey of Consumers. Foote et al. (2012) present evidence that

even industry �nancial analysts were bullish about house prices even at the 2006 house price

peak.

Based on this empirical evidence many authors have examined the implication of relaxing

rational expectations for house price dynamics. In fact, given the shortcomings of rational

expectations models to match the volatility of house prices Glaeser and Gyourko (2006) and

Glaeser et al. (2008) argue that deviation from rational expectations and models of learning

may be fruitful avenues of research. Glaeser and Nathanson (2015) study a model where

agents neglect to consider the forecasts of other agents when forecasting future prices. They

show that this mechanism generates extrapolation in agents price forecasts explaining short

run momentum and medium term reversion in price changes. My paper di�ers in considering

the impact of beliefs for time varying volatility of housing returns and also modeling learning

which allows agents to abandon models which look unlikely given the data.

A few papers have modeled house price expectations using learning models. Burnside

et al. (2011) consider a model where, as in the current paper, learning about long run

fundamentals is essential. Though in their paper learning comes from social dynamics as

opposed to observation of fundamentals. Bolt et al. (2014) generated boom and busts in

house prices through an heterogeneous agent model where the agents endogenously switch

between di�erent price forecast rules. Adam et al. (2012) consider a model where agents

learn about house price growth in an open economy model. Gelain and Lansing (2013)

considers learning in an asset pricing based model of housing where agents learn about

rent growth using a misspeci�ed model and extrapolative expectations. All these models

increase volatility of the price to rent ratio and the Gelain and Lansing paper also generates

predictability in house price returns. However, my paper di�ers from these in important

ways. First, the paper seeks to endogenously explain both the predictability and the time

varying volatility in housing returns as well as amplifying volatility.1 Secondly, I present a

1In Gelain and Lansing (2013) for example, fundamentals exhibit exogenous time-varying volatility.
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novel model of learning where agents are unsure about the true process for fundamentals and

change their beliefs based on how accurately each model captures the data. Finally, agents

make signi�cant mistakes about their long run expectations (as opposed to their short run

expectations) consistent with the results in Case et al. (2012b,a).2

The rest of the paper proceeds as follows. Section two discusses the data and the key

empirical facts. Section three outlines the model and section four explains its calibration.

Section �ve gives the main model results and section six demonstrates the robustness of the

results to alternative parameter speci�cation. Section seven concludes.

2 Data

Data come from Davis et al. (2008).3 Data begin in 1960:Q1 and end in 2013:Q1. Data on

rents and house prices are obtained from the Decennial Census of Housing from 1960 to 2000.

Data on rents are interpolated between census dates using the Bureau of Labor Statistics

(BLS) index for the rent of primary residences. Data on house prices are interpolated using

the Freddie Mac (CMHPI) series repeat-sales house prices index after 1970 and the median

price of new homes sold index before 1970. The Macromarkets LLC national house price

index, formally known as the Case-Shiller-Weiss index, is used after 2000 to construct house

prices. Prices are de�ated using the CPI.

Moments for the data are given in table 1. The expected return on housing, given by E
qt

qt−1−ξt−1
where qt is the house price at time t and ξt−1 is the rent at time t− 1 , is equal to

6.4% on an annual basis. The standard deviation of the annual return is 6%. Rent growth

averages 1% per year with a standard deviation of 2.3%. These data indicate the presence of

an excess volatility puzzle with returns being almost three time as volatile as the underlying

fundamental rents. The standard deviation of the log price-to-rent ratio is 15% and the

standard deviation of the log HP-�ltered housing price is 3.7%.4

Examining autocorrelations of the data at one to four quarterly lags, we see that the

price-to-rent ratio is highly persistent with all autocorrelation coe�cients above 0.95. The

autocorrelation of returns decline from 0.84 at one lag to 0.51 at four lags. The existence

2Nguyen (2014) uses a similar learning model to explain serially correlated house price forecast errors and
house price volatility in a model in which housing is allocated by a central planner who does not know the
true process for housing preference shocks.

3Data are available at: http://www.lincolninst.edu/subcenters/land-values/rent-price-ratio.asp.
4The price-to-rent ratio is calculated as qt/ξt. There is no need to take a past average of rents as rents

(as opposed to equity dividends) are quite smooth in the data.
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of positive momentum in the housing market has previously been documented by Case and

Shiller (1989) among others.

Additionally, there is evidence of return predictability in the housing data. The price-

to-rent ratio is negatively correlated with the cumulative return over the next four years

rt+1 + ... + rt+16 with a coe�cient of -0.74. However the current period return is positively

correlated with the same cumulative return with a coe�cient of 0.19. Finally the PE ratio

is negatively correlated with future rent growth, ln ξt+16 − ln ξt with a coe�cient of -0.44.

This long term mean reversion in housing prices is also noted by Glaeser et al. (2014).5

As a further examination of return predictability in the data I estimate the following

Campbell-Shiller [Campbell and Shiller (1988)] style regressions:

rt+1 + ...+ rt+16 = α + βreturn ln(price− to− rent) + εt

ln ξt+16 − ln ξt = α + βrent ln(price− to− rent) + εt

Results for the regressions are presented in table 2. We �nd that βreturn = −0.8. This

coe�cient implies that a 10% increase in the price to rent ratio predicts cumulative returns

will be −8% lower over the next for years or about −2% per year. The R-squared of this

regression is -0.5 suggesting cumulative returns over the next 4 years are explained fairly well

using the price-to-rent ratio. On the other hand, βrent = −0.12 and the R-squared of the

regression is only 0.2. This suggests that rent growth is less predictable than return growth

and importantly high price-to-rent ratios do not seem to forecast periods of high demand

for housing. Quite the oppositive, if anything, they predict we are entering a period of low

demand for housing.

There is also substantial evidence of time varying volatility in the data. I report skewness

E (x−µ)4

σ4 and kurtosis E (x−µ)3

σ3 of the price to rent ratio. Housing returns are right skewed

with a skewness of -2 while the price to rent ratio is left skewed with a skewness of 2.04.

Both series also demonstrate high levels of kurtosis of around 7. If the series were normally

distributed they would exhibit a kurtosis of 3. The high level of kurtosis is evidence of the

existence of fat-tails in the distribution, i.e. increased frequency of extreme values relative

to a normal distribution.

As further evidence of time varying volatility I examine the autocorrelation of squared

returns and the autocorrelations of squared residuals from an AR(1) return regression. If

large returns and residuals are more likely followed by large returns and residuals, as would

5Results are qualitatively similar for a variety of horizon windows from 3 years onward.
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be the case with time varying volatility, we would expect to see positive autocorrelation of

squared returns and residuals. That is indeed what we see. The autocorrelation of squared

returns ranges from 0.7 at one lag to 0.27 and four lags. Similarly, the autocorrelation of

squared residuals ranges from 0.1 to 0.39.6

For additional evidence of time varying volatility in the aggregate U.S. housing data, I

estimate a GARCH(1,1) model on the quarterly return series. The GARCH(1,1) model is:

σ2
t = κ+ γ1σ

2
t−1 + a1ε

2
t−1.

In this model the variance of εt in the AR(1) regression rt = α + ρrt−1 + εt is varying over

time. Positive γ1 and a1 are evidence of time varying volatility with data that will exhibit

periods of particularly high volatility. For the quarterly return data I estimate γ1 = 0.73

and a1 = 0.27. Both estimates are highly statistically signi�cant. Furthermore the Engle

test (Engle (1982)) rejects the null of no GARCH e�ects at the 95% con�dence level.

3 Model

3.1 Housing Choice

A representative consumer can consume or buy units of housing ht at a price qt. The

household is subject to stochastic shocks to their preference for housing ξt. The household's

problem then is to choose

max
ct,ht

Eo

∞∑
t=0

βt
[
c1−γ
t

1− γ
+ ξt lnht

]

subject to the constraint

ct + qtht = qtht−1 + yt (1)

Here yt is income at time t, and ct is consumption at time t. The �rst order conditions for

the consumer's optimal choice are:

ct : c−γt − λt = 0 (2)

6Under the null hypothesis of zero autocorrealtion, standard errors are calculated as 1√
T
= 0.07, making

these estimates statistically signi�cant. See Hamilton (1994) pp. 111.
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ht :
ξt
ht
− λtqt + βEt [λt+1qt+1] = 0 (3)

where λt is the Lagrange multiplier on the budget constraint.

Combing these two equations one gets

qt =
ξt
htλt

+ βEt

[
λt+1

λt
qt+1

]
I will assume that housing is in �xed supply so that ht = 1 for all t. From the �rst order

condition we have

qt =
ξt
λt

+ βEt

[
λt+1

λt
qt+1

]
Letting dt = ξt

λt
we can write

1 = βEt

[
λt+1

λt

qt+1

qt − dt

]
This is a highly non-linear condition. But, following Campbell (1993) and Restoy and

Weil (2011) it can be linearized in two steps. First assuming that housing returns and con-

sumption are conditionally homoskedastic and jointly log-normally distributed and second

by linearizing ln(qt − dt) around its mean. The appendix �rst shows that:

ln(qt − dt) = ln β + Et [−γ∆ ln ct+1 + ln qt+1] +
1

2

[
γ2σ2

c + σ2
q − 2γσc,q

]
(4)

where σ2
c = V art∆ ln ct+1, σ

2
q = V art ln qt+1 and σc,q = Covt(∆ ln ct+1, ln qt+1).

Then I linearize ln(qt − dt) about the mean rent to price ratio and obtain:

ln(qt − dt) ≈ k + (1− δ) ln qt + δ ln dt

where k = ln(1− exp(x̄)) + exp(x̄)
1−exp(x̄)

x̄ , δ = − exp(x̄)
1−exp(x̄)

and x̄=E ln(dt
qt

).

Letting σ = 1
2

[
γ2σ2

c + σ2
q − 2γσc,q

]
we have

ln qt ≈
1

1− δ
[σ + ln β − k − δ ln dt + Et(−γ∆ ln ct+1 + ln qt+1)]

Iterating forward

ln qt ≈
k − ln β − σ

δ
− δ

1− δ
Et

∞∑
s=0

1

(1− δ)s
ln dt+s −

γ

1− δ
Et

∞∑
s=0

1

(1− δ)s
∆ ln ct+s+1
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Since dt = ξt
λt

we obtain ln dt = ln ξt− lnλt = lnξt + γlnct. Therefore we can solve for the

following closed form solution for the log house price:

ln qt ≈
k − ln β − σ

δ
− δ

1− δ
Et

∞∑
s=0

[
1

(1− δ)s
ln ξt+s −

γ

(1− δ)s
ln ct+s

]
− γ

1− δ
Et

∞∑
s=0

1

(1− δ)s
∆ ln ct+s+1

The appendix gives expressions for the sums and the conditional variances as a function

of the underlying processes for consumption growth and housing preferences listed below.

Iacoviello (2010) argues that institutional rigidities lead to sluggish adjustment in the

housing market. For example, listing agents often used �comps� or comparable sales when

setting prices. These are listings which are similar to the property for sale and have sold

recently. Likewise, banks often will not grant a mortgage on a property that does not

appraise for the sale price. I model these institutional features in a reduced form way,

assuming rigidity in the price such that the market price q∗ is given by:

lnq∗t = λlnqt + (1− λ)lnq∗t−1 (5)

where λ is a measure of the degree of institutional price rigidity in the market. The smaller

is λthe more sluggishly prices adjust in the housing market.

To close the model is is necessary to specify the exogenous processes for consumption

and housing preference. In order to focus on the role of future expectations of housing

fundementals for driving house prices, I assume that consumption growth is i.i.d. and uncor-

related with the housing preference process. As a results only future expectations of housing

fundamentals will drive house prices. Again, to focus about learning about future housing

fundamentals I allow the consumer to know the exact process for consumption.

In contrast, there is uncertainty about the nature of the housing preference process. The

housing preference process will be a trend stationary process. However, the consumer does

not know the true form of the preference process ξt. Speci�cally, he is uncertain if the

preference process is stationary or not. He believes that:

ξt = ρs0 + βt+ ρs1ξt−1 + ...+ ρspξt−p + εst (6)

with probability pst and that

∆ξt = α + ρns1 ∆ξt−1 + ...+ ρnsp ∆ξt−p + εnst (7)
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with probability pnst = 1 − pst. The next section describes how the consumer updates his

beliefs.

In this model, I am deliberately vague about what the housing preference process rep-

resents. Since it is the key driver of house prices it is a reduced form representation of

the various shocks which can a�ect house prices. It could represent interest rates, credit

availability as well as a strict preference shock to the demand for housing. It can also rep-

resent macroeconomic conditions and housing supply conditions which a�ect house prices.

I capture all of these e�ects with one parameter to better focus on the role learning and

expectations can have in driving house prices.

However, it is worth noting that the emphasis on housing preference shocks is supported

by the literature which seeks to explain house price �uctuations. Iacoviello and Neri (2010)

�nd a large fraction of the variation in house prices can be attributed to preference shocks,

even controlling for a wide variety of fundamentals like income, interest rates, availability

of sub prime mortgages and mortgage fees. Iacoviello (2010) emphasizes this point noting

that many press articles explain changes in house prices with changes in the nature of what

housing consumers are looking for, e.g. looking for larger homes or viewing homes as an

investment vehicle.

3.2 Beliefs

I use the methods of Cogley and Sargent (2005) to calculate the parameters of each model of

housing preference and the probability weights on the stationary and non-stationary model.

Their model uses Bayesian methods to recursively update the parameters on each model and

then uses the likelihood of each model to calculate a probability weight on each model. For

a given model (i.e. the stationary or non-stationary) indexed by i = {s, ns}, and a housing

preference history Ξt−1, we assume that agents prior beliefs about the model parameters are

distributed normally according to:

p(Θi,t−1|σ2
i ,Ξ

t−1) = N(Θi,t−1, σ
2
i P
−1
t−1)

and their prior beliefs concerning the model residual variance are given by:

p(σ2
i,t−1|Ξt−1) = IG(st−1, vt−1)
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Here N represents the normal distribution function and IG represents the inverse-gamma

distribution function. Pt−1 is the precision matrix that captures the con�dence the agent

has in his belief for Θi,t−1 , σ2
i is the estimate of the variance of the model residuals, st−1 is

an analogue to the sum of squared residuals, and vt−1 is a measure of the degrees of freedom

to calculate the residual variance such that the point estimate of σ2
i,t−1 is given by st−1/vt−1.

After observing the housing preference ξt the agent's posterior beliefs are given by:

p(Θi,t|σ2
i ,Ξ

t) =N(Θi,t, σ
2
i P
−1
t )

p(σ2
i |Ξt) =IG(st, vt)

Cogley and Sargent (2005) gives the following recursion to update the parameters of the

beliefs:
Pt =Pt−1 + xtx

′
t

θt =P−1
t (Pt−1θt−1 + xtyt)

st =st−1 + y2
t + θ

′

t−1Pt−1θt−1 − θ
′

tPtθt

vt =vt−1 + 1

Here xt is the vector of right hand side variables for the model at time t and yt is the left

hand side variable for the model at time t. This recursion gives the parameters of each

model. Now it is necessary to calculate the probability weight on each model.

Given a set of model parameters: {Θi, σi} we can calculate the conditional likelihood of

the model as:

L(Θi, σ
2
i ,Ξ

t) =
t∏

s=1

p(ys|xs,Θi, σ
2
i )

where ys and xs are the left and right hand side variables of the model at time s and Ξt

is the housing preference history up to time t. Based on this likelihood, one can write the

marginalized likelihood of the model by integrating over all possible parameters:

mit =

∫∫
L(Θi, σ

2
i ,Ξ

t)p(Θi, σ
2
i )dΘidσ

2
i

Then we have the probability of the model given the observed data p(Mi|Ξt) ∝ mi,tp(Mi) ≡
wi,t. Here we have de�ned the weight on model i, wi,t and p(Mi) is the prior probability on

model i.
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Cogley and Sargent (2005) show that Bayes's rule implies

mit =
L(Θi, σ

2
i ,Ξ

t)p(Θi, σ
2
i )

p(Θi, σ2
i |Ξt)

and therefore

wi,t+1

wi,t
=
mi,t+1

mi,t

= p(yi,t+1|xi,t,Θi, σ
2
i )

p(Θi, σ
2
i |Ξt)

p(Θi, σ2
i |Ξt+1)

We assume that regression residuals are normally distributed allowing us to use the nor-

mal p.d.f to calculate p(yi,t+1|xi,t,Θi, σ
2
i ). Cogley and Sargent (2005) show that p(Θi, σ

2
i |Ξt)

is given by the normal-inverse gamma distribution and provide the analytical expressions for

this probability distribution. Any choice of Θi, σ
2
i will give the same ratio of weights; I use

the posterior mean in my calculations.

This recursion implies the following recursion for model weights.

ws,t+1

wns,t+1

=
ms,t+1/ms,t

mns,t+1/mns,t

ws,t
wns,t

Since housing preference shocks are an exogenous process, the model will eventually put

all the weight on the true process. To allow for perpetual learning, I adapt the concept

of constant gain learning from the least squares learning literature to the current setup. I

introduce a gain parameter (g) that over-weights current observations. The gain probability

can be interpreted as the probability of a structural break in the economy, such that the

history of the housing preference process no longer has any bearing on the current process

generating housing preferences, hence the previous weight ratio is set to one.

ws,t+1

wns,t+1

= (1− g)
ms,t+1/ms,t

mns,t+1/mns,t

ws,t
wns,t

+ g
ms,t+1/ms,t

mns,t+1/mns,t

Finally, to calculate the model probabilities, the consumer normalizes the weights to one,

and therefore the weight on the stationary model is given by:

ps,t =
1

1 + wns,t/ws,t

Using the estimated probabilities, he can then calculate the price by:

lnqLt = ps,tlnq
S
t + (1− ps,t)lnqNSt (8)
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where lnpSt and lnp
NS
t represent the log prices conditional on the stationary and non-stationary

models being true.7

4 Calibration and Simulation

Time is quarterly and I set the discount rate in the model β = 0.9975. This implies a

3% annual real interest rate slightly higher than average rates on 10-year Treasury in�ation

protected securities (TIPS).8 Low discount rates are consistent with the evidence in Giglio

et al. (2014) who �nd very low discount rates when comparing the prices on housing with

temporary ownership contracts versus permanent ownership contracts in the U.K. and Sin-

gapore. In the sticky price version of the model I set λ = 0.25 to better match the positive

autocorrelation of returns. I set the lag length of the stationary and non stationary model

of housing preferences to 4. I set γ = 1. Robustness to these parameters are explored in

section 6.

I also need to calculate the prior beliefs of the agent, however these do not matter much for

the results because I simulate the model for 2,000 periods and keep only the last 212 = (2013-

1960)*4 observations to match the length of my data. The initial prior on the stationary

model ps,0 = 0.5. To calibrate the initial beliefs for the stationary and non-stationary

processes (Θo) I estimate ordinary least squares regression on the log housing rents series

from Davis et al. (2008) de�ated with the CPI. I assume that εst and εnst are distributed

N(0, σ2
i ) where σ

2
i is estimated from the residuals in the previous estimation. I set the initial

precision matrix Po = 0.01 ∗ I. This is a fairly defuse prior setting the standard error of

the coe�cients to 10 times the standard deviation of the regression residuals. I set so to

the variance of the regression residuals and set the initial degrees of freedom (vo) equal to

1. Finally, I assume that consumption growth is i.i.d, and estimate the process using real

per-capita consumption of non-durables and services from the national income and product

accounts.

I set the gain parameter (g) equal to 0.005 which is the minimum value of the gain that

allows for perpetual learning. To see this examine �gure 1. I plot the median probability on

7Importantly I make a standard assumption from the learning literature, that of anticipated utility (Kreps
(1998)), i.e. the agent makes decisions assuming his future beliefs will be the same as his current beliefs.
This includes his beliefs about both the likelihood of each process and the implied covariances. However,
beliefs can and do change in the future.

8The real interest rate in the model is given by (1 + gc)γ/β where gc is the growth rate of consumption
which is calibrated to be 0.5% per quarter.
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the stationary model across 20 trials of length 5,000 keeping the last 4,000 observations. I

use the stationary process, as calibrated in the previous paragraph, as the true process. We

see that for a gain of 0.001 and 0.0025, the probability on the stationary model eventually

converges to one. However, for a gain equal to 0.005 we do observe perpetual learning. So

I choose this value for the gain, the minimal value that still allows for perpetual learning.

Robustness of the results for higher values of the gain are considered in section 6.

To evaluate the model I assume the true preference process is the stationary process and

simulate 500 trials of length 2,000 keeping the last 212 observations to match the length of

my data set. I then report median statistics across the trials. Initial housing preferences

are normalized to the steady state value of the stationary model when t equals zero and

consumption is initialized to be twice this value in line with U.S. CPI data which suggests

housing represents 30% of the U.S. consumption basket, though I �nd this initialization does

not a�ect the results.

I am motivated to make the true process the stationary process by a variety of concerns.

The �rst is that the survey evidence outlined in the introduction suggests that individuals

overreacted to the run up in house prices and extrapolated current price changes far into the

future. This evidence supports a true process for fundamentals being one with temporary

deviations from trend and agents overrating to these temporary deviations by assuming they

are permanent. Additionally, in the U.S. housing market temporary increases in prices may

be persistent because of a slow response of supply. However, eventually supply can respond

to bring prices down. A model where agents believe temporary shocks are permanent is

consistent with neglecting the long run supply response of housing.9 Finally, Shiller (2005)

and Reinhart and Rogo� (2009) argue that individuals often attribute new-era stories of

fundamental change to justify high valuations or current booms as being permanent instead

of temporary. This view of the world is consistent with my modeling. Of course, it would be

possible to have the underlying process be a true switching process and agents form rational

beliefs about what state they are in. However, I believe the spirit of that model is di�erent

than my goal in this paper. In that model agents are as likely to underreact as overeact. But

here I try to capture the general notion that in speculative bubbles agents are overreacting

in their long run expectations and neglecting the tendency of fundamentals to return to long

run trends.

9Fuster et al. (2012) argue that neglecting long run mean reversion is a key psychological bias that is
useful for understanding equity market puzzles.
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5 Results

In this section I compare results from the learning model with a rational expectations bench-

mark. The benchmark model is one in which the preference shock follows a stationary process

and the household knows this. Results are reported for the �exible price model where λ = 1

so that prices immediately adjust to the fundamental value and then for λ = 0.25 so price

adjust more slowly.

5.1 Model Mechanism

To provide intuition for the main mechanism of the model I examine a single simulated

housing preference series and the implied path of rents and beliefs. Examining �gure 2

we see plotted the probability the learning model puts on the stationary model being true

for a single simulated housing preference series from the stationary model. We see that

on average the model puts more weight on the stationary model than the non-stationary

model. However, this weight is not constant. Around time 75 we see the beliefs drift to the

stationary model where the agent goes from putting 75% weight on the stationary model to

only putting 60% weight on the stationary model.

Recall that beliefs are endogenous here and depend on the realized housing preference

and implied rent series. Figure 3 plots the rent series that corresponds to the simulated

housing preference series. At time 75, we can see the growth rate of rents increases resulting

in a housing fundamental series that is persistently above trend. Because the series is not

reverting to trend, the agent begins to put more and more weight on the possibility that

the housing preference series is non-stationary, revising his beliefs. Finally, around time 100

growth slows down, and the agent revises his beliefs, going back to putting 75% of his weight

on the stationary model.

Figure 4 plots the price-to-rent ratio under the learning model (dashed line) versus a

rational expectations benchmark where the agent knows the true process is stationary. We

see a large spike up in the price-to-rent ratio, increasing 12% relative to a a slight fall under

the rational expectations benchmark. There is a temporary housing boom while the agents

believe that there has likely been a permanent increase in housing fundamentals which is

then reversed with an abrupt fall in the price-to-rent ratio once the agent reverses his belief

around time 100.

This mechanism is responsible for the main results of this paper. Agents overreact to

news when the world looks as if it may be non-stationary. The overreaction is corrected once
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the fundamental begins to mean revert. This mechanism results in predictability of returns.

Additionally, when the agent believes the world may be non-stationary he reacts strongly to

news results in a higher volatility of returns. These reactions generate time varying volatility

in returns.

5.2 Main Moments

Results on the performance of the model in explaining the main moments in the data are

presented in table 3. Examining the �exible price case �rst, note that both models imply

a 3% annual average return on housing and a 3% growth rate of rent. In the data, these

number are 6.4% and 1% respectively.

The standard deviation of the log price-to-rent ratio σ( Pt

Rt
) = 15% in the data. Both

the rational expectations benchmark and the learning model generate 1/5 this volatility,

predicting a standard deviation of 3%. The learning model better matches the standard

deviation of the HP-�ltered price (PHP
t ) which was 3.7% in the data. The learning model

predicts 2% versus only 0.8% for the rational expectations benchmark. I obtain a similar

result for the standard deviation of returns, σ(rt), with the learning model predicting 6%

versus the 6% in the data. The rational expectations benchmark model predicts only 3%.

Recall, that both the price-to-rent ratio and returns are highly positively autocorrelated.

Both models are consistent with the �rst fact, however since the housing price is modeled as

an asset price neither model can explain the positive autocorrelation of returns.

Finally, I examine the ability of the model to explain the predictability of housing returns.

The price-to-rent ratio is negatively correlated with future housing returns, ρ( Pt

Rt
, rt+1 + ...+

rt+16) = −0.74 . The rational expectations benchmark predicts a small positive correlation.10

The learning model however predicts a coe�cient of -0.41. Similarly, the price-to-rent ratio is

negatively correlated with future rent growth ρ( Pt

Rt
, lnrentt+16−lnrentt). The learning model

predicts a correlation coe�cient of -0.24 vs. -0.44 in the data. The rational expectations

benchmark obtains the wrong sign for the correlation, prediciting a positive correlation.

Finally, neither model can match the fact that the current return is positively correlated

with future returns.

Campbell-Shiller style regressions tell a similar story to the raw correlations. The ra-

tional expectations model predicts no predictability of returns. The coe�cient on returns

βreturn=0.04 and the R2=0.04. In contrast, the learning model generates a coe�cient equal

10Small sample bias leads to a slight negative correlation instead of a value of zero.
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to −0.73 versus −0.8 in the data with an appreciable higher R2 of 0.16. Similarly, the ra-

tional expectations model poorly explains rent growth predictability. The coe�cient on rent

growth in the Campbell-Shiller regression βrentgrowth=−0.12 however the rational expecta-

tions model predicts a coe�cient equal to 0.4. Because fundamentals are mean reverting, a

high price-to-rent ratio predicts future rent growth. However, in the learning model a high

price-to-rent ratio is consistent with overreaction to growth in fundamentals. As a result, a

high price-to-rent ratio forecasts lower rental growth in the future not higher rental growth.

This mechanism allows the learning model to matche the data much more closely. It predicts

a coe�cient of βrentgrowth = −0.23 and an R2 = 0.08.

Next, I examine the ability of the sticky price model to match the data, highlighting the

di�erences relative to the �exible price model. Sticky prices lower the volatility of the HP

�ltered price for the learning model, 1% vs. 2% before, and returns 3% vs. 6% as before.

In both cases the learning model still increases volatility over the rational expectations

benchmark.

Sticky prices have little e�ect on the predictions for the autocorrelations for the price-to-

rent ratio. However, the model is now able to generate positive autocorrelation of returns.

The rational expectations model predicts autocorrelations ranging from 0.73 at one lag to

0.27 at four lags vs. 0.84 to 0.51 in the data. The learning model also predicts positive

autocorrelation ranging from 0.44 to 0.15.

Finally, the rational expectations model predicts a small negative correlation between the

price-to-rent ratio and future returns and a positive correlation between the price-to-rent ra-

tio and rent growth. In the data these correlations are strongly negative. The learning

model generates negative correlations consistent with the data. Indeed it predicts a corre-

lation between the price-to-rent ratio and future returns equal to -0.42 versus -0.74 in the

data and between the price-to-rent ratio and future rent growth equal to -0.25 versus -0.44

in the data. But models now are consistent with the positive correlation between the current

return and future returns. The rational expectations model predicts 0.27 and the learning

model predicts 0.15 vs. 0.32 in the data.

Campbell-Shiller regressions for the sticky price model show a similar result. The rational

expectations model again predicts no predictability of returns. The coe�cient on returns

βreturn=−0.06 and the R2=0.03. In contrast, the learning model generates a coe�cient equal

to −0.78 versus −0.8 in the data with an R2 of 0.19. Similarly, the rational expectations

model again does not explain rent growth predictability. The coe�cient on rent growth

βrentgrowth=−0.12 however the rational expectations model predicts a coe�cient equal to
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0.37. The learning model matches the data much more closely. It predicts a coe�cient of

βrentgrowth = −0.33 and an R2 = 0.11.

5.3 Time Varying Volatility

Neither model can explain the skewness in the data, however the learning model generates

higher kurtosis than the rational expectations benchmark. For the price-to-rent ratio, the

learning model generates kurtosis equal to 3.3 vs 2.2 for the rational expectations benchmark.

For returns, the learning model generates return kurtosis equal to 3.9 vs. 2.9 for the rational

expectations model. In the data kurtosis is about 7. In the sticky price case the learning

model generates more kurtosis than the rational expectations model and comes close to

matching the data on kurtosis of returns with a value of 5.

The �exible price results indicate that the rational expectations model does not generate

any autocorrelation in squared returns ρ(r2
t , r

2
t−1) or residuals ρ(ε2

t , ε
2
t−1). In contrast, model

learning allows for endogenous time varying volatility, though in the �exible price case the

magnitudes of the correlations predicted by the model are smaller than in the data. The

learning model predicts and autocorrelation of squared returns equal to 0.06 vs 0.5 in the

data; the learning model predicts and autocorrealtion of 0.08 on average for AR(1) return

residuals versus 0.2 in the data. In the sticky price case, the rational expectations benchmark

has autocorrelation in squared returns but not in the squared residuals. However, the learning

model predicts positive autocorrelation for both squared returns and residuals. Additionally,

for the squared residuals the magnitude predicted by the learning model is approximately

correct, about 0.15 for the model versus 0.2 for the data.

Results from estimating GARCH models on the simulated data, give a similar result. 11

There is no evidence of GARCH e�ects in the rational expectations benchmark. However,

we consistently �nd signi�cant GARCH e�ects in the learning model data and of a similar

magnitude to the data when we allow for sticky prices. For the sticky price model the

GARCH parameter equals 0.65 versus 0.73 in the data, while the ARCH parameter equals

0.22 versus 0.27 in the data. For the �exible price model, the median GARCH and ARCH

paramaters are zero. However, even with �exible prices the learning model shows more

evidence of GARCH e�ects. The Engle test for GARCH e�ects reject 42% of the time for

11To estimate the GARCH parameters, I �rst run an Engle test for the null hypothesis of no conditional
heteroscedasticity on the simulated data. I estimate the GARCH parameters only if the test rejects, otherwise
I assign zeros for the GARCH parameters. This procedure is required because absent GARCH e�ects I am
unable to identify the GARCH parameters using the maximum likelihood procedure.
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the learning model but only 7% of the time for the rational expectations model.

5.4 Expected Returns

One of the important features of the model is that it generates predictability in housing

returns without generating time varying expected returns.12 This in contrast to models with

time varying risk which generate predictability in returns which are expected by investors.

Applying these models to the housing market one would �nd that when the price-to-rent

ratio is high investors would expect lower returns in the future. While these models are able

to explain a negative correlation between the price-to-rent ratio and subsequent housing

returns, they are at odds with an increasing large literature on survey expectations. For

equity markets, survey results indicates that investors' expectations regarding future returns

seems to be increasing in past stock market performance. As a results, high price to earnings

ratios are correlated, if anything, with higher expectations about future returns not lower.

See for example: Fisher and Statman (2002); Shiller (2000); Greenwood and Shleifer (2013);

Vissing-Jorgensen (2004). Similarly, in the housing market, Case and Shiller (2003); Piazzesi

and Schneider (2009); Shiller (2007); Case et al. (2012b) all �nd that expectations about

future returns were increasing during the housing boom of the 2000s not declining. While, I

am unable to generate increasing expectations of future returns when the price-to-rent ratio

rises, I am able to explain predictability in housing returns without time varying expected

returns. In this manner, my results are more inline with the survey evidence than models

which require low expected returns when the price-to-rent ratio is high.

6 Robustness

The model has a small number of free parameters and therefore is straightforward to cali-

brate. However, I did set the AR lag length, the gain level g, the risk aversion coe�cient

γ and the sticky price parameter λ. Table 5 gives the results from varying each of these

parameters one at a time, while keeping the others at their original calibrated value. Except

when varying the sticky price parameter λ, I use the sticky price model as the benchmark

and set λ = 0.25. Table 5, therefore, demonstrates the robustness of the results to the

various parameter choices.

12One period ahead expected returns are given by: Et[rt+1]=Et
qt+1

qt−dt = exp[Et(lnqt+1) +
1
2σ

2
q ]/(qt − dt).

This quantity is approximately constant in the model and equal to (1 + gc)γ/β where gc is the growth rate
of consumption.
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There is little e�ect on the results of varying the AR lag length. I consider and AR

length 2 and 6. We see that the learning model exhibits slightly more volatility when the

AR lag length is 2 versus 6. For example the standard deviation of returns is now 0.04

versus 0.03. The predictability correlations are all of the same sign and same magnitude

under the alternative AR lag length calibrations as they are under the baseline calibration.

The evidence of time varying volatility remains; the autocorrelation of residuals from the

AR(1) return regression are all positive and of similar magnitude.

Similarly increasing the gain from 0.005 to 0.02 slightly ampli�es volatility. Again the

standard deviation of returns is 0.04 versus 0.03 for the baseline calibration. Additionally,

the predictability of returns and rent growth increase and become more in line with the

data. The correlation of the price-to-rent ratio with future returns is -0.53 versus -0.42 for

the baseline calibration. Similarly the correlation of the price-to-rent ratio with future rent

growth is equal to -0.44 versus -0.25 for the benchmark calibration.

Increasing γ from 1 to 3 has very little e�ect on the results. Again we see a slight

increases in the level of volatility. At a level of γ = 3 the model exhibits a small degradation

in its ability to explain kurtosis of returns, predictability of future rent growth, and the

autocorrelation of squared return residuals. However, it is still clear that the learning model

improves over the benchmark rational expectations model in this case as well. Finally,

increasing λ, the sticky price parameter, from 0.25 to 0.5 and reducingit from 0.25 to 0.1 has

little e�ect on the results. We only see that with more �exible prices the model has slightly

more di�culty explaining the predictability of future returns using current returns and the

autocorrelation of square return residuals.

7 Conclusion

Motivated by the large recent swing in U.S. house prices and the dramatic impact the housing

crash had on real economic activity this paper has sought to explain key moments in the U.S.

macroeconomic time series on house prices and rents and speci�cally the role expectations

may have played in generating these empirical facts. Given that the hosuing markets boom

and bust was similar to booms and busts that have occurred in equity markets in the U.S.

and beyond we have focused on data moments that have received considerable attention in

the analysis of equity markets.

The paper has documented that the price-to-rent ratio and housing returns are substan-

tially more volatile than the underlying rent fundamentals. Both the price-to-rent ratio
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and housing returns exhibit momentum e�ects with strong positive autocorrelation in both

the price-to-rent ratio and housing returns. Returns on housing are predictable with cur-

rent returns forecasting higher returns in the future, while the price-to-rent ratio negatively

forecasts both future returns and future rent growth. Finally, housing returns exhibit time

varying volatility as evidenced both my autocorrelation in squared returns and signi�cant

GARCH e�ects.

I show that a standard rational expectations benchmark is unable to match these facts.

I then modify the standard model in two ways. I �rst allow for sticky prices so that house

prices slowly adjust to their fundamental value. Then, I incorporate learning about the true

nature of the housing preference process, speci�cally is the process in trend stationary (so

shocks are temporary) or di�erence stationary (so shocks are permanent).

I �nd that these modi�cations substantially improve the �t of the model. They amplify

the volatility of prices and returns and explain the positive autocorrelation of returns. They

also allow the model to explain the ability of the price-to-rent ratio to predict future returns

and rent growth and help the model generate time varying volatility similar to what is

observed in the data.

This paper suggests that modeling expectations, particularity outside a strict rational

expectations framework is key to understanding the determinates of aggregate U.S. house

prices, especially in periods of booms and busts. The paper suggests that non-rational expec-

tations should be incorporated into a wide variety of housing models and could signi�cantly

improve the models �t with the data.
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A House Price Derivation

A.1 Calculation of Log Price

From the �rst order condition we have

qt =
ξt
λt

+ βEt

[
λt+1

λt
qt+1

]
Letting dt = ξt

λt
we have

1 = βEt

[
λt+1

λt

qt+1

qt − dt

]
If we assume that housing returns and consumption are conditionally homoskedastic and

jointly log-normally distributed we can take logs of both sides

0 = ln β + Et [∆ lnλt+1 + ln qt+1 − ln(qt − dt)] +
1

2
V art [∆ lnλt+1 + ln qt+1]

ln(qt − dt) = ln β + Et [∆ lnλt+1 + ln qt+1] +
1

2

[
σ2
λ + σ2

q + 2σλ,q
]

Where σ2
λ = V art∆ lnλt+1, σ

2
q = V art ln qt+1 and σλ,q = Covt(∆ lnλt+1, ln qt+1) Now since

∆ lnλt+1 = −γ∆ ln ct+1we have

ln(qt − dt) = ln β + Et [−γ∆ ln ct+1 + ln qt+1] +
1

2

[
γ2σ2

c + σ2
q − 2γσc,q

]
We linearize ln(qt − dt) about the mean rent to price ratio

ln(qt − dt) = ln[qt(1−
dt
qt

)]

ln(qt − dt) = ln qt + ln(1− exp

[
ln(

dt
qt

)

]
)

ln(qt − dt) ≈ ln qt + ln(1− exp(x̄))− exp(x̄)

1− exp(x̄)

[
ln(

dt
qt

)− x̄
]

ln(qt − dt) ≈ k + (1− δ) ln qt + δ ln dt

where x̄=E ln(dt
qt

), k = ln(1 − exp(x̄)) + exp(x̄)
1−exp(x̄)

x̄ , and δ = − exp(x̄)
1−exp(x̄)

. Letting σ =
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1
2

[
γ2σ2

c + σ2
q − 2γσc,q

]
we have

ln qt ≈
1

1− δ
[σ + ln β − k − δ ln dt + Et(−γ∆ ln ct+1 + ln qt+1)]

ln qt ≈
k − ln β − σ

δ
− δ

1− δ
Et

∞∑
s=0

1

(1− δ)s
ln dt+s −

γ

1− δ
Et

∞∑
s=0

1

(1− δ)s
∆ ln ct+s+1

Now recall dt = ξt
λt

so ln dt = ln ξt − lnλt = lnξt + γlnct. Therefore

ln qt ≈
k − ln β − σ

δ
− δ

1− δ
Et

∞∑
s=0

[
1

(1− δ)s
ln ξt+s −

γ

(1− δ)s
ln ct+s

]
− γ

1− δ
Et

∞∑
s=0

1

(1− δ)s
∆ ln ct+s+1

A.2 Calculation of sums and conditional variances.

For the stationary rent process we have ~ξt+1 = Φs~ξt + ~εst where
~ξt = [ 1 t ξt−1 . . . ξt−p ]′

and ~εst = [ 0 0 εst 0]′ and for the non-stationary process we have ~∆ξt+1 = Φns∆~ξt + ~εnst

where ∆~ξt = [ 1 ξt−1 ∆ξt−1 . . . ∆ξt−p ]′ and ~εnst = [ 0 εnst εnst 0]′

For the rent part of the sum assuming the trend stationary process we can calculate,

letting Φ̃ = ΦS/(1− δ)

δ

1− δ
Et

∞∑
s=0

1

(1− δ)s
ln ξt+s =

δ

1− δ
e′3,p+2[I − Φ̃]−1~ξt

where e′3,p+2 is a row vector of length p+ 2 with zeros in all places except row 3.

We can also calculate the conditional variance of this sum as

σ2
d =

(
δ

1− δ
[I − Φ̃]−1

3,3

)2

σ2
s

For the non-stationary model the analogous results are:

δ

1− δ
Et

∞∑
s=0

1

(1− δ)s
ln ξt+s =

δ

1− δ
e′2,p+2[I − Φ̃]−1∆~ξt

σ2
d =

[
δ

1− δ

(
[I − Φ̃]−1

2,2 + [I − Φ̃]−1
2,3

)]2

σ2
ns

For the consumption process we have ~∆ct+1 = Θ∆~ct+~ε
c
t where ∆~ct = [ 1 ct−1 ∆ct−1 . . . ∆ct−p ]′

and ~εst = [ 0 εnst εnst 0]′
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For the �rst consumption sum we get, letting Θ̃ = Θ/(1− δ)

δγ

1− δ
Et

∞∑
s=0

1

(1− δ)s
ln ct+s =

δγ

1− δ
e′2,p+2[I − Θ̃]−1∆~ct

For the second consumption sum we obtain

γ

1− δ
Et

∞∑
s=0

1

(1− δ)s
∆ ln ct+s+1 =

γ

1− δ
e′3,p+2[I − Θ̃]−1Θ∆~ct

The conditional variance of the sum of these two sums is then given by

σ2
csum =

[
−δγ
1− δ

(
[I − Θ̃]−1

2,2 + [I − Θ̃]−1
2,3

)
− γ

1− δ

([
[I − Θ̃]−1θ

]
3,3

)]2

σ2
c

Finally to complete our calculation for the price we need to calculate the conditional

covariance between consumption growth and the housing price. Since housing preference

shocks are independent of consumption shocks we get:

σc,q =

[
−γδ
1− δ

(
[I − Θ̃]−1

2,2 + [I − Θ̃]−1
2,3

)
− γ

1− δ

([
[I − Θ̃]−1θ

]
3,3

)]
σ2
c

30



Figure 1: Gain Calibration: gain = 0.001 dashed, gain = 0.0025 dotted, gain = 0.005 solid
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Figure 2: Probability of the Stationary Model
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Figure 3: Rent
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Figure 4: Price-to-rent Ratio: Learning Model (dashed), RE model (solid)
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Table 1: Data Moments

Means and Standard Deviations Skewness and Kurtosis
E(rt) 0.064 skew(Pt/Rt) 2.04

E(Δln(rentt)) 0.009 skew(rt) -1.7

σ(Pt/Rt) 0.15 kurtosis(Pt/Rt) 7.1

σ(PHP
t) 0.037 kurtosis(rt) 7.5

σ(rt) 0.06 Predictability

σ(Δln(rentt)) 0.023 ρ(P/Rt, rt+1 + … rt+16) -0.74

ρ(rt, rt+1 + … rt+16) 0.32

ρ(P/Rt, ln(rentt+16) - ln(rentt)) -0.44

Autocorrelations Squared Autocorrelations

ρ(Pt/Rt) 0.99 r2
t 0.7

0.98 0.56
0.95 0.45
0.92 0.27

ρ(rt) 0.84 (εr
t)

2 0.14

0.73 0.39
0.66 0.1
0.51 0.32

GARCH Model
ϒ1 (GARCH) 0.73

(0.06)
a1 (ARCH) 0.27

(0.07)
p-value Engle test 0.04

Note: This table provides the key moments on house prices, rents and price to rent ratio.



Table 2: Campbell-Shiller Regressions

Future Return Regression (rt+1 + … + rt+16)

β R2

-0.8 0.5
( 0.06)

Future Rent Growth Regression (ln ξt + … ln ξt+16)

β R2

-0.12 0.2
(0.02)

Note: This table presents results from running Campbell-Shiller 
regressions on the housing data. The price-to-rent ratio is used to 
predict returns and rent growth over the next four year. Standard 
errors are in parentheses.



Table 3: Model Results -- Main Moments

Data RE Learn RE Learn
Means, Stdev

E(rt) 0.064 0.03 0.03 0.03 0.03

E(Δln(rentt)) 0.009 0.03 0.03 0.03 0.03

σ(Pt/Rt) 0.15 0.03 0.03 0.03 0.03

σ(PHP
t) 0.037 0.008 0.02 0.005 0.01

σ(rt) 0.06 0.03 0.06 0.01 0.03

σ(Δln(rentt)) 0.023 0.03 0.03 0.03 0.03

Autocorrelations
ρ(Pt/Rt) 0.99 0.99 0.91 0.97 0.96

0.98 0.97 0.84 0.95 0.91
0.95 0.94 0.78 0.91 0.87
0.92 0.91 0.73 0.87 0.83

ρ(rt) 0.84 -0.01 -0.01 0.73 0.44

0.73 -0.01 -0.1 0.53 0.33
0.66 0 0 0.38 0.22
0.51 0 0 0.27 0.15

Predictability
ρ(P/Rt, rt+1 + … rt+16) -0.74 0.04 -0.41 -0.08 -0.42

ρ(rt, rt+1 + … rt+16) 0.32 -0.03 -0.05 0.27 0.15

ρ(P/Rt, ln(rentt+16) - ln(rentt)) -0.44 0.27 -0.24 0.25 -0.25

Campbell Shiller Regression

βreturn -0.8 0.04 -0.73 -0.06 -0.78

R2 (return regression) 0.5 0.04 0.16 0.03 0.19

βrent growth -0.12 0.4 -0.23 0.37 -0.33

R2 (rent growth regression) 0.2 0.08 0.08 0.07 0.11
Note: This table gives the model predicitons for the main data moments.

Flex Price Sticky Price



Table 4: Model Results -- Time Varying Volatility

Data RE Learn RE Learn
Skewness and Kurtosis

skew(Pt/Rt) 2.04 0.05 0.39 0.11 0.33

skew(rt) -1.7 0.01 0.04 -0.02 0.08

kurtosis(Pt/Rt) 7.1 2.2 3.3 2.3 2.8

kurtosis(rt) 7.5 2.9 3.9 2.9 5

Squared Autocorrelations

r2
t 0.7 -0.01 0.07 0.72 0.4

0.56 -0.01 0.07 0.52 0.3
0.45 -0.01 0.06 0.37 0.2
0.27 -0.01 0.05 0.26 0.17

(εr
t)

2 0.14 -0.02 0.08 -0.01 0.21

0.39 -0.01 0.09 -0.01 0.16
0.1 -0.01 0.08 -0.01 0.16
0.32 0.01 0.09 -0.01 0.15

GARCH Model

ϒ1 (GARCH) 0.73 0 0 0 0.65

(0.06)
a1 (ARCH) 0.27 0 0 0 0.22

(0.07)
p-value Engle test 0.04
Note: This table gives the model predicitons for the key data moments.

Flex Price Sticky Price
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able 5: R

obustness
M
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ent

D
ata

A
R

4
2

6
ϒ

1
2

3
σ(P

t /R
t )

0.15
0.03

0.05
0.03

0.03
0.03

0.03

σ(P
H

P
t )

0.037
0.01

0.02
0.01

0.01
0.01

0.02

σ(rt )
0.06

0.03
0.04

0.02
0.03

0.03
0.04

kurtosis(P
t /R

t )
7.1

2.8
2.6

2.6
2.8

2.9
3.1

kurtosis(rt )
7.5

5
4

5.2
5

2.5
3.8

ρ(P
/R

t , rt+
1  +

 …
 rt+

16 )
-0.74

-0.42
-0.49

-0.32
-0.42

-0.37
-0.36

ρ(rt , rt+
1  +

 …
 rt+

16 )
0.32

0.15
0.18

0.16
0.15

0.18
0.19

ρ(P
/R

t , ln(rentt+
16 ) - ln(rentt ))

-0.44
-0.25

-0.41
-0.04

-0.25
-0.12

-0.07

A
utocorrelation: (ε

rt ) 2
0.14

0.21
0.15

0.2
0.21

0.2
0.16

0.39
0.16

0.15
0.18

0.16
0.16

0.13
0.1

0.16
0.12

0.16
0.16

0.15
0.13

0.32
0.15

0.12
0.14

0.15
0.14

0.13

M
om

ent
D

ata
g

0.005
0.01

0.02
λ

0.25
0.1

0.5
σ(P

t /R
t )

0.15
0.03

0.03
0.04

0.03
0.03

0.03

σ(P
H

P
t )

0.037
0.01

0.02
0.02

0.01
0.01

0.02

σ(rt )
0.06

0.03
0.04

0.04
0.03

0.02
0.04

kurtosis(P
t /R

t )
7.1

2.8
3.5

3.5
2.8

2.9
3.1

kurtosis(rt )
7.5

5
5.1

5
5

6
4.7

ρ(P
/R

t , rt+
1  +

 …
 rt+

16 )
-0.74

-0.42
-0.5

-0.53
-0.42

-0.52
-0.4

ρ(rt , rt+
1  +

 …
 rt+

16 )
0.32

0.15
0.13

0.14
0.15

0.29
0.06

ρ(P
/R

t , ln(rentt+
16 ) - ln(rentt ))

-0.44
-0.25

-0.42
-0.44

-0.25
-0.12

-0.27

A
utocorrelation: (ε

rt ) 2
0.14

0.21
0.21

0.22
0.21

0.24
0.15

0.39
0.16

0.18
0.19

0.16
0.19

0.14
0.1

0.16
0.17

0.19
0.16

0.18
0.13

0.32
0.15

0.18
0.16

0.15
0.18

0.13
N

ote: T
his table reports the robustness of the results from

 table 3 w
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