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Abstract We consider an exchange economy where agents have heterogeneous

beliefs and assets are long-lived, and investigate the coupled dynamics of asset prices

and agents’ wealth. We assume that agents hold fixed-mix portfolios and invest on each

asset proportionally to its expected dividends. We prove the existence and uniqueness

of a sequence of arbitrage-free market equilibrium prices and provide sufficient con-

ditions for an agent, or a group of agents, to survive or dominate. Our main finding is

that long-run coexistence of agents with heterogeneous beliefs, leading to asset prices

endogenous fluctuations, is a generic outcome of the market selection process.
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1 Introduction

The market selection hypothesis (MSH) applied to financial markets implies that

traders’ heterogeneity can be only a short-run phenomenon. In the long run, the trader

with the most accurate beliefs about asset dividends should gain all the wealth and

price assets accordingly. Indeed, benchmark equilibrium models of asset pricing, such

as Lucas’ model and the CAPM, dismiss heterogeneity and assume that all traders

have correct beliefs about the distribution of asset returns. Although these models

provide an insightful characterization of the relation between equilibrium returns and

risk preferences, they have not been validated by data.1

In this paper, we investigate whether, contrary to what the MSH would suggest,

traders’ heterogeneity can persist in financial markets. We study a discrete-time Lucas’

tree economy, as in Lucas (1978), but assume that agents are heterogeneous and invest

in assets using fixed-mix portfolios. In particular, we specify subjective beliefs for

each agent and assume that they invest on each asset proportionally to its expected

dividends. We ask whether the market selects for a unique agent or, instead, multiple

agents survive and determine equilibrium prices in the long run. The contribution of

our paper is twofold. Firstly, we show that even in a setting where portfolio rules

are not explicitly derived from an intertemporal utility maximization, there exists a

unique sequence of arbitrage-free market equilibrium prices. Secondly, we provide

sufficient conditions for the dominance, vanishing, or survival of groups of agents.

These conditions depend on the relative performance of portfolios in the limit of a

group having all the wealth of the economy. In relation to the original question, we

finally use these conditions to show that long-run heterogeneity is a generic outcome

of the market selection process.

The formal investigation of the MSH has started only many years after its formula-

tion by Alchian (1950) and Friedman (1953). The seminal work by Blume and Easley

(1992) has led to two strands of literature. In the first group, agents are expected utility

maximizers, have rational price expectations, but disagree on the dividend process,

see, e.g., Sandroni (2000), Blume and Easley (2006), and Jouini and Napp (2006) for

discrete-time models and Jouini and Napp (2007), Yan (2008), Cvitanić et al. (2012),

and Bhamra and Uppal (2014) for continuous-time models. The main finding is that

when markets are complete they do select for a unique trader. Heterogeneity is only

transient and assets are priced by the surviving agent.2,3

1 For a list of puzzles and asset pricing anomalies, see, e.g., the entries “Financial Market Anomalies” and

“Finance (new developments)” in the New Palgrave Dictionary of Economics.

2 See however, Cvitanić and Malamud (2011) for a distinction between the price and portfolio impact of a

vanishing agent and Cvitanić et al. (2012) for an appraisal of the impact of vanishing agents on cumulated

returns.

3 Heterogeneity may instead be persistent when markets are exogenously incomplete (Blume and Easley

2006; Beker and Chattopadhyay 2010; Coury and Sciubba 2012), when agents have non-tradable labor

income (Cao 2013; Cogley et al. 2013), when information is asymmetric and costly (Sciubba 2005), when

learning does not converge (Sandroni 2005; Beker and Espino 2011), when agents are ambiguity averse

(Condie 2008; Guerdjikova and Sciubba 2015), or when agents have recursive preferences (Borovička 2015;

Dindo 2015).
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Another strand of literature, to which this work belongs, has instead investigated the

market selection process in economies where agents’ behavior can be modeled directly

in terms of saving and portfolio rules, not necessarily coming from expected utility

maximization under rational price expectations (see, e.g., Sciubba 2006; Evstigneev

et al. 2009, and the chapters in Hens and Schenk-Hoppé (2009)). These works contend

that agents are able to coordinate on having rational expectations on future prices,

especially when they disagree on the dividend process, and prefer to assume that

agents’ investment strategies are given adapted processes.4 The question is whether

also in this more realistic setup the market selects for a unique portfolio.5

An interesting result of this second strand of literature is that, provided saving is

homogeneous, there exists a portfolio rule that dominates against any other combina-

tion of adapted rules, as shown in Evstigneev et al. (2002, 2006, 2008). This portfolio,

named Generalized Kelly after Kelly (1956), invests on each asset proportionally to

its expected dividends with expectations computed using the correct dividend process

probability. In particular, Evstigneev et al. (2008) establish the global dominance of the

Generalized Kelly rule in an i.i.d. exchange economy where agents can trade multiple

long-lived assets. Given the log-optimality of the Generalized Kelly portfolio when

the agent using it is alone in the economy, the predictions of Lucas’ model (with a

log-utility maximizer) are recovered in the limit and the MSH is validated. However,

in markets where all agents use a fixed-mix rule the result holds only if there is an

agent who (i) invests on each asset proportionally to its expected dividends and (ii)

in every period knows the distribution of next period’s dividends. The latter is a very

strong assumption in real financial markets; hence, a relevant question remains: Is the

market able to select for the most accurate beliefs when nobody is always right?6 Oth-

erwise, is coexistence of heterogeneous fixed-mix rules a possible outcome of market

selection?

In order to provide an answer to these questions, we proceed as follows. In Sect. 2,

we introduce an asset market economy where agents hold heterogeneous fixed-mix

portfolios of long-lived assets. In particular, given subjective beliefs, we assume that

agents invest on assets proportionally to their expected dividends. We name these port-

folios Subjective Generalized Kelly. In Sect. 3, we determine the dynamics of agents’

wealth and asset prices starting from budget constraints and market clearing equations.

Although the two dynamics are coupled—since assets are long-lived their payoffs

determine the new wealth distribution but the new wealth distribution determines,

through prices, asset payoffs—we solve them explicitly and provide an expression of

asset payoffs that depends only on agents’ rules and on their old wealth distribution.

We use this characterization of asset payoffs to explicit conditions that exclude arbi-

trage. Subjective Generalized Kelly portfolios naturally satisfy these conditions. We

can thus show that in our markets there exists a unique sequence of no-arbitrage market

4 In particular, why should (endogenously determined) prices be easier to forecast than (exogenously given)

dividends?

5 The empirical evidence is that it does not, there were 9520 mutual funds in the USA in 2015.

6 Bottazzi and Dindo (2014) investigate the same issue in an economy with short-lived assets, finding that

the MSH does not generally hold. Bektur (2013) shows that the agent whose rule is the closest, component

by component, to the Generalized Kelly rule survives almost surely.
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equilibrium prices. Although previous works, namely Evstigneev et al. (2006, 2008),

also provide conditions for the existence and uniqueness of a sequence of positive

prices in a model very close to ours, the result on arbitrages is new.

In Sect. 4, we proceed to provide sufficient conditions for a group of agents to have

a positive, null, or unitary, fraction of wealth in the long run. These conditions are

based on the comparison of groups’ relative growth rates, themselves a function of

aggregate portfolios, in the limit when a group has all the assets, and thus all the wealth

of the economy. Given a partition {I, J } of the entire set of agents, it is intuitive that if,

for all market conditions set by J , group I has “better” portfolios than group J , in that

it has a higher average log growth rate, then I cannot vanish. These survival results

lead also to dominance provided (i) group I is also performing, on average, better than

group J at the market conditions set by I and (ii) no arbitrages are possible so that

the groups’ wealth ratios keep changing. In the simplest case of a two-agent economy,

analyzed in Sect. 4.1, these sufficient conditions are also necessary (but for hairline

cases) and particularly easy to check. The reason is that when an agent dominates,

assets payoffs become unequivocally defined.

Using our sufficient conditions for survival, we are able to characterize when

long-run heterogeneity occurs. Our main finding is that agents with heterogeneous

portfolios, and thus heterogeneous beliefs, may have positive wealth in the long run.

In this case, the relative wealth distribution changes over time, so that different portfo-

lios have a different impact on asset prices in different periods. The price distribution

depends on the distribution of relative wealth and has as support the subset of the

simplex defined by agents’ beliefs. In Sect. 4.2, we show that long-run heterogeneity

occurs in all economies, that is, no matter the exact asset structure and the number

of agents, and is generic, that is, it does not disappear if agents’ beliefs are locally

perturbed. The survival of different agents is related to portfolios and dividends being

anti-correlated: If an agent invests more in the asset that pays more in one state while

the other agent invests more in an asset that pays more in another state, then the

outcome is long-run heterogeneity.7

The difference between our results and those of the general equilibrium literature

with dynamically complete markets of long-lived assets, as Sandroni (2000) or Yan

(2008), lies in the non-optimality of Subjective Generalized Kelly rules. Consider an

economy with two agents, i and j , and assume that the beliefs of i are more accurate.

When both agents hold log-optimal portfolios, agent i dominates and agent j vanishes.

If, instead, we find that j does not vanish, then it must be that agent j’s non-optimal

portfolio is “better” than the optimal portfolio derived under her beliefs, at least in

the limit when agent i has most of the wealth. Thus, the non-optimality of agent j’s

portfolio corrects for the inaccuracy of her beliefs, leading to “better” portfolios and

to her survival.8

7 The result seems related to the analysis of the impact of pessimism and optimism on asset prices performed

in Jouini and Napp (2010). Note, however, that their result is non-generic in that it holds only when agents’

biases are equal, so that they have the same survival index. See also Blume and Easley (2009). Our results

are instead generic.

8 Note, however, that survival might not be associated with higher welfare (see, e.g., Jouini and Napp 2016).
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We provide an intuition of the interplay between non-correct beliefs and the non-

optimality of portfolios, by defining an agent effective beliefs as those (time-varying)

beliefs such that the Subjective Generalized Kelly rule derived using the original

beliefs coincides with the log-optimal portfolio rule derived using effective beliefs

(and rational price expectations). Since a Subjective Generalized Kelly portfolio is

log-optimal when the agent using it has all the wealth, effective beliefs and beliefs

coincide in this case. However, when asset returns are determined by both agents, they

differ. In a two-agent economy, long-run heterogeneity occurs if agent i’s effective

beliefs are more accurate than agent j’s beliefs when asset returns are determined by

agent j (because she has most of the wealth) and, at the same time, agent j’s effective

beliefs are more accurate than agent i’s beliefs when asset returns are determined

by agent i . In these cases, there exists a compensation between using a non-optimal

portfolio rule and having non-accurate beliefs.

We discuss our results in terms of effective beliefs in Sect. 5. Here we also show, by

means of numerical explorations, that long-run heterogeneity occurs for a wide range

of the economy parameters. Moreover, although throughout the paper we concentrate

on the selection of Subjective Generalized Kelly portfolios, in Sect. 5.4 we provide an

example where fixed-mix portfolios are derived to be optimal when the agent using

it has all the wealth of the economy and different risk preferences then a log-utility

maximizer. We show that even if all agents know the truth, long-run heterogeneity still

occurs generically. Section 6 concludes.

2 The model

Time is discrete and indexed by t ∈ N0 = N ∪ {0}. At each date t ∈ N one of the

possible S = {1, . . . , S} states of the world occurs. Let Σ be the set of all possible

sequences of states of the world. We denote with σ a generic sequence in Σ , with

st ∈ S the state of the world realized at date t , and with σt = (s1, s2, . . . , st ) ∈ St

the partial history of states up to date t included. {ℑt } is the natural filtration, ℑ is the

σ -algebra generated by the filtration, and P is a probability measure on (Σ,ℑ). All the

random variables on (Σ,ℑ) that we shall introduce (dividends, asset prices, portfolios,

wealth, etc.) are adapted to the natural filtration {ℑt }. Unless otherwise noted, all our

statements are true almost surely with respect to the probability measure P.

We consider an exchange economy populated by N agents trading K long-lived

assets. Asset k ∈ K traded in t ∈ N0 pays the dividend Dk,t ′(σt ′) in t ′ > t . Agents

have no other source of income, so that the aggregate endowment Yt is the sum of

the payed dividends, Yt (σt ) =
∑

k∈K Dk,t (σt ). Denote asset prices at date t as Pt =

(P1,t , ..., PK ,t ), the asset holding of agent i at date t as hi
t = (hi

1,t , . . . , hi
K ,t ), and her

consumption in t as C i
t . Agent i’s budget constraint in t ≥ 1 reads

C i
t +

K
∑

k=1

Pk,t h
i
k,t =

K
∑

k=1

(

Dk,t + Pk,t

)

hi
k,t−1. (1)

The budget constraint in t = 0 is similar, but the right-hand side of (1) is the value

of agent i’s initial endowment of consumption good and assets. Asset prices are fixed
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in competitive markets. Without loss of generality, we assume unitary supply, so that

the date-t asset-k market clearing condition reads

N
∑

i=1

hi
k,t = 1. (2)

The existence and uniqueness of positive market clearing prices depends on agents’

demands. We postpone to Sect. 3 the proof that under appropriate assumptions on

demands there exists a unique vector of arbitrage-free prices such that (1) and (2) hold

for every i ∈ N , k ∈ K , and t ∈ N.

We define agent i’s wealth in t ≥ 1 as her pre-consumption net worth so that

W i
t =

K
∑

k=1

(Dk,t + Pk,t )h
i
k,t−1 , ∀ i ∈ N , (3)

and let Wt = (W 1
t , . . . , W N

t ) denote the vector of agents’ wealth. Equations (1–2) can

be rewritten in terms of agents’ wealth. To this end, it is convenient to express agent i’s

consumption and investment decision in t as fractions of her wealth W i
t . We denote with

1−δi
t ∈ (0, 1) the fraction of wealth she consumes, so that C i

t = (1−δi
t )W i

t , and with

αi
t = (αi

1,t , ..., α
i
K ,t ) the vector of her investment fractions, so that hi

k,t = αi
k,t W

i
t /Pk,t .

By (1) and (3)
∑K

k=1 αi
k,t = δi

t , i.e., δi
t is agent-i-date-t saving rate. Using agents’

wealth and investment decisions, Eqs. (1–2) in t ≥ 1 become, respectively,

W i
t =

K
∑

k=1

(

Dk,t + Pk,t

) αi
k,t−1W i

t−1

Pk,t−1
, ∀ i ∈ N , (4)

Pk,t =

N
∑

i=1

αi
k,t W

i
t , ∀ k ∈ K . (5)

Since assets are long-lived, the dynamics of agents’ wealth and asset prices are coupled.

Before solving (4–5), we specify asset dividends and agents’ consumption-investment

decisions.

2.1 Assets

The following assumptions specify the nature of asset dividends. First, we shall assume

that each asset k’s relative dividend process, Dk,t/Yt , does not depend on partial histo-

ries. Second, we shall restrict the probability measure P so that, in all periods, relative

dividends have the same distribution. In other words, there exist a strictly positive prob-

ability measure π on (S, 2S) and K random variables on (S, 2S), (d1, . . . , dK ) = d,

such that

D1 Dk,t (σt ) = dk(st )Yt (σt ), ∀ k ∈ K , ∀ t ∈ N, and ∀ σt ∈ St .
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D2 States of the world are independent and identically distributed with P(st = s) =

π(s) > 0 ∀ t ∈ N, ∀σ ∈ Σ , and ∀s ∈ S.

Throughout the paper, we shall identify distributions π on (S, 2S) with vectors π ∈ ΔS

by using π(s) = πs ∀ s ∈ S.9 Given that the aggregate endowment is the sum of asset

dividends, it follows that
∑K

k=1 dk(s) = 1 for every s ∈ S. Note that although D2 is

a restriction on the relative dividend process, the aggregate endowment Yt can be a

more general adapted process on (Σ,ℑ, P). Under D1 and D2

E P[Dk,t |ℑt−1] = Eπ [dk] E P[Yt |ℑt−1] , ∀ k ∈ K and ∀ t ∈ N ,

where E is the expectation operator that integrates according to the measure indicated

by the superscript. We also assume that dividends are nonnegative and that every asset

pays a positive dividend in at least some states

D3 dk(s) ≥ 0 ∀ s ∈ S and Eπ [dk] > 0, ∀ k ∈ K .

Finally, we rule out the existence of redundant assets. Defining the matrix D with

elements dk,s = dk(s) for all k ∈ K and s ∈ S, we assume

D4 Rank(D) = K ≤ S.

As we shall show, the dividend matrix D, rather than the aggregate process {Yt }, is

central to the analysis of agents’ relative wealth dynamics. Some examples of dividend

matrices follow.

Diagonal dividends Assume that there are as many assets as states, K = S, and that

the dividend of asset k in t is the entire aggregate endowment if and only if state st = k

is realized. Using I to denote the identity matrix, with appropriate dimension, asset k

traded in t pays the dividend

Dk,t ′ = Ik,st ′
Yt ′ in t ′ > t .

Asset k traded in t is a bet on the occurrence of state st ′ = k for all t ′ > t . By

construction asset dividends are anti-correlated. The dividend matrix D is just the

S × S identity matrix and D1, D3, D4 are satisfied.

Binomial tree Here we construct the matrix D that replicates the simplest canonical

model of financial markets. Assume that the aggregate endowment follows a geometric

random walk:

Yt =

{

guYt−1 if st = 1

gdYt−1 if st = 2
,

9 Given RS , ΔS denotes its simplex, RS
+ is the subset of vectors with nonnegative components (excluding

the null vector), and RS
++ is the subset of vectors with positive components.
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with gu > gd . Two assets in unitary supply are available. The first, k = 1, is risky.

When purchased in t , it has dividends in all t ′ > t equal to

D1,t ′ =

{

(gu − gd)Yt ′−1 if st = 1

0 if st = 2
.

The second asset is risk-free. In all t ′ > t , it has dividend gdYt ′−1, independently of

the state st ′ . The asset is a perpetual bond with time-varying coupon. Since the first

asset is equivalent to a long position in the aggregate endowment and a short position

in the second asset, the market is equivalent to a market with a risk-free asset in zero

supply and a risky asset, that pays the aggregate endowment as dividends, in unitary

supply. The dividend matrix D is found by imposing D1

D =

[

1 − r 0

r 1

]

,

with r = gd/gu ∈ (0, 1). It can be easily checked that D3–D4 are satisfied too.

Trinomial tree In both previous examples, market completeness relies on the proper-

ties of the full payoff matrix, that is, on the sum of dividends and prices. Thus, even

if D is non-singular, the market might still be incomplete. However, when there are

fewer assets than states, K < S, we know for sure that asset markets are incomplete.

A strength of our approach is that we are able to analyze long-run outcomes of the

economy also for these incomplete markets.

Consider for example an economy with S = 3 and three possible aggregate endow-

ment growth rates: gu ≥ gm > gd . Only two assets are traded. As in the previous

example, the first contract is a long position in the aggregate endowment and a short

position in the risk-free asset paying the dividend gdYt ′−1 in all t ′ > t . The dividend

matrix D is

D =

[

1 − ru 1 − rm 0

ru rm 1

]

,

where ru = gd/gu ≤ rm = gd/gm (also in this case also D3–D4 are satisfied).

Assume now that the first contract is replaced by two contracts that can disentangle

the position in the first and second state of the economy. Simple computations show

that the dividend matrix is non-singular and given by

D =

⎡

⎣

1 − ru 0 0

0 1 − rm 0

ru rm 1

⎤

⎦.

2.2 Investment rules

Although one could study the market dynamics with general investment rules αs,

throughout this work we concentrate on a special class of rules, fixed-mix rules. We
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assume that each agent i invests a constant and positive fraction αi
k on each asset k.

In particular, each agent i has a constant saving rate δi and chooses αi such that her

portfolio x i = αi/δi is the Generalized Kelly portfolio of Evstigneev et al. (2002,

2006, 2008) computed under her subjective beliefs.

R1 Each agent i ∈ N has constant saving rate δi ∈ (0, 1), constant subjective beliefs

π i on (S, 2S), and for all t ∈ N0 uses the fixed-mix investment rule αi = δi x i

with portfolio x i = Eπ i
[d].

We further assume that each agent believes that all states are possible:10

R2 π i is strictly positive ∀ i ∈ N .

A portfolio rule that satisfies R1–R2 is named Subjective Generalized Kelly rule.

Given R1–D1, investment shares are constant, i.e., fixed. Given R2–D3 its investment

shares are sufficiently mixed, αi
k > 0 for all k ∈ K and all i ∈ N . As a result, a

Subjective Generalized Kelly is indeed fixed-mix in our market economy. Note that

rules can also allow some form of short selling, as long as the aggregate position in the

existing assets is positive (see the examples in the previous section). It is particularly

important to realize that, given restrictions R1–R2, the set of consumption allocations

that agent i can purchase and the long-run dynamics of the model depend critically

on D. Given two different dividend matrices D and D′, and two sequences of prices

P and P ′ such that the law of one price holds, there might not exist a pair of portfolio

rules x and x ′ satisfying R1–R2 such that the stream of payoffs is the same for x under

D and P and for x ′ under D′ and P ′.

We focus our analysis on Subjective Generalized Kelly rules because they represent

a benchmark in the space of fixed-mix rules. Specifically, when subjective beliefs are

correct we have the Generalized Kelly rule of Evstigneev et al. (2008). In an i.i.d.

economy, such rule gains all the aggregate endowment when trading against other

fixed-mix rules, provided all agents use the same saving rate (see also Kelly 1956;

Evstigneev et al. 2009).

Assuming R1–R2, we depart from the standard approach that derives consumption

and portfolio decision from the maximization of an objective function. We also exclude

rules that depend on market prices or on agents’ wealth. Moreover, since beliefs and

relative dividends are fixed, rules do not depend neither on the history of asset dividends

nor on the price processes. The framework is, however, more general than what it

might seem at first sight. First, our analysis also applies to the long-run behavior

of markets where beliefs evolve over time, provided that beliefs converge to some

constant level as more and more information is gathered. Second, it should be noted

that Subjective Generalized Kelly portfolio (and saving) decisions of agent i implied

by R1–R2 coincide with those taken on an equilibrium path by a representative agent

that maximizes a geometrically discounted log-utility with subjective beliefs π i and

a discount factor equal to the saving rate δi . As a result, the Subjective Generalized

Kelly rule of agent i is also optimal in an heterogeneous agents economy in the limit of

10 The same condition is assumed in the general equilibrium literature that investigates the Market Selection

Hypothesis to guarantee existence of a competitive equilibrium (see, e.g., Axiom 3 in Blume and Easley

2006).
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agent i holding all the aggregate endowment. Third, our analysis can be more generally

applied to economies populated by agents with different limit risk preferences than an

instantaneous log-utility, see the example in Sect. 5.4.

3 Market dynamics

In this section, we show that when agents use fixed-mix rules, intertemporal budget

constraints (4) and market clearing conditions (5) can be solved to derive a unique

sequence of positive and arbitrage-free equilibrium prices. Without loss of generality,

we assume that each agent i ∈ N starts with some given positive wealth W i
0.11

3.1 Representative agent

We start from the case where agent i possesses all the aggregate endowment in t = 0,

so that W
j

0 = 0 for all j 	= i . Straightforward computations lead to

W i
t =

Yt

1 − δi
, W

j
t = 0 , j 	= i , ∀ t ∈ N0 , (6)

Pk,t =
δi Yt

1 − δi
Eπ i

[dk] , ∀ k ∈ K , ∀ t ∈ N0 . (7)

Asset k is priced as in a log-economy where the representative agent has beliefs π i

and discount factor equal to the saving rate δi . The Lucas’ model is recovered. In

particular, if the dividend matrix is non-singular and the aggregate endowment is not

risky, then risk neutral probabilities coincide with agent i’s beliefs.

3.2 Heterogeneous agents

Pricing is more interesting when agents have heterogeneous beliefs. Assume that there

exist at least two agents i and j with positive wealth and thatαi 	= α j . Given investment

rules, the initial price vector P0 can be found from the initial wealth distribution W0

using the market clearing condition (5). To find prices for t ≥ 1, substitute (4) in (5)

and obtain

K
∑

l=1

(

Ik,l −

N
∑

i=1

αi
kα

i
l W i

t−1

Pl,t−1

)

Pl,t =

K
∑

l=1

dl(st )Yt

N
∑

i=1

αi
kα

i
l W i

t−1

Pl,t−1
, ∀k ∈ K . (8)

The above expression can be conveniently written in matrix form. Consider the vectors

of price-rescaled investment fractions,

11 This is implied by assuming that agents start with an initial allocation of assets and consumption good.
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β i (W ;α) =

(

αi
1

∑N
j=1 W jα

j
1

, . . . ,
αi

K
∑N

i= j W jα
j
K

)

, ∀k ∈ K ,

and define the positive matrix

A(W ;α) =

N
∑

i=1

W i αi ⊗ β i (W, α) . (9)

Equation (8) becomes

(I − A(Wt−1;α)) Pt = A(Wt−1;α) d(st )Yt . (10)

An intermediate step is to show that I − A(W ;α) is invertible.

Lemma 1 Under the assumption that rules satisfy R1–R2, the matrix I − A(W, α) is

invertible for all W ∈ RN
+ .

From the previous Lemma and from (10), it follows that market clearing prices are

uniquely defined for every t ≥ 1 and given by

Pt (σt ) = (I − A(Wt−1;α))−1 A(Wt−1;α) d(st )Yt (σt )

=

∞
∑

n=1

An(Wt−1;α) d(st )Yt (σt ) . (11)

Given D3 and R2, the series expansion implies that prices are positive. Date t prices

depend both on Wt−1, the previous date wealth distribution, and on d(st )Yt , the real-

ization of the dividend process. The above equation with D1 and D2 also implies

that there exists a matrix P(W ;α, D), with the same dimension of D, such that

Pk,st (Wt−1;α, DYt ) = Pk,t (σt ). When the wealth distribution is degenerate, in that

only agent i has positive wealth, it is A = αi ⊗ 1 and (7) is recovered. Long-lived

asset prices and dividends D determine the payoff matrix

R(W ;α, D) = P(W ;α, D) + D = (I − A(W ;α))−1 D . (12)

Through prices, payoffs depend on the wealth distribution W and keep changing as

the wealth distribution evolves. By substituting (12) in (4), one obtains the explicit

evolution of the wealth distribution. By construction, it is adapted to the information

filtration.

Under the standard utility maximization approach with unconstrained portfolios,

arbitrage never occurs in equilibrium. In our model, however, asset holdings are con-

strained by R1 and arbitrage might occur. A sufficient condition to avoid arbitrages

turns out to be that the vector of portfolio rules is in the interior of the cone generated

by the S columns of the matrix D (see the proof of the Proposition 1). Given R1–R2,

the condition is naturally satisfied by Subjective Generalized Kelly rules.

We summarize the results of this section in the following Proposition.
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Proposition 1 Consider an exchange economy where N agents using rules obeying

R1–R2 are trading K assets satisfying D1–D3. If W0 ∈ RN
++, then for all t ∈ N ,

Wt ∈ RN
++, is adapted to ℑt , and evolves according to

W i
t (σt ) = W i

t−1(σt−1)

K
∑

k=1

β i
k(Wt−1(σt−1);α)

Rk,st (Wt−1(σt−1);α, DYt (σt )) , ∀ i ∈ N .

Moreover, the sequence of wealth distributions {Wt } is such that for all t ∈ N market

equilibrium prices Pt = Pst (Wt−1;α, DYt ) and payoffs Rt+1 = R(Wt ;α, DYt+1) do

not admit arbitrage.

The first part of Proposition 1 corresponds to Proposition 1 in Evstigneev et al. (2006,

2008).12 In addition, we derive an explicit solution for equilibrium prices P and asset

payoffs R. This, in turn, allows us to prove that requiring agents to use Subjective

Generalized Kelly portfolios, R1–R2, is sufficient to avoid arbitrages.

3.3 Relative wealth dynamics

If agents have different saving rates, the agent who saves more is advantaged in terms

of wealth accumulation. If, for example, there are two agents i = 1, 2 with the same

portfolio rule but δ1 > δ2, then the wealth of agent 1 grows geometrically faster than

the wealth of agent 2, with rate δ1/δ2. When agents have different portfolios, there is

a trade-off between having a higher saving rate and a “better” portfolio. Although the

trade-off is certainly interesting, here we concentrate on the heterogeneity of portfolio

rules and assume homogeneous saving rates:

R3 δi = δ , ∀ i ∈ N .

We shall show that under R3 the relative wealth dynamics does not depend on the

aggregate endowment process. Normalized wealth and prices are

wi
t =

1 − δ

Yt

W i
t , ∀i ∈ N , and pk,t =

1 − δ

δ Yt

Pk,t , ∀k ∈ K , (13)

so that, for any t ,
∑N

i=1 wi
t = 1 and

∑K
k=1 pk,t = 1. Lemma 1 and Proposition 1 can

be restated in terms of normalized variables by replacing date t payoffs Rt with their

normalizations by the total wealth Yt/(1− δ). As a result, the payoff matrix R defined

in (12) becomes

r(w; x, δ, D) = (1 − δ)(I − δA(w; x))−1 D ,

12 Evstigneev et al. (2006) establish the result in the more general case of adapted portfolio rules. It is

straightforward to see that our proof holds even when beliefs π i
t are adapted to the information filtration

generated by sτ and Pτ−1 for all τ ≤ t .
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where the matrix A depends on the normalized wealth and portfolio shares x . In

particular, the payoff of asset k when state s is realized can be written as a convex

combination of relative dividends and normalized prices:

rk,s(w; x, δ, D) = (1 − δ) dk,s + δ pk,s(w; x, δ, D) . (14)

When δ is close to zero, the contribution of normalized prices becomes very small and

the normalized payoff matrix r approaches the dividend matrix D. This is because

in our economy equilibrium prices can be written as the discounted sum of future

dividends, see (11). As a result, when the saving rate is close to zero, prices become

small too. Conversely, when δ is close to one, prices are much larger than dividends.

In the limit δ → 1, dividends do not count and the payoff matrix becomes singular.

An advantage of working with normalized variables is that, since states of the world

are i.i.d. and agents agree on that, the relative wealth dynamics is a Markov process.

Corollary 1 Under the assumptions of Proposition 1, if saving rules obey to R3, then

the normalized wealth wt follows a Markov Process on ΔN
+ such that, for every t ∈ N,

with probability π(s) the relative wealth vector wt−1 evolves into

wi
t = wi

t−1

K
∑

k=1

β i
k(wt−1; x) rk,s(wt−1; x, δ, D) , ∀ i ∈ N . (15)

In the rest of the paper, we shall use (15) to study the dynamics of the relative wealth

of groups of agents.

4 Market selection and long-run heterogeneity

Let I ⊂ N be a proper subset of agents and I c = N \ I its complement. We denote

with w I
t the sum of date-t wealth of agents in I , so that 1 − w I

t is the sum of date-t

wealth of agents in I c. The aggregate portfolio rule of group I is

x I (wt ; x) =
∑

i∈I

x i wi
t

w I
t

, (16)

while its rescaled portfolio is

β I (wt ; x) =

(

x I
1 (wt ; x)

∑N
i=1 x i

1w
i
t

, . . . ,
x I

K (wt ; x)
∑N

i=1 x i
K wi

t

)

.

In this section, we provide sufficient conditions for the survival or dominance of a

generic group I . The next definition clarifies what we mean by dominance, survival,

and vanishing.
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Definition 1 We say that group I dominates on a sequence σ if

lim
t→∞

w I
t (σ ) = 1 . (17)

Group I survives on a sequence σ if

lim sup
t→∞

w I
t (σ ) > 0 . (18)

If a group does not survive on σ , we say that it vanishes on that sequence. We say that

group I dominates or survives if (17) or (18) holds P-a.s. Group I vanishes if it does

not survive.

If a group composed by a single agent dominates, heterogeneity is a transient property

and the economy converges with probability one to its representative agent limit. If

instead more than one agent survives, then the economy exhibits long-run heterogene-

ity.

Definition 2 An N -agent asset market economy exhibits long-run heterogeneity if

there exists a proper subset of traders I ⊂ N such that both the group I and the group

I c survive.

In order to characterize the relative performance of group I , we use the difference

between the conditional expected log wealth growth rate of group I and the conditional

expected log wealth growth rate of its complement I c, that is, the conditional drift of

the process log(w I
t /w I c

t ). Corollary 1 implies that this quantity depends on ℑt only

through the date-t normalized wealth distribution, formally

E P

[

log
w I

t+1

w I
t

− log
1 − w I

t+1

1 − w I
t

∣

∣

∣

∣

ℑt

]

= E π

[

log

∑K
k=1 β I

k (wt ; x)rk(wt ; x, δ, D)
∑K

k=1 β I c

k (wt ; x)rk(wt ; x, δ, D)

]

= μI (wt ) . (19)

The sign of μI (wt ) tells us whether, in relative terms, the aggregate wealth of agents

in I grows or shrinks, in expectation, with respect to the aggregate wealth of agents

in I c. It turns out that one can derive sufficient conditions for survival or dominance

of a group by studying the sign of μI (wt ) when the relative wealth w I
t is very large

or very small. For a proper subset I and for v ∈ [0, 1], define

μI (v) = max
{

μI (w) | w ∈ ΔN , w I = v

}

,

and

μI (v) = min
{

μI (w) | w ∈ ΔN , w I = v

}

.

The definition is meaningful because the function μI is continuous in w and the

extrema are computed on compact sets. Since the map between v and these sets is
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continuous in v (both upper and lower hemicontinuous), μI and μI are also continuous

function of v.

The next Proposition exploits the Martingale Converge Theorem (see the proposi-

tion’s proof for details) to characterize long-run survival. Intuitively, if the expected

growth rate of a group of agents is positive when its aggregate wealth is sufficiently

small and under the most adverse wealth distribution of the other group, then the group

cannot vanish.

Proposition 2 Consider an exchange economy with N agents using rules obeying

R1–R3 and trading K assets satisfying D1–D4:

(i) If μI (0) > 0, then group I survives.

(ii) If μI (1) < 0, then group I c survives.

If the inequality on bounds of the conditional drift stated in Proposition 2 holds,

then, a forziori, it holds also for the conditional drift computed along (almost) all

possible trajectories of our economy. On the other hand, the Proposition provides

only a sufficient condition, because, by considering the extremal drift values over all

possible wealth distributions, we might consider distributions that cannot be realized

with positive probability. Under (i) and (ii), both groups I and I c survive and the market

exhibits long-run heterogeneity. In order to derive other results, such as dominance of

a group, we need to assume that group I aggregate rule x I cannot be replicated by a

combination of other agents’ rules. Specifically we assume that

R4 There exists a hyper-plane in RK which separates the rules of agents in I from

the rules of agents in I c.

Since the aggregate rules x I and x I c
belong to the convex cone generated by the

strategies of agents in I and I c, respectively, condition R4 is sufficient to guarantee

that they can never be equal. When individual rules are all different and there are at

least as many assets as agents, K ≥ N , condition R4 is satisfied for any group I .

Assumption R4, combined with the absence of redundant assets D4, is sufficient to

prove that, for all t , there is a positive probability that the wealth distribution between

group I and group I c keeps changing.

Lemma 2 Under R4, if there are no redundant assets, D4, then there exists a γ > 0

such that for all t ∈ N0

Prob

{
∣

∣

∣

∣

∣

log
w I

t+1

w I c

t+1

− log
w I

t

w I c

t

∣

∣

∣

∣

∣

> γ

∣

∣

∣

∣

ℑt

}

> γ . (20)

Thus, as long as the two groups have different rules, no constant wealth distribution

is possible. Under the same hypothesis, plus lack of arbitrage, we can also rule out

the possibility that the conditional wealth growth rate of one group is larger than the

other with full probability.
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Lemma 3 Under R4, if market equilibrium prices pt and asset payoffs rt+1 do not

admit arbitrages, then for all groups I there exists an ǫ > 0 such that for all t ∈ N0

Prob

{

w I
t+1

w I
t

>
w I c

t+1

w I c

t

∣

∣

∣
ℑt

}

> ǫ and Prob

{

w I
t+1

w I
t

<
w I c

t+1

w I c

t

∣

∣

∣
ℑt

}

> ǫ . (21)

Using asymptotic conditions on the sign of groups’ wealth growth rates, and based on

the previous two Lemmas, we can obtain sufficient conditions for a group to dominate

or vanish.

Proposition 3 Consider an exchange economy with N agents using rules obeying

R1–R4 and trading K assets satisfying D1–D4:

(i) If μI (0) > 0 and μI (1) > 0, then group I dominates;

(ii) If μI (0) < 0 and μI (1) < 0, then group I vanishes.

(iii) If μI (0) > 0 and μI (1) < 0, then both groups I, I c survive and for G = I, I c

Prob{lim inf
t→∞

wG
t = 0 and lim sup

t→∞
wG

t = 1} = 1

When both groups survive, case (iii), Proposition 3 complements Proposition 2 by

clarifying that, under R4 and lack of arbitrage, groups’ wealth shares keep fluctuating

in the interval (0, 1). Asset prices fluctuate accordingly. Case (i), and symmetrically

(ii), says that a group dominates if it performs, on average, better than its comple-

ment both in the limit when its wealth is small and in the limit when it is large. The

separability of rules R4 and the lack of arbitrage are required to ensure that relative

wealth ratios keep changing. In particular, they forbid the innovations of the process

{log (w I
t /(1 − w I

t ))} from having a definite sign. In fact, even if the asymptotic drift

conditions say that group I has better performances both when it is large and when

it is small, the presence of a limited arbitrage in favor of group I c when w ∈ (0, 1)

could prevent group I from exploiting its asymptotic advantage.

As a Corollary of Proposition 3, we are able to establish that if agent has correct

beliefs, then she dominates.

Corollary 2 Under the assumptions of proposition 3, if agent i has correct beliefs,

π i = π , then she dominates.

This result is also implied by Theorem 5 in Evstigneev et al. (2008), which is more

generally proved without requiring that other agents’ fixed-mix rules are Subjective

Generalized Kelly, R1–R2, nor separated, R4. However, our proof relies only on the

sign of asymptotic drifts.

4.1 Two-agent economy

In this section, we characterize the long-run outcomes of a two-agent economy and

show that sufficient conditions of Propositions 2–3 become tight. Most of the examples

in Sect. 5 shall exploit these conditions to provide a full characterization of the possible

long-run outcomes in specific two-agent economies. Consider N = {1, 2}. Given
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wealth normalizations, the conditional drift (19) can be written as function of w1
t

only

E π

[

log

∑K
k=1 β1

k (w; x)rk(w; x, δ, D)
∑K

k=1 β2
k (w; x)rk(w; x, δ, D)

]

= μ(w1
t ) .

Moreover, for all v ∈ [0, 1], μ1(v) = μ1(v) = μ(v). In what follows, it is convenient

to define the relative entropy, or Kullback–Leibler divergence, of rules x i with respect

to the reference rule x∗ with x∗ = Eπ [d] as

K L(x i ||x∗) = Ex∗

[

log

(

x∗

x i

)]

. (22)

The difference of relative entropies is

∇x∗(x2||x1) = K L(x2||x∗) − K L(x1||x∗) .

The following lemma provides an ordering of asymptotic drifts with respect to the

difference of rules’ relative entropies.

Lemma 4 Consider an exchange economy with N = 2 agents using rules obeying

R1 − R4 and trading K assets satisfying D1 − D4, then

μ(0) > (1 − δ)∇x∗(x2||x1) > μ(1) . (23)

The Lemma establishes that, in relative terms, an agent is better off in the limit of

her wealth share being 0 than in the limit of her wealth share being 1. In particular,

if an agent has a favorable drift when her wealth share approaches 1, i.e., she has

a higher expected log wealth growth rate than the other agent, then she has also a

favorable drift in the limit of her wealth share approaching 0. Conversely, if an agent

faces an unfavorable drift in the limit of her wealth share approaching 0, then the drift

is unfavorable also in the limit of her wealth share approaching 1. In Sect. 5.1, we

shall use the notion of effective beliefs to provide an intuition behind the Lemma.

Coupling the previous result with Proposition 3 leads to the following set of suf-

ficient and generically necessary conditions characterizing long-run outcomes of a

two-agent economy.

Proposition 4 Consider an exchange economy with N = 2 agents using rules obeying

R1–R4 and trading K assets satisfying D1–D4. Provided both μ(0) and μ(1) have a

definite sign, one of the following occurs

(i) If μ(1) > 0, then agent 1 dominates and 2 vanishes;

(ii) If μ(0) < 0, then agent 2 dominates and 1 vanishes;

(iii) If μ(0) > 0 and μ(1) < 0, then both agents survive and for all assets k ∈ K

Prob

{

lim inf
t→∞

pk,t = min
i=1,2

{

Eπ i

[dk]
}

and lim sup
t→∞

pk,t = max
i=1,2

{

Eπ i

[dk]
}

}

= 1 .
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According to Lemma 4, and leaving out non-generic situations in which asymptotic

drifts are zero, no other cases other than those covered by Proposition 4 can occur.

Moreover, contrary to the bound of conditional drifts in Propositions 2 and 3, μ(0) and

μ(1) can be computed easily, making the two-agent economy particularly tractable

and amenable to applications. Having μ(1) > 0 (μ(0) < 0) is sufficient to prove that

agent 1 (2) dominates. When μ(0) > 0 and μ(1) < 0, both agents 1 and 2 survive and

none dominates.13 In other terms, long-run heterogeneity occurs when both agents

have higher wealth growth rates at the returns determined by the other agent. As

in Proposition 3, long-run heterogeneity amounts to a relative wealth that does not

converge and to prices that keep fluctuating between the two agents’ evaluations. In

the next section, we prove that such cases do always exist and are robust to perturbations

of agents’ beliefs.

Lemma 4 and Proposition 4 imply the survival of the agent whose portfolio rule is

the closest, in terms of relative entropy, to x∗, the Generalized Kelly rule of Evstigneev

et al. (2008). This extends the result of Bektur (2013) who shows that if a rule

is, coordinate-wise, the closest to x∗ then it survives. The extension concerns two

dimensions. Firstly, we make clear that the appropriate “distance” of rules is the rela-

tive entropy with respect to the Generalized Kelly portfolio. Secondly, we show that

whether a specific agent also dominates, or, conversely, both agents survive, can be

stated by studying the limits in which they have, respectively, all the wealth. As also

shown by Corollary 2, the Generalized Kelly trader dominates against all possible

Subjective Generalized Kelly traders. Summarizing, we have the following.

Corollary 3 Consider an exchange economy with N = 2 agents using rules obeying

R1–R4 and trading K assets satisfying D1–D4. If agents’ beliefs are such that

K L(x2||x∗) > K L(x1||x∗) ,

then agent 1 survives. If, moreover, agent 1’s beliefs are correct, so that x1 = x∗, then

agent 1 dominates.

In particular, when D = I, the above inequality can be written in terms of beliefs and

becomes

K L(π2||π) > K L(π1||π) .

In this case, agent 1 survives when she has more accurate beliefs and having correct

beliefs is always sufficient for dominance. With more general dividend matrices D

and, possibly, incomplete markets, it is the relative entropy of rules, rather than of

beliefs, that guarantees survival to the most accurate rule.

13 A fourth outcome that might occur in market selection models is path dependency, which arises when

each rule has a favorable drift in the limit when it has all the wealth. Horst and Wenzelburger (2008) find

path dependency when two competing financial mediators are selected by investors. Bottazzi and Dindo

(2014) find path dependency when rules are allowed to depend on prices.
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4.2 Long-run heterogeneity

Having derived sufficient conditions for long-run heterogeneity, we turn to generality

and existence. Firstly, when long-run heterogeneity occurs, it is also generic: Perturba-

tions of beliefs do not lead to dominance of any of the surviving agent. The sufficient

conditions for long-run heterogeneity involve strict inequalities. Since the conditional

drift μ(w1) = μ(w1;π1, π2) is a continuous functions of beliefs (via the portfo-

lio rules), then it is possible to perturb the latter without violating the inequalities.

Formally

Corollary 4 If in an economy as in Proposition 4 the beliefs π1, π2 are such that (iii)

is satisfied, then there exist vectors ǫ1, ǫ2 ∈ RS with components ǫi
s ∈ [−ε, ε], ε > 0,

and
∑S

s=1 ǫi
s = 0 for i = 1, 2, such that under beliefs π1 + ǫ1 and π2 + ǫ2 condition

(iii) is still satisfied.

Secondly, we show that for any asset structure D there exist beliefs for which hetero-

geneity is indeed the long-run outcome. We restrict our analysis to an economy with

N = 2 and assume that both agents do not know the truth, π i 	= π for i = 1, 2. The

result of Lemma 4 together with condition (iii) of Proposition 4 implies that if two

agents have beliefs such that the corresponding rules have the same relative entropy

with respect to x∗, then they both survive. Thus, in order to prove the existence of

long-run heterogeneity for every admissible choice of the matrix D, we have to find

beliefs for agents 1 and 2 such that the corresponding Subjective Generalized Kelly

rules have the same relative entropy. For this purpose, define Δ̄ as the open set of

all possible Subjective Generalized Kelly portfolios given the dividend matrix D,

Δ̄ = {x ′ ∈ ΔK : x ′ = Eπ ′
[D], π ′ ∈ ΔS

+}, and call ∂(Δ̄) its frontier.

Proposition 5 Given a dividend matrix D and beliefsπ1 	= π such that K L(x1||x∗) <

K with K = minπ ′{K L(x ′||x∗) s.t. x ′ ∈ ∂(Δ̄)}, there exists a non-empty set of beliefs

Π ⊂ ΔS
+ with π1 ∈ Π such that for all π2 ∈ Π the asset market economy with

Subjective Generalized Kelly traders having subjective beliefs π1 and π2 exhibits

long-run heterogeneity.

The fundamental ingredients for proving Proposition 5 are the properties of the relative

entropy. Its continuity, strict convexity, and the fact that it has a minimum equal to

zero in x∗ are sufficient to show the existence of Π . Indeed, in order to build Π , it is

enough to fix π1 and take the set of beliefs such that the Subjective Generalized Kelly

portfolio they generate have all the same relative entropy with respect to x∗.14 Then,

thanks to Corollary 4, one can expand the set by including neighborhoods of all these

beliefs.

The equality of beliefs’ relative entropy, or more generally the equality of a suitably

defined survival index that mixes beliefs and discount factors, may imply long-run

heterogeneity also in market economies where agents are expected utility maximizers

and asset markets are complete (see, e.g., Blume and Easley 2009; Jouini and Napp

2010). There is, however, an important difference with the model presented here.

14 The fact that Π ⊂ ΔS
+ depends on the technical condition K L(x1||x∗) < K. Otherwise, the set of rules

with relative entropy equal to a given x1 could encompass rules that are not generated by any belief.

123

Author's personal copy



G. Bottazzi et al.

Whereas heterogeneity is generic in our market, see Corollary 4, it is non-generic in

the former literature. Indeed, any small perturbation of an agent’s beliefs breaks the

tie among survival indexes and thus leads to the dominance of a single agent.

5 Discussion and examples

We begin this section by providing an intuition for our results based on the com-

parison between Subjective Generalized Kelly rules and log-optimal rules. Then, we

explore market selection outcomes in N -agent economies for specific choices of the

dividend matrix D. Finally, we consider an example where long-run heterogeneity

occurs although every agent knows the truth.

5.1 Effective beliefs

In what follows, we introduce the concept of Effective Beliefs to provide an intuition

behind the occurrence of long-run heterogeneity.

In a similar asset market economy, if portfolios are log-optimal and the asset market

is dynamically complete, then the agent with the most accurate beliefs dominates (see,

e.g., Sandroni 2000; Yan 2008). However, we find that when agents use Subjective

Generalized Kelly rules the accuracy of beliefs is not directly related to dominance.

Provided D is diagonal, Corollary 3 proves only a weaker result, that is, accuracy of

beliefs is sufficient for survival. Agent i’s Subjective Generalized Kelly portfolio might

not dominate, in spite of agent i having more accurate beliefs than the other agent and

using a subjectively log-optimal portfolio, because the portfolio of the agent with less

accurate subjective beliefs might be closer to the (objectively) log-optimal portfolio

when agent i’s holds all the wealth. Non-accuracy of beliefs and non-log-optimality

of the portfolio must compensate each others.

In order to establish how, and when, this compensation occurs, we introduce the

concept of effective beliefs. Given asset prices in t and payoffs in t +1, we define agent

i’s effective beliefs in t , π̂ i
t , as the beliefs such that the Subjective Generalized Kelly

rule x i derived from π i is log-optimal in t . More specifically, to compute effective

beliefs we proceed as follows. Given agents’ beliefs, saving rates, and a dividend

matrix D, for every value of the relative wealth distribution wt there correspond

both a vector of prices pt and a payoff matrix rt+1 (see Sect. 3.3 for details). Thus,

for every wt one can define the effective beliefs of agent i as those beliefs π̂ i
t such

that her portfolio rule x i is (subjectively) log-optimal given prices pt and payoffs

rt+1. As a result, for each agent i , we derive a function π̂ i : ΔN → ΔS
+ such that

π̂ i
t (s) = π̂ i

s (wt ; {π j }, δ, D), ∀s ∈ S. Note that the function depends on all agents’

beliefs {π j }, on their saving rate δ, and on the dividend matrix D. It is so because all

these quantities contribute to determine the payoff matrix in equilibrium. Given the

(subjective) log-optimality of the Subjective Generalized Kelly rule when she has all

wealth, it is π̂ i ((0, . . . , wi = 1, . . . , 0); {π j }, δ, D) = π i for all i ∈ N , independently

from δ, D, and other agents’ beliefs.

This construction enables us to view the economy with Subjective Generalized

Kelly traders with beliefs {π i } as an economy with (subjective) log-optimal traders
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using effective beliefs {π̂ i
t }. The general equilibrium literature tells us that, provided

the asset market is complete, an agent survives only when her beliefs are, on average,

as accurate as prices (see Massari 2017). As a result, whenever we find that long-run

heterogeneity is the long-run outcome, agents’ effective beliefs must be, on average,

equally accurate. Moreover, along the lines of Propositions 3 and 4, one can prove that

the sufficient conditions that characterize long-run outcomes can be given in terms

of asymptotic effective beliefs accuracy instead that in terms of asymptotic growth

rates μ. In fact, the following proposition shows that the relative accuracy of effective

beliefs can be used to characterize the value of asymptotic drifts μ(0) and μ(1).15

Proposition 6 Consider an exchange economy with N = 2 agents using rules obeying

R1 − R4 and trading a complete set of assets satisfying D1 − D4 with non-singular

dividend matrix D, then

μ(0) = ∇π (π2||π̂1((0, 1);π1, π2, δ, D)) and

μ(1) = ∇π (π̂2((1, 0);π1, π2, δ, D))||π1).

Together with Proposition 4, the former implies that in a two-agent economy, long-

run heterogeneity occurs when, for both i = 1, 2, agent i’s effective beliefs are more

accurate than agent j 	= i effective beliefs when agent j sets prices and payoffs.

The market completeness assumption is important for two reasons. First, only when

markets are complete, it is possible to uniquely determine effective beliefs by agents’

portfolio positions, asset payoffs, and asset prices. Second, only when markets are

complete, selection of expected utility maximizers with homogeneous discount factors

favors accurate beliefs (see, e.g., Blume and Easley 2006). Thus, only when markets

are complete, survival of an agent with inaccurate beliefs and a non-optimal portfolio

rule implies that the non-optimality of her rule must compensate the inaccuracy of her

beliefs.

Figure 1 shows effective beliefs in a two-agent economy with complete markets,

two states, and diagonal dividend matrix D. Effective beliefs depend on the value of

w1. By construction, effective beliefs and beliefs coincide when an agent has most

of the wealth. However, beliefs and effective beliefs differ when both agents have

positive wealth. In particular, given two agents, the effective beliefs of each agent are

a combination of her beliefs with the beliefs of the other agent. The larger the wealth

share of one agent, the larger her impact on equilibrium payoffs, the larger the weight

of her beliefs in determining both agents’ effective beliefs. This behavior of effective

beliefs is consistent with the fact that for the same rule, say x1, to be optimal under

different equilibrium prices (and thus wealth distributions), effective beliefs π̂1 should

move in the direction of beliefs π2 the more x2 becomes optimal. The saving rate δ is

also important because δ determines the relative importance of prices and dividends

in the total payoff matrix, see equation (14).

In the example of Fig. 1, S = 2, and agents’ beliefs are on opposite sides with

respect to the truth: π = (0.5, 0.5), π1 = (0.75, 0.25), π2 = (0.4, 0.6). Agent 2’s

15 The proposition generalizes to N -agent economies by taking all the possible combinations of the two

groups’ effective beliefs.
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Fig. 1 Effective beliefs of two agents with different values of saving rate δ in a complete market of two

assets with D = I. Since the truth is π = (1/2, 1/2), the relative entropy is a symmetric function and

the euclidean vertical distance between beliefs π̂ i and π = (1/2, 1/2) can be used directly to appraise

K L(π̂ i ||π)

beliefs are more accurate. Since D is diagonal, by Corollary 3 agent 2 never van-

ishes. Whether agent 2 dominates or both agents survive depends on the saving rate,

that is, on how much non-accuracy of beliefs and non-optimality of the Subjective

Generalized Kelly rule influence each others. Simple calculations (and our numerical

exploration of Sect. 5.2) show that agent 2 dominates when δ = 0.4 whereas both

agents survive when δ = 0.9. Effective beliefs confirm this outcome. When δ = 0.4

agent 2 has better effective beliefs both when she has most of the wealth and when

she has none, and thus dominates. In fact, she has most accurate effective beliefs

for all possible wealth distributions. When δ = 0.9, however, each agent has most

accurate effective beliefs when the other agent sets asset returns, so that both agents

survive.

The graphical representation clarifies also why, for all δ ∈ (0, 1), long-run hetero-

geneity is the long-run outcome when rules have the same relative entropy, see the

proof of Proposition 5. Assume that the beliefs of agent 1 are π1(1) = 0.6 instead of

π1(1) = 0.75, so that ∇π (π2||π1) = 0. Effective beliefs, by laying between the two

agents beliefs, are such that the conditions for long-run heterogeneity are satisfied for

all δ > 0.

Effective beliefs are also useful to provide an intuition for Lemma 4, that is, for

the fact that μ(0) > μ(1). Consider the representation of asymptotic drifts given in

Proposition 6 and note that what counts for agents’ relative performance, and thus

for the drift of the relative wealth process, is the difference of relative entropies of

effective beliefs. Moreover, in a two-agent economy, agents mutual influence through

equilibrium prices is such that, component by component, agents’ effective beliefs

maintain the same ordering and have equal distance when one of the two agents

dominates, as is also noted in Fig. 1. If it were the average euclidean distance of

effective beliefs to determine asymptotic drifts, then μ(0) and μ(1) would be equal.

However, due to the multiplicative nature of the wealth accumulation process, what
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counts is the average log-ratio of effective beliefs. As a result, an agent is better off,

i.e., she earns relatively more or looses relatively less, when she copies the other agent

(she is small) then when she is copied (she is large).

5.2 Two-agent economies

In what follows, we numerically explore the occurrence of long-run heterogeneity. We

start with some examples of two-agent economies.

Diagonal assets Consider an economy with two states of the world where two Subjec-

tive Generalized Kelly agents trade two assets. Assume D = I and fix π = (0.5, 0.5).

We use the conditions of Proposition 4 to characterize long-run outcomes for different

values of the economy parameters.

In the upper plot of Fig. 2, the saving rate is δ = 0.8 and all possible combinations of

agents’ beliefs are considered. Given the two parameters π1
1 and π2

1 , beliefs of agents

1 and 2 are, respectively, π1 = (π1
1 , 1 − π1

1 ) and π2 = (π2
1 , 1 − π2

1 ). Consistently

with the behavior of effective beliefs, long-run heterogeneity occurs only for beliefs

that are anti-correlated, that is, when one agent believes that asset 1 pays a dividend

with probability greater than 1/2 while the other believes the opposite. The figure is

an example of the result of Corollary 3 for diagonal dividends matrices: The agent

with beliefs farthest from the truth never dominates.

In the lower plot, we set π2 = (0.6, 0.4) and vary beliefs of agent 1 and the value

of saving rate δ. By determining the relative size of dividends and prices, δ affects

the influence of the beliefs of one agent on the effective beliefs of the other. Notice

that the area of long-run heterogeneity shrinks for low values of δ until it disappears

when δ = 0. In fact, in the limit δ → 0, effective beliefs coincide with beliefs for all

values of the wealth distribution so that log-run heterogeneity is only a non-generic

phenomenon that takes place when beliefs have the same relative entropy with respect

to the truth, K L(π1||π) = K L(π2||π).

To give an idea of how a particular trajectory of wealth and prices looks like under

long-run heterogeneity, we fix δ = 0.8, π = (0.5, 0.5), π1 = (0.45, 0.55), π2 =

(0.6, 0.4), and w0 = 0.5. In the left panel of Fig. 3, we plot the evolution of wealth

shares and the dynamics of asset 1’s normalized price for T = 1000 periods. As soon as

the wealth share of an agent approaches low values, it bounces back so that, eventually,

wealth shares are re-balanced. The normalized price of asset 1 follows a symmetric

pattern, since, with two agents, it is a linear function of agent 1’s wealth share.

The right panel of Fig. 3 shows the time histogram of asset 1’s normalized price

computed over 100,000 periods. As one can notice the distribution lies between the

two agents’ evaluations, as stated in point (iii) of Proposition 4.

Binomial Tree Consider now the case of the binomial tree economy of Sect. 2.1 with

r = gd/gu = 0.2, π = (0.5, 0.5). As before we can use our conditions to establish

what happens for all the possible combinations of beliefs when the saving rate is

δ = 0.8, upper panel of Fig. 4, and for all possible combinations of δ and agent 1

beliefs when π2 = (0.6, 0.4), lower panel of Fig. 4.
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Fig. 2 Areas of dominance and

survival in an asset market

economy with D = I as a

function of beliefs π1 and π2

(upper panel) and saving rate δ

and π1 (lower panel). 1D: agent

1 dominates; 2D: agent 2

dominates; H : long-run

heterogeneity (color figure

online)

The characterization of the possible long-run outcomes is quite similar to the pre-

vious example, the only difference being that areas of long-run heterogeneity slightly

increase. For example, with non-diagonal assets there exist cases of long-run hetero-

geneity even in the limit of δ = 0.

Market selection is less likely to favor a unique agent because a position in the

second asset is a safe bet. In Fig. 5, we plot the areas of dominance and survival for

all the possible combinations of beliefs of agent 1 and parameter r = gd/gu when

δ = 0.5 and π2 = (0.6, 0.4).

Trinomial Tree We continue our examples by exploring the outcomes of market selec-

tion under complete and incomplete markets. First, we consider the market structure

with two assets and three states of the world shown in Sect. 2.1 with ru = rm = 0.2.

We also choose π = (1/3, 1/3, 1/3), δ = 0.5, π1 = (3π1
1,2/4, π1

1,2/4, 1 − π1
1,2), and

π2 = (π2
1,2/4, 3π2

1,2/4, 1 − π2
1,2), for two given parameters π1

1,2 and π2
1,2.

In the upper plot of Fig. 6, the areas of dominance and survival are similar to

those in the first plot of Fig. 4, the only difference is that now the “truth” corresponds
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Fig. 3 Left panel: dynamics of agent 1’s relative wealth share and the normalized price of asset 1 in an

economy with two diagonal assets and δ = 0.8, π = (0.5, 0.5), π1 = (0.45, 0.55), π2 = (0.6, 0.4), and

w0 = 0, 5. Both agents survive. Right panel: histogram of asset 1’s normalized price over 100,000 periods

under the same settings of the first panel

Fig. 4 Areas of dominance and

survival in a binomial tree

economy as a function of π1 and

π2 (upper panel) and π1 and δ

(lower panel). 1D: agent 1

dominates; 2D: agent 2

dominates; H: long-run

heterogeneity; r = gd/gu = 0.2

(color figure online)
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Fig. 5 Areas of dominance and

survival in a binomial tree

economy as a function of r and

π1. δ = 0.5 and π2 =

(0.6, 0.4). 1D: agent 1

dominates; 2D: agent 2

dominates; H : long-run

eterogeneity (color figure

online)

to the sum of probabilities of the first two states, hence 2/3. In the lower plot, the

same analysis is performed with complete markets, leading to a much larger area

of long-run heterogeneity. Completing the market offers a way for agents with anti-

correlated beliefs about the probability of states 1 and 2 to take different positions

in these two assets, positions that with incomplete markets cannot be taken. As a

consequence, the possible combinations of beliefs that produce long-run heterogeneity

increase.

Obviously, the role played by the belief structure is fundamental. To see it, con-

sider a slightly different belief structure for agent 1: π1 = (π1
1,2/2, π1

1,2/2, 1 −

π1
1,2). In this situation, agent 1 should be favored since she can distribute more

evenly (hence in accordance with the underlying stochastic process) her wealth

among assets. Indeed, when π1
1,2 = 2/3, she plays the Generalized Kelly rule x∗;

hence, she dominates no matter the value of π2
1,2. Figure 7 confirms the intuition:

The area where agent 1 dominates increases and occupies a large portion of the

plot.

This exercise provides a link with the work of Fedyk et al. (2013) about the welfare

effect of enlarging the asset span. Considering a general equilibrium model where

one agent has correct beliefs and one has incorrect beliefs, the authors show that

the possibility of trading several risky assets does not increase welfare in general

while, in most of the cases, it causes a severe welfare loss. A basic feature of their

model is that the agent with correct beliefs dominates no matter how many assets

are traded; thus, the divergence in terms of welfare is triggered by the speed at

which the inaccurate agent loses everything. Figures 6 and 7 show, instead, how

in our model there exists combinations of beliefs such that, when the asset span

increases, the dominant agent changes from agent 2 to agent 1 or we pass from

the dominance of one of the two agents to the survival of both. Hence, estab-

lishing whether a larger asset span can cause a welfare loss becomes much more
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Fig. 6 Areas of dominance and

survival in a trinomial tree

economy as a function of agents’

beliefs. Upper panel: incomplete

markets. Lower panel: complete

markets. 1D: agent 1 dominates;

2D: agent 2 dominates; H :

long-run heterogeneity (color

figure online)

Fig. 7 Areas of dominance and

survival in a trinomial tree

economy as a function of agents’

beliefs when markets are

complete. 1D: agent 1

dominates; 2D: agent 2

dominates; H : long-run

heterogeneity (color figure

online)
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Fig. 8 Areas of dominance and

survival in a three-agent

economy with D = I. 1S: agent

1 survives; 1D: agent 1

dominates; 1V: agent 1 vanishes;

2, 3S: both agent 2 and 3

survive; H : at least two agents

survive; 1, 2, 3S: all three agents

survive; ?: unknown (color

figure online)

complex. Indeed, it could be the case that enlarging the asset span increases total

welfare.16

5.3 Three-agent economy

In this section, we investigate market selection outcomes in an economy with three

states of the world, complete markets, and three Subjective Generalized Kelly agents.

Assume D = I and π = (1/3, 1/3, 1/3). We fix π1 = (π1
1 , (1 −π1

1 )/2, (1 −π1
1 )/2),

π2 = (1/4, 1/2, 1/4) and π3 = (1/4, 1/4, 1/2). Figure 8 shows the possible long-run

outcomes as a function of δ and π1
1 .

Differently from two-agent economies, in a three-agent economy our sufficient

conditions are not tight. Thus, there exist combinations of π1
1 and δ for which we

cannot characterize long-run outcomes. Consider the regions 1S and 1D first. For

these combinations of π1
1 and δ agent 1 survives. Indeed, choosing the group I = {1}

we have μI (0) > 0 . In the region 1D, around the truth, we also have μI (1) > 0 so

that agent 1 dominates. In the areas 1V and 2, 3S, μI (0) < 0 and μI (1) < 0: Agent 1

vanishes and group I c = {2, 3} dominates. Regarding the fate of agents 2 and 3, both

can survive or one of the two dominates. Define I ′ = {2} and I ′′ = {3}, in the regions

2, 3S μI ′
(0) > 0 and μI ′′

(0) > 0, so that we are sure that both agents survive.

Continuing the analysis, in the region 1, 2, 3S μI (0) > 0, μI ′
(0) > 0, and μI ′′

(0) >

0, hence all agents survive. In the region H, μI (1) < 0, μI ′
(1) < 0, and μI ′′

(1) < 0,

so that no one dominates. This is equivalent to say that at least two agents survive.

Finally, there also exists a region, marked with ?, where our sufficient conditions are

too weak to characterize the market selection outcome.

Thus, also in an asset economy with three agents there exists a region where multiple

agents survive. Set, for example, π1 = (0.6, 0.2, 0.2), δ = 0.8, and w1
0 = w2

0 = w3
0 =

16 It remains the difficulty to measure welfare in a framework such ours where rules are not explicitly

derived from an utility maximization.
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Fig. 9 Dynamics of agents’ relative wealth shares in an economy with three diagonal assets and three

agents. π1 = (0.6, 0.2, 0.2), π2 = (1/4, 1/2, 1/4), π3 = (1/4, 1/4, 1/2), and δ = 0.8, and w1
0 = w2

0 =

w3
0 = 1/3. All three agents survive

1/3, then all agents survive. Figure 9 shows a realization of agents’ relative wealth.

Around period t = 300, and again at t ≈ 750, agent 1 has lost almost all her wealth.

However, in later periods, she recovers. Notice also that agents’ relative wealth does

not display any stable ordering.

5.4 Fixed-mix rules derived under correct beliefs and different limit risk

preferences

Throughout the paper, we have assumed that agents employ Subjective Generalized

Kelly rules, R1 − R2. Given that this rule is log-optimal in the limit of the agent using

it having all the wealth and that market selection favors log-optimal portfolios, it is not

entirely surprising that if there is an agent who knows the truth, then she dominates,

see also Corollaries 2–3.

In this section, we take a different approach and use fixed-mix rules to model agents

who have correct beliefs about the asset dividend process but have different limit risk

preferences.17 In parallel to the log-optimality of the Subjective Generalized Kelly

rule when its wealth share is unitary, we shall derive each agents’ fixed-mix rule as

a rule that is optimal for an agent with recursive utility of the Epstein–Zin type with

unitary intertemporal elasticity of substitution (IES) coefficient, discount factor equal

to δ, and coefficient of relative risk aversion γ , in the partial equilibrium limit of the

agent using such rule being alone in the economy.18 Following Epstein and Zin (1989)

and imposing unitary IES parameter, agent i with correct beliefs π , discount factor δ,

and relative risk aversion γ i maximizes a recursive utility of the type

17 This exercise is in the spirit of Sciubba (2006) where a CAPM-based heuristic rule, a log-optimal rule,

and a mean-variance rule, all derived under the truth, are compared.

18 Dindo (2015) deals with such rules in a general equilibrium model.
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Fig. 10 Areas of dominance

and survival in a market

with N = 2 agents and

“quasi-optimal” rules derived

from different relative risk

aversion coefficients γ 1 and γ 2.

The aggregate endowment is

risky and gd = 0.2gu .

Long-lived assets are such that

D = I. 1D: agent 1 dominates.

2D: agent 2 dominates. H:

long-run heterogeneity (color

figure online)

U i
t = C1−δ

t

(

Eπ [(U i
t+1)

1−γ i

]
)

δ

1−γ i
, t ∈ N0 , (24)

under the sequential budget constraint (1) and where asset prices are derived by

imposing that she is the representative agent. The unitary IES coefficient and the

homogeneous discount factor δ imply that all agents save at the same rate δ, so that

R3 holds. R1 is assumed, so that the portfolio rule is kept fixed also when the wealth

distribution, and thus also equilibrium prices, change. Provided R2, it can be shown

that for all γ i ∈ (0,+∞) the vector of portfolio rules is in the interior of the cone

generated by the S columns of the matrix D (a sufficient conditions to avoid arbitrages

in equilibrium, see the discussion after Proposition 1 and its proof for more details).

We can thus still employ Propositions 2–3 to determine long-run outcomes.

Figure 10 shows the long-run outcomes in a two-agent economy with diagonal

long-lived assets when the aggregate endowment has two possible growth rates: gu in

state s = 1 and gd in state s = 2. The truth is π = (0.5, 0.5). Imposing optimality in

the limit of having all the wealth, agent-i portfolio rule is

x i
1 =

π1g
1−γ i

u

π1g
1−γ i

u + π2g
1−γ i

d

and x i
2 =

π2g
1−γ i

d

π1g
1−γ i

u + π2g
1−γ i

d

.

The fact that there is aggregate risk is crucial in making the resulting quasi-optimal

fixed rule depending on the risk aversion coefficient γ .19 The γ = 1 case is still

a benchmark and corresponds to the portfolio x∗ = π , the Generalized Kelly rule.

Higher (lower) relative risk aversion implies a smaller (larger) position in the asset

that pays the dividend when the high (low) growth rate is realized. The figure shows

that long-run heterogeneity still occurs provided agents’ risk aversions are on opposite

19 Under no aggregate risk, fair pricing holds for each representative agent economy. As a result, all rules

coincide when beliefs are homogeneous.
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sides with respect to the γ = 1 benchmark. Keeping an agent risk aversion fixed, say

the one of agent 2, the closer agent 1 agent is to the γ = 1 benchmark, the more

likely she dominates. The intuition is similar to the one developed for Subjective

Generalized Kelly rules as also heterogeneity of risk preferences can be mapped into

effective beliefs. Having γ > 1 (γ < 1) corresponds to pessimism (optimism) in the

limit of having all the wealth. Effective beliefs may become closer or further away

from the truth depending on the risk aversion of the other agent when the latter has

most of the wealth.

6 Conclusion

In this paper, we investigate the MSH in an exchange economy with long-lived assets

where agents have homogeneous saving rates, heterogeneous beliefs, and employ

Subjective Generalized Kelly rules, a particular type of fixed-mix portfolios. In this

framework, Evstigneev et al. (2008) prove that if there exists an agent with correct

beliefs, then she gains all the wealth in the long-run. Asset prices converge to those of

a Lucas’ model where the representative agent has logarithmic instantaneous utility.

We instead focus on an economy where agents have heterogeneous beliefs and provide

sufficient conditions for an agent to have a positive, null, or unitary fraction of wealth

share in the long-run.

Our main finding is that there exist distributions of agents’ beliefs such that agents’

heterogeneity is the long-run outcome. Moreover, this result is generic and robust to

local perturbation of beliefs. We show that our results are due to the non-optimality of

fixed-mix rules in the limit of an agent having a negligible share of the total wealth.

Non-accuracy of beliefs and non-optimality of the rules balance each other and lead

to survival instead of vanishing.

A Proofs of Theorems and Lemmas

A.1 Proof of Lemma 1

Let ᾱ = maxi∈N ,k∈K {αi
k} and δ̄ = maxi∈N {

∑K
k=1 αi

k}. Consider the matrix A(W ;α)

in (9) whose element Ak,l reads

Ak,l =

∑N
i=1 αi

kα
i
l W i

∑N
j=1 α

j
l W j

.

From R1 and R2, it follows that 0 < Ak,l < ᾱ < 1 for all k, l, and that 0 <
∑K

k=1 Ak,l < δ̄ < 1 for all l. The first group of inequalities implies

|I − A|l,l −

K
∑

k=1,k 	=l

|I − A|k,l =

K
∑

k=1

(I − A)k,l ,
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while the second group implies
∑K

k=1 (I − A)k,l = 1−
∑K

k=1 Ak,l > 1−δ̄ > 0. Thus,

the matrix I− A is column strictly diagonally dominant and, by the Levy–Desplanques

theorem (Taussky 1949), invertible.

A.2 Proof of Proposition 1

The first part of the statement follows from Lemma 1 and from the derivation in the

text before the proposition.

Regarding the absence of arbitrages consider the following. According to Stiemke’s

Lemma, the absence of arbitrage is equivalent to the existence of a vector q ∈ RS
++

such that R(W ;α, D)q = P or, with (12),

Dq = (I − A(W ;α))P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −

N
∑

i=1

αi
1α

i
1W i

N
∑

j=1

α
j
1 W j

· · · −

N
∑

i=1

αi
1α

i
K W i

N
∑

j=1

α
j
K W j

...
. . .

...

−

N
∑

i=1

αi
K αi

1W i

N
∑

j=1

α
j
1 W j

· · · 1 −

N
∑

i=1

αi
K αi

K W i

N
∑

j=1

α
j
K W j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N
∑

j=1

α
j
1 W j

...

...
N
∑

j=1

α
j

K W j

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Thus, the kth component of (I − A(W ;α))P reads
∑N

i=1[(1 − δi )δi W i ]x i
k . By R1 it

is x i
k =

∑S
s=1 π i

s dk(s); hence, one has

Dq = D

⎡

⎢

⎣

∑N
i=1[(1 − δi )δi W i ]π i

1
...

∑N
i=1[(1 − δi )δi W i ]π i

S

⎤

⎥

⎦
.

That is, calling qs the sth component of q and given that D has full rank by D4, it

is qs =
∑N

i=1[(1 − δi )δi W i ]π i
s . R1, R2, and the first part of the Proposition imply

qs > 0 ∀s ∈ S so that the statement is proven.

A.3 Proof of Propositions 2

As we shall show, the stochastic process that corresponds to the two groups’ relative

wealth dynamics has bounded increments. As a result, we can prove the proposition

by applying Theorem 2.1 in Bottazzi and Dindo (2015).

Consider the variable

z I
t = log

w I
t

1 − w I
t

(25)
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such that z I
t = z I

t−1 + g I (σt ), with g I (σt ) = log G I (σt ) and

G I (σt ) =

∑K
k=1 rk,st (wt−1; x, δ, D)β I

k (wt−1; x)
∑K

k=1 rk,st (wt−1; x, δ, D)β I c

k (wt−1; x)
. (26)

One has the following.

Lemma 5 The process z I
t has bounded increments, that is, there exists a B ∈ R such

that |z I
t − z I

t−1| < B P-a.s..

Proof By R3 there exists a small enough ε > 0 such that ε ≤ x i
k ≤ 1− ε ∀ i, k. Since

β I
k (wt ; x) =

x I
k (wt ; x)

∑N
i=1 x i

kw
i
t

,

for any asset k and any time t it is

ε

1 − ε
≤ β I

k (wt ; x) ≤
1 − ε

ε
.

Consider the matrix

rk,s(wt ; x, δ, D) = [(1 − δ)(I − δA(wt ; x))−1 D]k,s

= (1 − δ)dk,s + δpk,s(wt ; x, δ, D) .

It holds: 0 < rk,s(wt ; x, δ, D) < 1 ∀k, t, s and
∑K

k=1 rk,s(wt ; x, δ, D) = 1 ∀s, t .

Thus for any group I , state s and time t one has

ε

1 − ε
≤

K
∑

k=1

rk,s(wt ; x, δ, D)β I
k (wt ; x) ≤

1 − ε

ε
.

Given (25) and (26), by direct algebraic substitution it is straightforward to verify that

2 log
ε

1 − ε
≤ z I

t − z I
t−1 ≤ 2 log

1 − ε

ε

and the statement is proven. ⊓⊔

In order to prove Proposition 2, use the notation of Bottazzi and Dindo (2015)

and call μt (z
I ) the date t conditional drift of the process {z I

t }, μt (z
I ) = EP[z I

t+1 −

z I
t |ℑt , z I

t = z I ]. If μI (w; v) is an element of the set {μI (w)|w ∈ ΔN , w I = v}, with

μI (w) defined in (19), then by construction

μt (z
I ) = μI

(

wt ; v =
ez I

1 + ez I

)

.

123

Author's personal copy



G. Bottazzi et al.

Having fixed z I , and thus v, the precise value of wt still depends on the specific element

of ℑt considered.

We shall start from the proof of statement (i). If μI (0) > 0, then, given the prop-

erty of the lower bound and the continuity of μI (w; v) with respect to v, there exist

ε > 0 and M > 0 such that, for all z I < −M and t , it is μt (z
I ) > ε. Since

z I
t has bounded increments, Theorem 2.1 in Bottazzi and Dindo (2015) applies and

Prob {lim supt→∞ z I
t > −∞} = 1. Provided μI (1) > 0, the same reasoning applies

to prove (ii), see also Corollary 2.1 of Bottazzi and Dindo (2015).

A.4 Proof of Lemma 2

Let us consider the process z I
t in (25) and all the other quantities defined at the begin-

ning of appendix A.3. We begin with the following Lemma.

Lemma 6 If the set of rules are not overlapping, R4, and if there are no redundant

assets, D4, then z I
t does not possess any deterministic fixed point, that is, ∄ z s.t.

P(z I
t = z|z I

t ′
= z) = 1 ∀t > t ′.

Proof Suppose such z exists and at a certain time t − 1 it is z I
t−1 = z. Then, by

definition, it holds that z I
t − z I

t−1 = 0 for all the possible states of the world s =

1, 2, ..., S, so that

K
∑

k=1

rk,s(wt−1; x, δ, D)

(

β I
k (wt−1; x) − β I c

k (wt−1; x)

)

= 0 ∀s = 1, 2, ..., S .

That is

(

β I (wt−1; x) − β I c

(wt−1; x)

) (

(I − δA(wt−1; x))−1 D
)

= 0 .

The trivial solution β I = β I c
is excluded by R4, and according to Proposition 1, the

kernel of (I − δA(wt−1, x))−1 D is zero, implying that the system of equations has no

solution and the statement is proven. ⊓⊔

The proof proceeds by noticing that G I in (26) depends on history σt through the

wealth distribution wt and the last realized state st . Given the distribution w ∈ ΔN

define

Ḡ I (σt ) = max
s=1,...,S

{|G I (w, st )|} ,

which, being the upper envelope of continuous functions, is a continuous function on

the compact set ΔN . Then, by the Weierstrass theorem, it has a minimum G. Moreover,

it is G > 0 because, otherwise, z I
t would have a deterministic fixed point, which is

not possible by Lemma 6. Then
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Prob
{

|zi
t − zi

t−1| ≥ g | ℑt−1

}

≥ ρ = min{π1, . . . , πS}.

and by taking γ = min{g, ρ}/2 the assertion is proven.

A.5 Proof of Lemma 3

Let us consider the first statement. If it is wrong, then

w I c

t+1

w I c

t

−
w I

t+1

w I
t

=

K
∑

k=1

(

β I c

k (wt ; x) − β I
k (wt ; x)

)

rk,s(wt ; x, δ, D) ≥ 0 ∀s (27)

and, since the process does not admit any deterministic fixed point (c.f. Lemma 6),

the inequality is strict for some s′. By construction it is

K
∑

k=1

(

β I c

k (wt ; x) − β I
k (wt ; x)

)

pk,t = 0 .

Together with (27) the latter implies that β I c
(wt ; x) − β I (wt ; x) would be a weak

arbitrage, which contradicts the hypotheses. For the second statement one can reason

following the same lines and, in order to complete the proof, it is enough to choose

ǫ = mins{πs}/2.

A.6 Proof of Proposition 3

Consider the process z I
t in (25) and all the other quantities defined at the beginning of

appendix A.3. Then we can directly apply Lemma 5 and z I
t has bounded increments.

R4 and the lack of arbitrages imply by Lemma 3

Prob
{

z I
t+1 − z I

t > 0

∣

∣

∣
ℑt

}

= Prob

{

w I
t+1

w I c

t+1

>
w I

t

w I c

t

∣

∣

∣
ℑt

}

= Prob

{

w I
t+1

w I
t

>
w I c

t+1

w I c

t

∣

∣

∣
ℑt

}

> ǫ .

Moreover, invoking Lemma 2, one has

Prob
{
∣

∣

∣
z I

t+1 − z I
t

∣

∣

∣
> γ

∣

∣

∣
ℑt

}

= Prob

{
∣

∣

∣

∣

∣

log
w I

t+1

w I c

t+1

− log
w I

t

w I c

t

∣

∣

∣

∣

∣

> γ

∣

∣

∣

∣

ℑt

}

> γ .

Thus, defining ǫL = min{ǫ, γ }/2, one gets Prob{z I
t+1 > z I

t + ǫL |ℑt } > ǫL , meaning

that the process z I
t has finite positive increments. A symmetric argument shows that

z I
t has also negative finite increments.
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We shall start from the proof of statement (i) and (ii). Using the notation of

Bottazzi and Dindo (2015), we call μt (z
I ) the date t conditional drift of {z I

t },

μt (z
I ) = EP[z I

t+1 − z I
t |ℑt , z I

t = z I ]. If μI (w; v) is an element of the set {μI (w)|w ∈

ΔN , w I = v}, with μI (w) defined in (19), then by construction

μt (z
I ) = μI

(

wt ; v =
ez I

1 + ez I

)

.

Having fixed z I , and thus v, the precise value of wt still depends on the specific element

of ℑt considered.

By continuity of μI (w; v) with respect to v and by the definition of lower bound,

the conditions μI (0) > 0 and μI (1) > 0 imply that there exist ε > 0 and M > 0

such that, for any t , it is μt (z
I ) > ε if z I > M or z I < −M . Using Theorem

3.1 from Bottazzi and Dindo (2015), it follows that Prob {limt→∞ z I
t = +∞} = 1,

group I dominates. Conversely, conditions μI (0) < 0 and μI (1) < 0 imply that

there exist ε > 0 and M > 0 such that, for any t , it is μt (z
I ) < −ε if z I > M

or z I < −M . Using Corollary 3.1 of Bottazzi and Dindo (2015), it follows that

Prob {limt→∞ z I
t = −∞} = 1 and group I vanishes.

In order to prove statement (iii) note that, by Proposition 2, we already know that

both groups survive. Thus, we need to prove that for G = I, I c

Prob{lim inf
t→∞

wG
t = 0 and lim sup

t→∞
wG

t = 1} = 1 .

Assume by contradiction that for a group G

Prob{lim inf
t→∞

wG
t = 0 and lim sup

t→∞
wG

t = 1} < 1 .

Then, there must exist a positive measure set Σ ′ ⊂ Σ such that for all σ ∈ Σ ′

lim inf
t→∞

wG
t (σ ) > 0 or lim sup

t→∞
wG

t (σ ) < 1 .

The latter is in contradiction with the process {z I
t } having finite positive and negative

increments.

A.7 Proof of Corollary 2

Consider the group formed by agent i alone, where π i = π , and call μi (w; v) a

generic element of the set {μi (w)|w ∈ ΔN , wi = v}. When v = 1 agent i owns all

the wealth and normalized prices correspond to her portfolio rule. Thus, from (19)

one gets

μi (w; 1) = −

S
∑

s=1

πs log

(

δ + (1 − δ)

K
∑

k=1

dk,s

x ic

k (w, x)

x i
k

)

,
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where x ic
(w, x) is the aggregate portfolio rule of all the agents different from i . From

the strict convexity of the function − log(·) and by the fact that agent i has correct

beliefs, one has

μi (w; 1) > − log

(

δ + (1 − δ)

K
∑

k=1

(

S
∑

s=1

πsdk,s

)

x ic

k (w, x)

x i
k

)

= 0,

where in the latter we have used the definition of Subjective Generalized Kelly rule,

R1. This immediately implies μi (1) > 0.

Now consider the case v = 0, one has

μi (w; 0) =

S
∑

s=1

πs log

(

K
∑

k=1

rk,s(w; x, δ, D)

x ic

k (w, x)
x i

k

)

,

where rk,s(w; x, δ, D) is the k, s element of the normalized payoff matrix r(w; x,

δ, D). To prove that μi (0) > 0, we show that μi (w; 0) > 0 for any admissible w. First,

we prove that limδ→0 μi (w; 0) > 0, and then we show that limδ→1 μi (w; 0) = 0.

For the first step one has

∂μi (w; 0)

∂δ
=

S
∑

s=1

πs

(

K
∑

k=1

rk,s(w; x, δ, D)

x ic

k (w, x)
x i

k

)−1

(

K
∑

k=1

x i
k

x ic

k (w, x)

∂rk,s(w; x, δ, D)

∂δ

)

.

Its sign depends upon the derivative of the payoff matrix with respect to δ. Using

matrix differentiation, it reads

∂r(w; x, δ, D)

∂δ
= −(I − δA(w; x))−1 D

−(1 − δ)(I − δA(w; x))−1 A(w; x)(I − δA(w; x))−1 D ,

and implies ∂rk,s(w; x, δ, D)/∂δ < 0 for any k, s.

For the second step, we use that rk,s(w; x, δ, D) = (1−δ) dk,s +δ pk,s(w; x, δ, D).

Call p the matrix whose k, s element is pk,s(w; x, δ, D). Let us rewrite equation (10)

in terms of normalized quantities, it reads

(I − δA(w; x))p = (1 − δ)A(w; x)D .

Thus in the limit of δ → 1 every column of p, call it ps , solves the system

(I − A(w; x))ps = 0 ,
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which can be written as A(w; x)ps = ps . Notice that, given w with wi = 0,

for each s ps = x ic
(w, x) is a possible solution of the system. Moreover, since

K
∑

k=1

|Ak, j (w; x)| = 1 ∀ j implies that A(w, x) is a contraction, by Banach fixed point

theorem such solution is unique. Thus,

lim
δ→1

μi (w; 0) =

S
∑

s=1

πs log

(

K
∑

k=1

x ic

k (w, x)

x ic

k (w, x)
x i

k

)

= 0 .

Concluding we have shown that μi (1) > 0 and μi (0) > 0, hence by point (i) of

Proposition 3 agent i dominates and the Corollary is proven.

A.8 Proof of Lemma 4

From the definition of conditional drift

μ(0) =

S
∑

s=1

πs log

(

δ + (1 − δ)

K
∑

k=1

dk,s

x1
k

x2
k

)

and

μ(1) = −

S
∑

s=1

πs log

(

δ + (1 − δ)

K
∑

k=1

dk,s

x2
k

x1
k

)

.

Considering that 0 ≤ dk,s ≤ 1 for all s, k and that
∑K

k=1 dk,s = 1 for all s, we have

μ(0) > (1 − δ)

S
∑

s=1

πs log

(

K
∑

k=1

dk,s

x1
k

x2
k

)

≥ (1 − δ)

K
∑

k=1

x∗
k log

(

x1
k

x2
k

)

and at the same time

μ(1) < −(1 − δ)

S
∑

s=1

πs log

(

K
∑

k=1

dk,s

x2
k

x1
k

)

≤ (1 − δ)

K
∑

k=1

x∗
k log

(

x1
k

x2
k

)

.

Putting together the two inequalities proves the assertion.

A.9 Proof of Proposition 4

The statement follows from the particular case of Proposition 3 when N = 2 together

with Lemma 4 and the definition of normalized prices.
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A.10 Proof of Corollary 3

The proof of the survival of agent 1 follows from Lemma 4 and Proposition 4. When

agent 1 beliefs are correct, so that x1 = x∗, she also dominates since, exploiting the

strict convexity of − log(·),

μ(1) =
∑

s

πs

(

− log

(

δ + (1 − δ)

K
∑

k=1

dk,s

x2
k

x∗
k

))

>

− log

(

δ + (1 − δ)

K
∑

k=1

x2
k

x∗
k

∑

s

πsdk,s

)

= − log

(

δ + (1 − δ)

K
∑

k=1

x2
k

x∗
k

x∗
k

)

= 0 .

A.11 Proof of Proposition 5

The statement follows from the properties of the function K L(x ||x∗) : ΔK →

R+, x �→ K L(x ||x∗). In particular, it is a continuous strictly convex function with a

minimum equal to zero in x = x∗. Thus, it is defined over the compact set ∂(Δ̄) and

there exists a minimum over this set because of the Weierstrass theorem. The strict

convexity of K L(x ||x∗) implies that it is also strictly quasi convex. This property

together with the fact that x∗ ∈ Δ̄ implies {x : K L(x ||x∗) < K} ⊆ Δ̄. Hence, it is

possible to choose a π1 	= π such that K L(x1||x∗) = m < K−ǫ with ǫ > 0 and small

enough. Then, one can easily define the set Π = {π ′ : π ′ ∈ ΔS
+, K L(x ′||x∗) = m}

which has always at least two elements. Choosing x1 and x2 such that π1, π2 ∈ Π it

is ∇x∗(x2||x1) = 0.

A.12 Proof of Proposition 6

An asset market economy with agents trading according to Subjective Generalized

Kelly rules and an asset market economy with agents maximizing expected log-utilities

under effective beliefs have, by construction, the same relative wealth dynamics. When

markets are dynamically complete and agents maximize an expected log-utility, there

is no loss of generality, assuming that they are trading all possible contingent com-

modities in date zero. In fact, all asset structures, as long as they are complete, allow

agents to achieve the same consumption allocation, so that the relative wealth dynam-

ics does not depend upon the asset structure. Under time-zero trading, it is well known

that agents allocate in each state contingent good a fraction of wealth proportional to

the state likelihood. In a two-agent economy, the relative wealth dynamics can thus

be rewritten as

w1
t+1(σt , st+1)

w2
t+1(σt , st+1)

=
π̂1

st+1
(wt ; δ, D)

π̂2
st+1

(wt ; δ, D)

w1
t (σt )

w2
t (σt )

∀σt , st+1, t .
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Applying the definition of the conditional drift μ(·) to the log of the above process

leads to the result.
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