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Cooperation in repeated games has been widely studied in experimental settings; however, the duration
over which players participate in such experiments is typically confined to at most hours, and often to a
single game. Given that in real world settings people may have years of experience, it is natural to ask how
behavior in cooperative games evolves over the long run. Here we analyze behavioral data from three dis-
tinct games involving 571 individual experiments conducted over a two-year interval. First, in the case of a
standard linear public goods game we show that as players gain experience, they become less generous both
on average and in particular towards the end of each game. Second, we analyze a multiplayer prisoner’s
dilemma where players are also allowed to make and break ties with their neighbors, finding that expe-
rienced players show an increase in cooperativeness early on in the game, but exhibit sharper “endgame”
effects. Third, and finally, we analyze a collaborative search game in which players can choose to act self-
ishly or cooperatively, finding again that experienced players exhibit more cooperative behavior as well as
sharper endgame effects. Together these results show consistent evidence of long-run learning, but also
highlight directions for future theoretical work that may account for the observed direction and magnitude
of the effects.
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1. INTRODUCTION

The role of experience in social dilemmas has long been of interest to economists [Sel-
ten and Stoecker 1986; Andreoni 1988; Andreoni and Miller 1993; Ledyard 1995].
In brief, the interest stems from the difference between the predictions of standard
economic theory and observed behavior in human subjects experiments. Theory pre-
dicts that in finitely repeated games of cooperation, rational players should defect on
all turns via the familiar argument of backward induction [Osborne and Rubinstein
1994]. In contrast, experiments repeatedly show that a majority of human players
tend to cooperate at first and, as the game is repeated, steadily decline their coop-
eration rates until the so-called end game approaches, yet cooperation levels rarely
decline to zero [Ledyard 1995]. Kreps et al. [1982] proposed an ingenious solution to
this puzzle—namely that players are rational, but have incomplete information about
the rationality of others. In such a situation Kreps et al. [1982] showed that if players
also believe with sufficiently large probability � that other players employ a Tit-for-
Tat strategy, and hence will cooperate at least until their partner defects, then it is
in fact optimal for a rational player to cooperate at least until close to the end of the
game. An interesting corollary of this result is in the presence of incomplete informa-
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tion cooperation can dominate (for most of the game) even when all players are in fact
rational.

The incomplete information hypothesis, however, raises an additional question:
What happens to players’ beliefs in the long run? Andreoni and Miller [1993] point
out two possibilities. The first possibility is that if “true” altruism is in fact rare or
absent—as Kreps et al. [1982] propose—then this fact will eventually become common
knowledge, and rational players will respond by defecting earlier and earlier. In the
long run, cooperation should disappear altogether just as predicted by the backward
induction argument. The second possibility is that if Kreps et al. [1982] are wrong and
genuine altruism really is present in sufficient degree, then as this knowledge becomes
common, cooperation could be sustained for longer and longer as both rational coopera-
tors and genuine altruists experience the benefit to deferring their eventual defection.
Depending on the actual distribution of altruism in the population, in other words, the
incomplete information hypothesis is consistent either with learning through experi-
ence leading to less cooperation or to more of it.

Alternative theoretical arguments, meanwhile, also make mixed predictions about
the effect of experience on the tendency to cooperate. Andreoni [1995], for example,
has argued separately that cooperation observed in experiments could arise because of
genuinely altruistic beliefs that subjects bring with them from the outside world, but
could also arise because subjects do not fully understand the incentives with which
they are being presented. If the former applies, cooperation may persist indefinitely,
whereas if the latter is the case, then subjects should learn over time not to cooperate.
Although this explanation is theoretically distinct from the incomplete information
hypothesis, it has the same consequence that, depending on the actual frequency of
altruism in the population, cooperation could either increase or decrease over time as
subjects gain experience.

Here we investigate long-run learning effects in three distinct games of coopera-
tion, representing a total of 571 web-based experiments conducted over a period of
two years and using a total of 466 unique individuals1. As we will explain in more
detail later (see Sections 3, 4, and 5), all three experiments were designed to answer
research questions other than the one we address here: the first studied the effect of
network topology on contribution in a linear public goods game [Suri and Watts 2011];
the second studied the effect of partner updating on cooperation in an iterated multi-
player prisoner’s dilemma game [Wang et al. 2012]; and the third studied the effect of
network topology on collective learning among individuals searching a hidden “fitness
landscape” where individuals were exposed to the previous locations and scores of their
neighbors [Mason and Watts 2012]. To examine the effects of long-run learning, we ex-
ploit an artifact of the recruiting process used in all three experiments. That in order
to attract and retain up to 24 individuals simultaneously for up to 30 minutes online2,
the researchers first recruited a panel of volunteers who were contacted repeatedly to
participate in the experiments. An unintended consequence of this recruiting process
was that a large number of subjects participated in multiple games and some partici-
pated in over 100. By examining how behavior varied with experience, both within and
across individuals, we can therefore begin to address the question of long-run learning.

Although motivated by the incomplete information argument outline above, we em-
phasize that the experiments we study differ from the idealized construction of Kreps

1Note: some players participated in more than one of the experiments we conducted, hence this total number
is smaller than the sum of the three experiment populations, as given in later sections.
2All experiments were conducted using Amazon’s Mechanical Turk, a crowdsourcing website that is increas-
ingly popular with behavioral scientists for conducting human subjects experiments [Horton et al. 2011; Suri
and Watts 2011; Paolacci et al. 2010; Mason and Suri 2012; Mason and Watts 2012; Wang et al. 2012].



et al. [1982] in at least two important ways. First, implicit in the Kreps et al. [1982]
argument is the assumption that all players are present for the entire length of the
“game,” and hence at each stage have the same experience3. As noted above, how-
ever, our experiments were characterized by considerable heterogeneity of experience:
whereas a handful participated in over 100 experiments, the majority participated
in only one. In such an environment, the state of incomplete information postulated
by Kreps et al. [1982] might be prolonged indefinitely, leading either to slower rates of
learning or possibly even preventing such learning from occurring at all. Further com-
plicating matters, observed correlations between experience and cooperation might
arise not because of learning at all, but simply on account of selection effects. That is
individuals who play more games might be more or less predisposed towards cooper-
ation than individuals who play few games, hence we must be careful to separate out
within-individual effects from selection effects.

Second, while the first game that we consider (the repeated public goods games)
bears a a reasonably close resemblance to the repeated prisoner’s dilemma of Kreps
et al. [1982], the other two games differ in potentially important ways. In particular,
the Social Networking Game differs in that players were allowed to make and break
ties, a mechanism that generated large and significant increases in cooperation lev-
els [Wang et al. 2012]. The collaborative search game, meanwhile, although exhibiting
the essential features of a social dilemma, is not framed explicitly as a game of coop-
eration, and also confronts the player with a rather more complicated set of choices
than simply copy or explore. Precisely how important these differences are, and how
they affect learning in the long run, is not at all clear from the theory. Investigating
the effects of these difference on learning is one of the contributions of this work.

With all these caveats in mind, it is perhaps surprising that at a high level, our
findings are consistent with the spirit of Kreps et al. [1982]: i.e. that players are not
“truly” altruistic, but rather cooperate for strategic reasons. Our conclusion is based
on two observations. First, in the repeated public goods game, which of the three ex-
periments most closely resembles the setup for [Kreps et al. 1982], we do indeed see
declining rates of cooperation over the long run. Second, in all three experiments, we
see increasingly sharp “end-game” effects, meaning that experienced players switch
from high to low levels of cooperation more rapidly than inexperienced players, spend-
ing less time at intermediate levels. This finding is also consistent with the hypothesis
that cooperative players are cooperating at least in part to exploit their position rather
than simply for the sake of cooperating.

Attached to these very general and consistent observations, however, are three fur-
ther caveats. First, although we find diminishing rates of cooperation in the repeated
public goods game, the rate of learning is rather slow; specifically, we find that initial
rates of cooperation decline by only 50% over 110 games of 10 rounds each. Extrapolat-
ing from this finding, moreover, we conjecture that convergence to Nash would require
in excess of 200 games of 10 rounds each. Second, although we see sharper end-game
effects in all three instances, we do not consistently find lower overall rates of cooper-
ation. Quite to the contrary, in fact, in both the dynamic networks and collaborative
search experiments, overall rates of cooperation increase with experience, mostly on
account of increases in cooperative behavior in the early rounds (i.e. prior to the end-
game effect). Finally, we reiterate that although the data derived from randomized
controlled lab experiments these experiments were not designed with long-run learn-
ing in mind, hence we must treat the data as observational as opposed to experimental.

3Reflecting a similar assumption, experimental studies of cooperation typically go to considerable lengths to
ensure that all subjects have the same experience: they are drawn from a relatively homogeneous population
(usually college students), receive the same training, and play the same number of games.



Our findings therefore, should be regarded less as conclusions than as hypotheses to
be tested by future, appropriately designed experiments.

The remainder of this paper proceeds as follows. In the next section, we review re-
lated work and highlight the major differences between this work and our own. Then,
in Section 3, we describe the Investment Game, a repeated public goods game, and
show (a) that long-run play converges to unilateral defection, (b) that the so-called
end-game effect creeps forward, but that (c) both effects happen slowly. Next, in Sec-
tions 4 and 5 we examine the same effects in two other games of cooperation: the “So-
cial Networking Game,” a variant of the repeated Prisoner’s Dilemma game in which
players can make and break ties with each other, and “Wildcat Wells,” a game of col-
laborative search. Although we observe long-run learning effects in both games, we
also identify some notable differences arising from the presence of rewiring and re-
framing respectively. In particular, we see initial cooperation increasing over time, but
end-game effects becoming increasingly sharp. Finally, in section 6 we conclude with
some remarks about the theoretical and methodological implications of our work, as
well some suggestions for future experiments.

2. RELATED WORK

As noted above, the theoretical literature on learning makes two predictions: one, that
with experience, players should “learn” to be less cooperative; and the other that they
should learn to become more so. Experimental evidence has also generated ambiguous
results with respect the learning hypothesis. Selten and Stoecker [1986] studied a se-
ries of 25 prisoner’s dilemma games of 10 rounds each, and found that defection tended
to creep earlier over time, in support of the rationality hypothesis. Andreoni and Miller
[1993], however, found precisely the opposite result: over the course of 20 PD games,
also of 10 rounds each, they found that defection tended to occur later with experience,
consistent with altruism. Meanwhile, earlier work by Andreoni [1988] found no evi-
dence to support either direction, and other experiments that use experienced players
generate indistinguishable results from those that use naive players [Isaac and Walker
1988]. Precisely how or if learning impacts play in repeated games therefore remains
an unresolved question.

In light of this related experimental work and the related theoretical work described
in Section 1, our paper makes four main contributions to the literature on long-run
learning. First, because we have observations of individuals playing upwards of 100
games, we are able to study learning effects over a much longer timescale than in pre-
vious work. Second, in contrast previous studies, which focus on only one very specific
game of cooperation—the iterated PD—we consider three rather distinct games of co-
operation, hence we are in a position to show that learning patterns depend on certain
features of the game in ways that not anticipated by any existing theory. Third, be-
cause we have much more data than previous experiments, we are able to analyze not
only the main effects of experience (on average payoff and contribution) but also the
interaction effects between experience and the game-round, allowing us to examine
the dynamics of so-called endgame effects in more detail than previously possible. And
finally, whereas previous experiments have studied populations in which all players
have the same experience, we study heterogeneous populations–a design feature that
more closely resembles real-world “games” of cooperation, in which individuals very
likely differ in age and experience.

3. COOPERATION ON STATIC NETWORKS

Suri and Watts [2011] (henceforth SW) conducted a variant of a linear public goods
game [Ledyard 1995], a game of cooperation that is widely studied in laboratory set-
tings. Each game comprised 10 rounds, where in each round each participant i was



allocated an endowment of e = 10 points, and was required to contribute 0 ≤ ci ≤ e
points to a common pool. Players’ payoffs were given by ⇡i = ei − ci +

a
k+1

P
j∈Γ(i) cj ,

where Γ(i) was defined to include i and all its network neighbors, and k was the vertex
degree (all nodes in all networks had the same degree). Therefore, i’s contributions
were, in effect, divided equally among the edges of the graph that are incident on i,
where payoffs are correspondingly summed over i’s edges. From this payoff function it
is easy to show that when 1 < a < n, players face a social dilemma in that all players
contributing the maximum amount maximizes social welfare, but individually play-
ers are best off if they contribute nothing, thereby free-riding on the contributions of
others.

3.1. Experiment and Data

Initially, SW performed 70 preliminary experiments comprising groups of 4, 8 or 16
players each, intended to familiarize players with the game and recruit them to the
panel. After that, SW chose networks that spanned a wide range of possible struc-
tures between a collection of four disconnected cliques at one extreme, and a regular
random graph at the other, where all networks comprised n = 24 players, each with
constant vertex degree k = 5. Next, SW conducted 69 experiments using these net-
works where all players were humans. After that, SW conducted an additional 39 ex-
periments where at least one, and most often four, dummy players designed to play
in prescribed manner. Thus, a total of 108 networked experiments with N = 24 were
conducted over a period of 1–2 months.4 Finally, roughly six months after completing
their networked experiments, SW also studied two variants on the networked game,
in which the rules of the game were identical but where the players’ view of their net-
works differed either by exposing (a) links between neighbors, or (b) links to the full
two-hop neighborhood. These comprised 28 more experiments. Overall, SW conducted
a total of 206 experiments over the course of roughly one year. A total of 315 unique
individuals participated in these experiments, where as Fig. 1 (bottom right) shows the
majority of subjects played only once, while a small number participated in more than
100. Fig. 1 (bottom left) shows per-contributions averaged over all all-human experi-
ments. As can be seen, average contributions start around 6 and then decline roughly
linearly, consistent with the canonical finding mentioned previously [Ledyard 1995].

3.2. Overall cooperation

To motivate our analysis of learning effects, Fig. 2 shows the raw data for (a) payoffs
and (b) per-round contributions respectively for the Investment Game as a function of
experience5. Fig. 2 suggests two main results: first, that payoffs in general increase
with experience; and second, that contributions generally decline up until some point,
at which they increase again. Although the raw data provide a useful starting point,
there are several reasons to mistrust these visual impressions. First, as noted above
SW conducted several sets of experiments in succession, including some (especially
the dummy experiments, but also to a smaller extent the changes of view) with sig-
nificant treatment effects. Critically, while SW were careful to randomize assignment
of players to treatments within each set of experiments, no such randomization was
applied across sets. Hence some of the apparent variations with experience are in fact

4SW only included experiments where over 90% of the overall contributions and at least 50% of each indi-
vidual contribution were made by human players as opposed to a default action due to a player dropping out.
Since we are interested in learning effects of the human player we included all experiments in this work.
5By experience, we mean the experience that player p had at the time of playing experiment q. Thus expe-
rience is to be distinguished from maximum experience which is the experience that player p accumulates
over their entire participation in the Investment Game.
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Fig. 1. Clockwise from top left: screen shot of Investment Game; network topologies (with dummy players
indicated in solid color); histogram of player experience; and average contribution by round

●

● ● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

12

14

16

18

20

0 30 60 90

Experience

A
ve

ra
g
e
 P

a
yo

ff

●

●

● ●
●

●

● ●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

0 30 60 90

Experience

A
ve

ra
g
e
 C

o
n
tr

ib
u
tio

n

Fig. 2. Raw data for Investment Game: average cumulative payoff by experience (left); and average per-
round contribution by experience (right)

treatment effects. Second, the extreme heterogeneity of experience apparent in Fig. 1
(bottom right) results in many more observations of some players (those with experi-
ence) than of others, hence estimates of individual learning must disambiguate within-
individual learning from selection effects—namely that players who voluntarily play
many games may be systematically different from those who play few games, either
because they are different at the outset, or because success in the game itself affects
attrition. Finally, individual experiments varied considerably in terms of initial levels
of cooperation. Because these random initial differences are known to persist through-
out the game, and because they may vary in ways that correlate with experience, we
must separately account for experiment-level effects.



Table I. Coefficients of Models fit to Investment Game Data

Payoff Contribution Contribution Contribution
(Max Experience) (by round)

(Intercept) 75.84∗∗∗ 2.59∗ 2.90∗∗ �1.45
[45.25; 106.46] [0.49; 4.72] [0.84; 4.99] [�3.91; 1.01]

experience 0.15∗∗ �0.01∗∗∗ �0.02∗∗∗

[0.05; 0.25] [�0.02; �0.01] [�0.02; �0.01]
max experience 0.00

[�0.02; 0.01]
round �0.37∗∗∗

[�0.35; �0.39]
experience:round �0.0018∗∗∗

[�0.0012; �0.0023]
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001

To address these issues, we adopt a multi-level modeling approach6 [Gelman and
Hill 2007]. Specifically, we fit models of the following form:

yi = ↵p[i] + �q[i] + �1xi + �2gi + �3ci + �4vi + ✏i (1)

where i is an observation of a particular player who played in a particular game. The
dependent variable yi represents either payoff (cumulative over the entire game) or
average contribution. Following this notation, p[i] extracts the player from i and q[i]
extracts the game from i. Thus ↵p[i] is a random effect for the players, �q[i] is a random
effect for the games, xi is the experience (or the maximum experience) of the player
in that game, gi is the graph structure, ci is the treatment condition (e.g., number of
dummies), and vi is the graph distance from the user that is visible to the user. The
coefficients for key variables can be seen in Table I; the best-fitting parameters for the
full models can be found in the Appendix.

Coefficients for multilevel models can be hard to interpret directly, both on account
of the complexity of the model and also differences in scales corresponding to the co-
variates. Having estimated Eqn. 1, therefore, we can use the fitted model to generate
model-adjusted values for payoffs and contributions. That is, for each observation in
our data, we set the fixed effects to their observed value, and set the random effects
to zero. This procedure preserves the relative frequency of the different treatments,
but smooths out some of the variance arising from individual player idiosyncrasies
and game effects. Fig. 3 shows these model-adjusted fits, which are analogous to those
in Fig. 2, but are noticeably smoother7. Nevertheless, the overall impression from the
raw data remains: payoffs increase with experience and contributions decrease; thus
players are clearly “learning” both in the sense that they are performing better than in-
experienced players, and also that their contributions are decreasing, consistent with
“rational” interpretation of the incomplete information hypothesis.

Although our inclusion of a random effect for individual players should account for
biases introduced by selection effects (e.g. that inherently less-generous players are
more successful and also are more motivated to play many games) we also address the
selection issue directly by fitting the analogous model to Eqn. 1, but with maximum
experience (i.e. the experience that player i in experiment j eventually attains) replac-
ing experience as the fixed effect. Interestingly, column 3 of Table I shows that the
coefficient for maximum experience is close to zero and not significant, indicating that
selection is not a significant effect.

6Multilevel models are also known as hierarchical linear models, mixed models, or random-effects models
7We note that our simulation procedure preserves the order in which the various values of the fixed effects
appear in the raw data, hence some of the fluctuations associated with distinct sets of experiments remain
in the model-adjusted fits.
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Fig. 3. Model-adjusted data for average cumulative payoff as a function of experience (left), and average
per-round contribution as function of experience (right)

3.3. Endgame effect

Aside from the effects of learning on average levels of cooperation, we note that Kreps
et al. [1982] also speculated that learning effects may manifest themselves differently
at different stages of the game. Specifically, Kreps et al. [1982] noted an “endgame ef-
fect” in which cooperation ceases as the end of the game approaches—behavior that is
suggestive of strategic cooperation rather than cooperation arising out of “true” altru-
ism. As Selten and Stoecker [1986] also noted, if players are in fact rational, one would
expect this endgame effect to creep forward over time, as players iteratively attempt
to preempt one other in defecting, leading eventually to total unraveling of cooperation
just as predicted by the naive theory.

To study end-game effects, we fit the following multilevel model:

yi = ↵p[i] + �q[i] + �1xi + �2ri + �3xiri + �4gi + �5ci + �6vi + ✏i (2)

where yi is an indicator variable for whether the contribution of player p[i] in round r
of game q[i] was greater than 5, and ri is a fixed effect for round. Note that unlike in
Eqn. 1, here we fit a logistic model, where we first dichotomize contribution as greater
than or less than 5 points8.

Column 4 of Table I shows that the main effects of experience and round are both
negative and highly significant. More importantly, however, the interaction effect be-
tween experience and round is negative and also highly significant, indicating that the
decrease in cooperation with experience is more pronounced in later rounds than in
earlier, consistent with the endgame effect creeping forward. Fig. 4 shows this interac-
tion effect in two ways: first, Fig. 4 (left) shows model-adjusted per-round contribution
as a function of experience, broken down by round; and second, Fig. 4 (right) shows
model-adjusted per-round contribution as a function of round, broken down by expe-
rience. In particular, Fig. 4 (right) shows both that initial cooperation decreases with
experience, and also that cooperation decreases more rapidly as the game progresses,
corresponding to an encroaching endgame effect.

To sum up, our analysis supports the view advanced by Kreps et al. [1982] that play-
ers in repeated games of cooperation are in fact rational, and are cooperating at least
in part because they believe that other players may not be. In this view, as the players
gain experience they become increasingly aware of the other players’ “true” nature and

8We use a logistic model in large part because both subsequent experiments involve binary outcome vari-
ables, hence for the per-round analysis logistic models are required. However, a logistic model is also not
inappropriate for the Investment Game as the vast majority of contributions are concentrated around ei-
ther 10 or 0, with very little mass in the middle [Suri and Watts 2011], hence converting the real-valued
contribution into a binary outcome results in very little loss of detail.
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Fig. 4. (Best viewed in color) Model-adjusted data for per-round contribution as a function of experience
broken down by round (left), and as a function of round broken down by experience (right)

respond (a) by cooperating less overall, and (b) by reducing their contributions more
rapidly as the game progresses, as we indeed see9. As striking as these effects appear,
however, we also note that the timescales involved are rather large: for example, the
decrease in initial cooperation visible in Fig. 4 (left) from approximately 0.6 to approx-
imately 0.3 takes place over 110 games. Extrapolating our model fits, we estimate a
lower bound on the number of games required for cooperation to disappear entirely at
over 200 games10. Cooperation, in other words, may indeed disappear in the long run,
but the long run is very long. Moreover, as we explain in the next two sections, even
slight changes to the structure of the game can prolong cooperation indefinitely.

4. COOPERATION IN DYNAMIC NETWORKS

Wang, Suri, and Watts [2012] conducted a series of online human subjects experiments
in which groups of 24 participants played an iterated Prisoner’s Dilemma (PD), where
in addition to choosing their action each round—cooperate or defect—they also were
given the opportunity to update their interaction partners at some specified rate, which
was varied across experimental conditions. All games comprised 12 “strategy update”
rounds during which every player could update their strategy: cooperate (C) or de-
fect (D). Consistent with standard PD conditions, a cooperator received R points when
interacting with another cooperator, and S points when interacting with a defector,
while a defector received T points when interacting with a cooperator and P points
when interacting with another defector, where T > R > P > S and T + S < 2R. In
addition, after every r strategy update rounds, players entered a “partner updating”
turn in which they were permitted to make up to k partner updates. By adjusting r
and k Wang et al. [2012] explored a wide range of relative updating rates, from one op-
portunity every several strategy update rounds to several opportunities every round.
A single update comprised either severing a link with an existing partner or proposing

9Our empirical observations are broadly consistent with at least two other explanations. First, players could
all be conditional cooperators who do not so much learn about each other as simply update their actions via
some variant of reinforcement learning, where end-game effects encroach over time as players seek to avoid
being exploited (similar to the the hypothesis of Selten and Stoecker [1986]). And second, it could be that all
players start as conditional cooperators, but that a small fraction learn to play rationally; the effect is there-
fore driven entirely by this small fraction who in turn drive down the contributions of the majority. Although
our analysis does not differentiate between the rational cooperation hypothesis and either of these two al-
ternatives, it may be possible to do so with individual-level modeling or with better-designed experiments.
We are grateful to two anonymous referees for raising these alternatives.
10We acknowledge that extrapolation out of sample is an inherently unreliable procedure. In particular,
the relationship between initial contribution and experience is likely to become increasingly nonlinear as it
approaches zero. Hence our estimate is at best a loose lower bound with unknown uncertainty. Nevertheless,
it suffices to make the point that cooperation likely persists for hundreds of games.
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Fig. 5. (Best viewed in color) Clockwise from top left: screen shot of Social Networking Game; histogram of
player experience; probability of cooperating by round for payoffs 2; probability of cooperating by round for
payoffs 1.

a link to a new partner, where importantly, players could choose the partner to either
sever or propose a link to. After each partner updating turn was completed, the net-
work of partners was updated to reflect severed and accepted links, and a new strategy
update round commenced.

4.1. Experiment and Data

Wang et al. [2012] conducted two sets of experiments in succession totaling 109
experiments with 114 unique players. The first set of experiments used payoffs
T1 = 7, R1 = 4, P1 = 1, S1 = −1 (hereafter payoffs 1); and the second used payoffs
T2 = 7, R2 = 4, P2 = −1, S2 = −5 (hereafter payoffs 2). Although both sets of payoffs
satisfy the conditions for a PD (T > R > P > S and T+S < 2R), they differ with respect
to the relative cost and benefit of making and breaking ties. Specifically, a cooperator
facing the choice of breaking a tie with a currently defecting partner and forming a
new tie with another cooperator will prefer the latter in payoffs 1 and the former in
payoffs 2. As a consequence, Wang et al. [2012] found that in payoffs 1, players tended
to retain ties with defectors even though these ties were costly, preferring to use their
updates to create additional ties with other cooperators, whereas in payoffs 2 they
were more likely to punish defecting partners by severing ties. As Fig. 5 (bottom row)
shows, rewiring led to large and significant increases in cooperation (relative to the
static controls) for both sets of payoffs. However, payoffs 2 not only led to significantly
higher cooperation levels initially, but also maintained cooperation for longer.

4.2. Overall cooperation

Fig. 6 shows the raw data for average player payoff and probability of cooperation
(i.e. corresponding to Fig. 2 for the Investment Game), where we have separated out
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Fig. 6. Raw data for Social Networking Game with payoffs 1 (top row) and payoffs 2 (bottom row). Left
column represents average cumulative payoff and right column is average probability of cooperating, both
as function of experience.

payoffs 1 and 2—treating them, in effect, as two distinct experiments11. For similar
reasons, we also omit the data from the control conditions, fitting only the treatments
in which rewiring occurs. Consistent with Wang et al. [2012], Fig. 6 shows that both
cooperation and payoffs are higher in the dynamic than in the static conditions, and
that the effects are larger for payoffs 2 than payoffs 1.

Unlike for the Investment Game, the raw data does not show any clear trends as
a function of experience. As before, however, the raw data is potentially confounded
by treatment effects, individual differences, and variability from game to game. To
account for these confounding effects, we again fit multilevel models of the form:

yi = ↵p[i] + �q[i] + �1xi + �2gi + �3si + �4wi + �5siwi + ✏i (3)

for payoffs 1, where i is an observation of a particular player who played in a par-
ticular game, and p[i] extracts the player from i and q[i] extracts the game from i.
The dependent variable yi represents either payoff (cumulative over the entire game)
or probability of cooperating for player p[i] in game q[i], ↵p[i] is a random effect for
the players, �q[i] is a random effect for the individual game, xi is the experience (or

11Fig. 5 shows the behavior of players differed dramatically between payoffs 1 and 2, which were conducted
in non-overlapping batches; hence it makes sense to treat them as distinct experiments. Because there was
overlap between the panels for both games, however, treating them separately introduces an additional com-
plication for the second payoffs—namely that “experience” is no longer uniquely defined. One possibility is
to measure total experience (i.e. in both payoffs 1 and 2), but this choice effectively treats n games of payoffs
1 and m games of payoffs 2 as identical to n+m games of payoff 2, which, given the differences between the
two payoff schemes, may be misleading. A second possibility is to ignore players’ experience with payoffs 1,
effectively counting them as “fresh” when they play their first game with payoffs 2. This assumption, how-
ever, would conflate truly inexperienced players with players who have extensive experience with a closely
related game—also likely misleading. We adopt the following compromise: We set experience with payoff 2
as the fixed effect of interest, but also include a random effect for experience in payoff 1.



Table II. Coefficients of Models Fit to Social Networking Game: Payoffs 1

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 274.28∗∗∗ 0.61∗∗∗ 0.55∗∗∗ 4.25∗∗∗

[247.89; 300.90] [0.56; 0.66] [0.48; 0.62] [3.72; 4.77]
experience 0.42∗ 0.00∗∗∗ 0.04∗∗∗

[0.00; 0.80] [0.00; 0.00] [0.03; 0.05]
max experience 0.00

[0.00; 0.00]
round �0.50∗∗∗

[�0.53; �0.48]
experience:round �0.0011∗∗∗

[�0.001; �0.0012]
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001

the maximum experience) of player p[i] in game q[i], gi represents the different graph
structures, si represents the frequency of frequency of partner update turns, and wi

represents the number of updates allowed per partner update turn.
For payoffs 2, all initial graph structures were the same, and all players had a

rewiring opportunity every round, so we fit models of the form:

yi = ↵p[i] + �q[i] + �m[i] + �1xi + �2wi + ✏i (4)

For payoffs 2, some of the players had previously played with payoffs 1. So here i is an
observation that a particular player, p[i], played in a particular game, q[i], with pay-
offs 2 after playing a particular number of games, m[i], with payoffs 1. We included a
random effect �m[i] for the number of games the individual had played with payoffs 1.
Table II shows the estimated coefficients, and Fig. 7 shows the corresponding model-
adjusted data for payoff and cooperation, for both sets of payoffs. Payoffs 1 (top row)
are similar to the analogous results for the Investment Game (Fig. 3), in that payoffs
show a gradual increase with learning while cooperation slowly decreases. Given the
differences between the two games, and the overall higher rates of cooperation in the
Social Networking games, this similarity is somewhat surprising, and suggests that
learning effects in games of cooperation generalize somewhat beyond the specifics of
any one game. The results for Payoffs 2 (bottom row), however, caution that any such
generalizability is limited. Not only do payoffs 2 lead to higher overall rates of cooper-
ation than payoffs 1, that is, but the direction of the learning effect is reversed: players
are clearly becoming more cooperative with experience, not less.

4.3. End of Game Effects

Another striking difference between the Social Networking Game and the Investment
Game, clearly apparent in Fig. 5 (bottom row), is that the endgame effect is much
sharper in the Social Networking Game. Moreover, payoffs 1 and 2 also differ substan-
tially in the behavior during round 6 and beyond. Payoffs 1 exhibit a defection cascade
starting in round 6 whereas payoffs 2 exhibit high levels of cooperation at least round
10 when the end game effect occurs. To investigate the evolution of these effects in the
long run, we again fit multilevel logistic regression models of the following form:

yi = ↵p[i] + �q[i] + �1xi + �2ri + �3xiri + �4gi + �5si + �6wi + �7siwi + ✏i (5)

for payoffs 1 where yi is an indicator variable for whether player p[i] cooperated in
round r of game q[i], and ri is a fixed effect for round. Again, this model had to be
modified for payoffs 2, taking the form:

yi = ↵p[i] + �q[i] + �m[i] + �1xi + �2ri + �3xiri + �4wi + ✏i (6)
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Fig. 7. Model-adjusted data for social networking game with payoffs 1 (top row) and payoffs 2 (bottom row).
Left column represents average cumulative payoff and right column is average probability of cooperating,
both as function of experience.

Column 4 of Tables II and III shows the estimated coefficients for Eqn. 5 and 6 re-
spectively. Fig. 8 shows the corresponding model-adjusted data, and reveals both sim-
ilarities and differences with Fig. 4. On the one hand, both display strong interaction
effects between experience and round, consistent with the endgame effect increasing
in strength as players gain experience. On the other hand, whereas in the Invest-
ment Game cooperation decreased with experience at all stages of the game, here we
find initial cooperation increases with experience in both payoffs 1 and 2. Players in
other words, appear to be learning to cooperate more at the start of the game and
then exploiting the ties they gain as cooperators by switching to defection as the game
progresses, where the switch becomes increasingly sharp with experience. Finally, the
direction in which the endgame effect moves differs depending on the payoffs: for pay-
offs 1, it clearly creeps forward, consistent with the Investment Game, converging on
round 5; but for payoffs 2 it recedes with experience, converging on round 10.

5. COLLABORATIVE LEARNING EXPERIMENT

Mason and Watts [2012] (hereafter MW) conducted an experiment, “Wildcat Wells,” in
which players were tasked with exploring a realistic-looking two-dimensional desert
map in search of hidden “oil fields.” The players had 15 rounds to explore the map,
either by entering grid coordinates by hand, or by clicking directly on the map (see
Fig. 9 (top left)). On each round after the first, players were shown the history of their
searched locations and payoffs, as well as the history of searched locations and payoffs
of three collaborators. In choosing their next location, therefore, players repeatedly
faced a choice between copying the best current score of their neighbors or exploring
new terrain on their own. MW showed that the decision to explore was beneficial to
the collective performance but copying improved the score of the copier, hence players
effectively faced a repeated social dilemma in the explore-copy decision [Mason and



Table III. Coefficients of Models Fit to Social Networking Game: Payoffs 2

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 372.44∗∗∗ 0.80∗∗∗ 0.79∗∗∗ 3.3∗∗∗

[291.21; 453.24] [0.73; 0.87] [0.72; 0.87] [1.68; 4.92]
experience 0.61 0.00 0.19∗∗∗

[−0.81; 2.06] [0.00; 0.00] [0.14; 0.25]
max experience 0.00

[0.00; 0.00]
round −0.3∗∗∗

[−0.16; −0.45]
experience:round −0.019∗∗∗

[−0.014; −0.024]
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001
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Fig. 8. (Best viewed in color) Social Networking Game payoffs 1 (top row) and payoffs 2 (bottom row): model
adjusted fits for per-round contribution as a function of experience, broken down by round (left column), and
as a function of round, broken down by experience (right column).

Watts 2012]12. Supporting this interpretation, Fig. 9 (bottom left) shows that, players
mostly explored new locations in early rounds while in later rounds they were more
likely to copy their most successful neighbor.

5.1. Experiment and Data

Each experimental session comprised 8 games corresponding to each of the network
topologies, so players experienced each topology exactly once in random order. Players

12The fitness landscape comprised two components: a main peak and noisy background. Once a neighbor had
found the main peak, an experienced player might recognize that further exploration was pointless, hence
removing the dilemma. For this reason, we restrict attention here to rounds on which the focal player’s
neighbors had not found the peak.
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Fig. 9. Clockwise from top left: screen shot of Wildcat Wells; networks studied in the experiment; histogram
of player experience; probability of exploring (cooperating) as a function of round.

were randomly assigned to unique positions in one of 8 network topologies, where each
player’s collaborators for that game were his or her immediate neighbors in that net-
work. All networks comprised n = 16 nodes, each with k = 3 neighbors, but differed
with respect to four commonly-studied metrics that have been posited to affect infor-
mation flow in networks [Mason and Watts 2012]. In this manner, MW conducted 232
networked games over 29 sessions, as well as a series of 24 baseline experiments, in
which groups of 16 individuals searched the same landscape independently (i.e. with
no network neighbors and no sharing of information), resulting in a total of 256 exper-
iments with 130 unique individuals.

5.2. Average payoffs and cooperation

As with the previous two experiments, we first show the raw data (Fig. 10) and then
show the model-adjusted data (Fig. 11) based on coefficients estimated from the fol-
lowing multilevel model:

yi = ↵p[i] + �q[i] + �m[i] + �1xi + �2gi + ✏i (7)

where i is an observation of a particular player who played a particular trial of a
particular game, and p[i] extracts the player from i, m[i] extracts the trial from i, and
q[i] extracts the game from i. As before the dependent variable yi represents either
estimated payoff (cumulative over the entire game) or the estimated probability of
exploring for player p[i] in trial m[i] of game q[i]; ↵p[i] is a random effect for the players,
�m[i] is a random effect for the trial within the experiment, �q[i] is a random effect for
the individual game, x is the experience of player, and g represents the graph structure.
The coefficients estimated from Eqn. 7 are given in the first two columns of Table IV.

Focusing on Fig. 11 (the model-adjusted fits), we see a pattern that is most similar
to payoffs 2 of the Social Networking Game, in that payoffs decrease with experience
and cooperation (exploration) increases. The magnitude of the coefficients, however, is
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Fig. 10. Wildcat Wells, raw data for average cumulative payoff as a function of experience (left), average
per-round probability of exploring as function of experience (right)
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Fig. 11. Wildcat Wells, model adjusted fits for average cumulative payoff as a function of experience (left),
average per-round probability of exploring as function of experience (right)

Table IV. Coefficients of Model Fit to Wildcat Wells Data

Payoff Prob. Exploring Prob. Exploring Prob. Exploring
(Max Experience) (by round)

(Intercept) 512.33∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 2.63∗∗∗

[482.84; 542.00] [0.68; 0.76] [0.67; 0.78] [2.31; 2.95]
experience −0.08 0.00 0.014∗∗∗

[−0.31; 0.15] [0.00; 0.00] [0.011; 0.016]
max experience 0.00

[0.00; 0.00]
round −0.17∗∗∗

[−0.16; −0.18]
experience:round −0.0011∗∗∗

[−0.001; −0.0013]
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001

consistently smaller than in either of the previous experiments, suggesting that the
extra complexity of Wildcat Wells made it a more difficult game to “learn.”

5.3. Endgame Effect

Considering now the endgame effects, we fit multilevel logistic models of the form

yi = ↵p[i] + �q[i] + �m[i] + �1xi + �2ri + �3xiri + �4gi + ✏i (8)

where yi is an indicator variable for whether the player p[i] in round r of trial m[i] in
game q[i] copied one of her neighbors, and r is a fixed effect for round.
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Fig. 12. (Best viewed in color) Wildcat Wells model adjusted fits for per-round probability of exploring
broken as a function of experience, broken down by round (left); and as a function of round, broken down by
experience (right)

The coefficients for Eqn. 8 are given in column 4 of Table IV and the model adjusted
data for per-round probability of exploring as a function of experience (broken down
by round) and round (broken down by experience) are shown in Fig. 12. Similar to
Fig. 11, Fig. 12 suggests that Wildcat Wells is more similar to the Social Networking
Game than to the Investment Game, in that initial cooperation is increasing while the
endgame effect becomes increasingly sharp, where the shape of the curves are roughly
intermediate between payoffs 1 and 2 of the Social Networking Game.

These results are somewhat surprising, as the tradeoff between exploring and copy-
ing in Wildcat Wells seems at first glance more similar to the Investment Game than
to the Social Networking Game, where the capability to rewire links can be thought
of as a form of punishment for defection. No such punishment mechanism is avail-
able to players in Wildcat Wells, which is therefore more like a classic repeated public
goods game, aka the Investment Game. Clearly, however, Wildcat Wells is not framed
explicitly as a game of cooperation, nor is the social dilemma inherent in payoffs nec-
essarily obvious to the players. Even though they are, in effect, playing a game coop-
eration, that is, they may not realize it, and this obfuscation may affect their behavior.
Although not surprising, we note that real-world “games” of cooperation are also un-
likely to be presented in terms of explicit payoffs, as they are in standard experimental
designs, hence the learning effects—or lack thereof—in the Wildcat Wells game may
more closely resemble real life.

6. DISCUSSION

To summarize, we have analyzed data from three distinct cooperation games with play-
ers with heterogeneous experience levels: a linear public goods game, a multi-player
prisoner’s dilemma with partner updating and a collaborative explore/exploit game.
Despite the variety in game type we see learning effects across all three games. Specif-
ically, we find that as people gain experience, they behave in a more extreme manner,
in the sense that where the contribution curves are concave the curve becomes more
concave, and where they are convex they become more convex. Furthermore, across all
three games there is an interaction effect between experience and round. As people
get more experience, they learn to behave more selfishly in the last round; thus even
where we see initial increases in cooperation, as we do in the Social Networking and
Wildcat games, it is likely strategic. Overall our findings are therefore consistent with
the “rational cooperation” hypothesis of Kreps et al. [1982], according to which players
eventually learn to act selfishly. The Investment Game analysis shows this result most
clearly, with players clearly converging towards the equilibrium strategy predicted by
the standard backward induction argument. Even for the Investment Game, however,



we found that it would take a long time, at least 200 games, for players to actually
reach the equilibrium. An interesting challenge for future theoretical work, would be
to explain not only the equilibrium strategy, but also the timescale required for players
to converge to it. Our results for the Social Networking Game and Wildcat Wells also
present interesting challenges for theory: both displayed significant learning effects,
but to our knowledge there is not a well developed of theory of learning in these set-
tings. Explaining the direction and type of learning effects, and how they depend on
particular details of the games, stands as a challenge for future theoretical work.
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A. APPENDIX

Tables V-VIII give coefficients for the full models (equations 1-8) given in the text.
The extra coefficients refer to the various fixed effects arising from different network
topologies and experimental treatments (see descriptions of experiments, main text).
For example, in Table V.

— “experience:round” is an interaction effect between experience and round
— rows of the form “m kn” refers to graphs with m cliques of n individuals each
— The “paired cliques”, “cycle”, “small world” and “random regular” topologies are de-

scribed in Suri and Watts [2011].
— “cube” is a graph where the nodes are the corners of a three dimensional cube. The

vertices are connected by edges in the same way as the cube.
— “2 k4 joined” is like the paired cliques topology of Suri and Watts [2011] except the

there only two cliques of four vertices each, as opposed to four cliques of six vertices
each.

— “dummy 10:cover” refers to an experimental treatment in which four dummy players
were inserted such that every human player was exposed to exactly one dummy. The
dummy players contributed their full endowment (10 points) on each round (see [Suri
and Watts 2011]).

— “dummy 10:neighbor” refers to an experimental treatment in which four dummy
players were inserted such that some human players were exposed to exactly two
dummies. The dummy players contributed their full endowment (10 points) on each
round. Other human players were not connected to any dummies (see [Suri and Watts
2011]).

— “dummy 10:single” refers to an experimental treatment in which one dummy player
was inserted and it contributed its full endowment (10 points) on each round.

— “no dummies:human” refers to an experimental treatment in which all of the players
were humans.

— “ego view” refers to a variant in which players could see which of their nearest neigh-
bors were connected.

— “2-hop view” refers to a variant in which players could all nodes an edges within a
graph distance of two from themselves.

In Tables VI and VII:

— “r = x” refers to the condition in which players experienced a partner updating turn
every x strategy update rounds

— “k = y” is the condition in which players could rewire y links every partner update
turn (see [Wang et al. 2012]).

— “r = x : k = y refers to the interaction effect of rewiring y links every x rounds.

Copyright c� 2013 ACM 978-1-4503-2565-3/14/06...$15.00
DOI 10.1145/http://dx.doi.org/10.1145/2600057.2602892 http://doi.acm.org/10.1145/http://dx.doi.org/10.1145/2600057.2602892
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In Table VIII “max max betweenness” to “max var constraint” are fixed effects for
seven of the eight network topologies (because these are fixed effects, the eighth topol-
ogy is the reference). See Mason and Watts [2012] for the definition of these networks.
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Table V. Coefficients of Models fit to Investment Game Data

Payoff Contribution Contribution Contribution
(Max Experience) (by round)

(Intercept) 75.84∗∗∗ 2.59∗ 2.90∗∗ �1.45
[45.25; 106.46] [0.49; 4.72] [0.84; 4.99] [�3.91; 1.01]

experience 0.15∗∗ �0.01∗∗∗ �0.02∗∗∗

[0.05; 0.25] [�0.02; �0.01] [�0.02; �0.01]
max experience 0.00

[�0.02; 0.01]
round �0.37∗∗∗

[�0.35; �0.39]
experience:round �0.0018∗∗∗

[�0.0012; �0.0023]
k8 7.39 �0.09 �0.03 0.32

[�26.79; 41.66] [�2.43; 2.24] [�2.32; 2.26] [�2.21; 2.84]
10 k6 87.72∗∗∗ 2.59 2.39 2.49

[47.38; 128.04] [�0.19; 5.34] [�0.31; 5.09] [�0.66; 5.64]
11 k6 113.90∗∗∗ 1.58 1.28 1.97

[77.91; 149.86] [�0.91; 4.03] [�1.12; 3.68] [�0.8; 4.73]
2 k4 11.90 0.27 0.27 0.47

[�19.58; 43.42] [�1.88; 2.42] [�1.84; 2.37] [�1.87; 2.81]
2 k4 joined 9.39 �0.46 �0.49 �0.26

[�22.06; 40.93] [�2.61; 1.69] [�2.59; 1.62] [�2.6; 2.09]
4 k6 44.92∗∗ �0.18 �0.40 0.23

[14.17; 75.65] [�2.30; 1.92] [�2.46; 1.66] [�2.09; 2.56]
cycle 44.59∗∗ �0.06 �0.46 0.67

[14.36; 74.76] [�2.16; 2.00] [�2.48; 1.56] [�1.61; 2.94]
paired cliques 47.20∗∗ 0.27 �0.07 0.78

[16.51; 77.86] [�1.85; 2.37] [�2.13; 1.98] [�1.53; 3.1]
small world 45.96∗∗ �0.19 �0.43 0.24

[15.43; 76.46] [�2.30; 1.89] [�2.48; 1.61] [�2.06; 2.55]
random regular 46.60∗∗ 0.10 �0.18 0.61

[16.15; 77.02] [�2.01; 2.18] [�2.22; 1.86] [�1.69; 2.91]
8 k6 97.05∗∗∗ 2.27 2.05 2.22

[56.35; 137.72] [�0.53; 5.04] [�0.67; 4.75] [�0.94; 5.38]
cube 8.04 �0.48 �0.48 �0.21

[�23.41; 39.60] [�2.63; 1.67] [�2.58; 1.63] [�2.56; 2.14]
k4 12.42 1.05 0.88 1.43

[�18.08; 42.89] [�1.06; 3.14] [�1.18; 2.94] [�0.85; 3.71]
dummy 10:cover 59.14∗∗∗ 2.38∗∗∗ 2.40∗∗∗ 1.84∗∗∗

[49.55; 68.74] [1.74; 3.03] [1.77; 3.03] [1.11; 2.58]
dummy 10:neighbor 29.76∗∗∗ 1.32∗∗∗ 0.96∗∗ 1.67∗∗∗

[20.53; 39.00] [0.66; 1.94] [0.36; 1.54] [0.98; 2.36]
dummy 10:single 8.92 0.35 0.48 �0.18

[�8.48; 26.45] [�0.82; 1.54] [�0.67; 1.63] [�1.54; 1.18]
no dummies:human 28.31∗∗∗ 1.50∗∗∗ 1.46∗∗∗ 1.31∗∗∗

[20.67; 35.97] [0.98; 2.01] [0.96; 1.96] [0.72; 1.9]
ego view 2.47 0.82∗ 0.59 1.086∗∗

[�7.36; 12.28] [0.14; 1.48] [�0.05; 1.23] [0.33; 1.84]
2-hop view 17.28∗∗∗ 1.14∗∗ 0.81∗ 1.74∗∗∗

[7.58; 26.85] [0.37; 1.84] [0.10; 1.50] [0.98; 2.5]
AIC 34945.72 15598.36 15609.97
BIC 35093.51 15746.15 15757.76
Log Likelihood -17448.86 -7775.18 -7780.98
Deviance 34897.72 15550.36 15561.97
Num. obs. 3491 3491 3491
Num. groups: turk id 315 315 315
Num. groups: experiment id 206 206 206
Variance: turk id.(Intercept) 128.02 4.70 4.72
Variance: experiment id.(Intercept) 172.44 0.86 0.80
Variance: Residual 1182.84 3.93 3.96
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001
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Table VI. Coefficients of Models Fit to Social Networking Game: Payoffs 1

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 274.28∗∗∗ 0.61∗∗∗ 0.55∗∗∗ 4.25∗∗∗

[247.89; 300.90] [0.56; 0.66] [0.48; 0.62] [3.72; 4.77]
experience 0.42∗ 0.00∗∗∗ 0.04∗∗∗

[0.00; 0.80] [0.00; 0.00] [0.03; 0.05]
max experience 0.00

[0.00; 0.00]
round �0.50∗∗∗

[�0.53; �0.48]
experience:round �0.0011∗∗∗

[�0.001; �0.0012]
random regular 7.34 0.00 0.00 0.01

[�9.65; 24.37] [�0.02; 0.02] [�0.03; 0.03] [�0.22; 0.24]
r = 3 �121.60∗∗∗ �0.06∗∗ �0.05 �0.62∗∗

[�155.68; �87.56] [�0.11; �0.02] [�0.11; 0.01] [�1.08;�0.16]
r = 6 �198.34∗∗∗ �0.35∗∗∗ �0.36∗∗∗ �3.56∗∗∗

[�233.38; �163.28] [�0.40; �0.31] [�0.42; �0.30] [�4.04;�3.08]
k = 3 194.12∗∗∗ 0.00 0.00 �0.02

[157.90; 230.36] [�0.05; 0.05] [�0.06; 0.06] [�0.51; 0.47]
k = 5 264.81∗∗∗ 0.08∗∗∗ 0.08∗∗ 0.82∗∗∗

[230.77; 298.84] [0.04; 0.13] [0.03; 0.14] [0.36; 1.29]
r = 3 : k = 3 �91.11∗∗∗ 0.07 0.06 0.7∗

[�142.08; �40.09] [0.00; 0.14] [�0.03; 0.15] [0.01; 1.39]
r = 6 : k = 3 �155.42∗∗∗ 0.14∗∗∗ 0.14∗∗ 1.5∗∗∗

[�205.87; �104.98] [0.07; 0.21] [0.05; 0.23] [0.81; 2.18]
r = 3 : k = 5 �104.55∗∗∗ �0.03 �0.04 �0.32

[�153.90; �55.15] [�0.10; 0.04] [�0.12; 0.05] [�0.99; 0.35]
r = 6 : k = 5 �201.01∗∗∗ 0.12∗∗ 0.12∗ 1.26∗∗∗

[�251.87; �150.13] [0.05; 0.18] [0.03; 0.20] [0.57; 1.95]
AIC 23433.15 -1408.74 -1355.66
BIC 23511.84 -1330.05 -1276.97
Log Likelihood -11702.57 718.37 691.83
Deviance 23405.15 -1436.74 -1383.66
Num. obs. 2040 2040 2040
Num. groups: turk id 109 109 109
Num. groups: experiment id 85 85 85
Variance: turk id.(Intercept) 1381.80 0.03 0.03
Variance: experiment id.(Intercept) 1535.68 0.00 0.00
Variance: Residual 4953.09 0.02 0.02
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001
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Table VII. Coefficients of Models Fit to Social Networking Game: Payoffs 2

Payoff Coop. Likelihood Coop. Likelihood Coop. Likelihood
(Max Experience) (by round)

(Intercept) 372.44∗∗∗ 0.80∗∗∗ 0.79∗∗∗ 3.3∗∗∗

[291.21; 453.24] [0.73; 0.87] [0.72; 0.87] [1.68; 4.92]
experience 0.61 0.00 0.19∗∗∗

[�0.81; 2.06] [0.00; 0.00] [0.14; 0.25]
max experience 0.00

[0.00; 0.00]
round �0.3∗∗∗

[�0.16; �0.45]
experience:round �0.019∗∗∗

[�0.014; �0.024]
k = 5 302.38∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 1.55∗∗∗

[214.58; 390.20] [0.07; 0.12] [0.07; 0.12] [1.12; 1.98]
k = 23 375.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 1.19∗∗∗

[292.71; 457.31] [0.05; 0.10] [0.05; 0.10] [0.79; 1.59]
AIC 2792.20 -461.42 -461.49
BIC 2820.04 -433.57 -433.65
Log Likelihood -1388.10 238.71 238.75
Deviance 2776.20 -477.42 -477.49
Nub. obs. 240 240 240
Num. groups: turk id 53 53 53
Num. groups: max experience1 35 35 35
Num. groups: experiment id 10 10 10
Variance: turk id.(Intercept) 0.00 0.00 0.00
Variance: max experience1.(Intercept) 7071.50 0.01 0.01
Variance: experiment id.(Intercept) 3151.99 0.00 0.00
Variance: Residual 4599.19 0.00 0.00
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001
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Table VIII. Coefficients of Model Fit to Wildcat Wells Data

Payoff Prob. Exploring Prob. Exploring Prob. Exploring
(Max Experience) (by round)

(Intercept) 512.33∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 2.63∗∗∗

[482.84; 542.00] [0.68; 0.76] [0.67; 0.78] [2.31; 2.95]
experience �0.08 0.00 0.014∗∗∗

[�0.31; 0.15] [0.00; 0.00] [0.011; 0.016]
max experience 0.00

[0.00; 0.00]
round �0.17∗∗∗

[�0.16; �0.18]
experience:round �0.0011∗∗∗

[�0.001; �0.0013]
max. max. betweenness �29.41∗∗∗ 0.00 0.00 �0.07

[�46.01; �12.80] [�0.02; 0.03] [�0.02; 0.03] [�0.15; 0.01]
min. avg. betweenness �50.24∗∗∗ 0.03∗∗ 0.03∗∗ 0.14∗∗∗

[�66.82; �33.64] [0.01; 0.05] [0.01; 0.05] [0.06; 0.23]
max. max. closeness �34.33∗∗∗ 0.02∗ 0.02∗ 0.07

[�50.86; �17.79] [0.00; 0.04] [0.00; 0.04] [�0.01; 0.15]
min. max. closeness �27.62∗∗ 0.01 0.01 0.12∗∗

[�44.24; �10.96] [�0.01; 0.03] [�0.01; 0.03] [0.04; 0.2]
max. avg. clustering �23.66∗∗ 0.01 0.01 0.1∗

[�40.27; �7.03] [�0.01; 0.03] [�0.01; 0.03] [0.02; 0.19]
min. avg. clustering �57.72∗∗∗ 0.02 0.02 0.02

[�74.30; �41.10] [�0.01; 0.04] [�0.01; 0.04] [�0.06; 0.1]
max. var. constraint �51.55∗∗∗ 0.02 0.02 0.07

[�68.12; �34.95] [0.00; 0.04] [0.00; 0.04] [�0.02; 0.15]
AIC 78077.33 -1327.04 -1327.87
BIC 78164.37 -1240.00 -1240.83
Log Likelihood -39025.66 676.52 676.93
Deviance 78051.33 -1353.04 -1353.87
Num. obs. 5975 5975 5975
Num. groups: user id 130 130 130
Num. groups: experiment id 51 51 51
Num. groups: trial 8 8 8
Variance: user id.(Intercept) 2485.13 0.03 0.03
Variance: experiment id.(Intercept) 6306.03 0.00 0.00
Variance: trial.(Intercept) 260.98 0.00 0.00
Variance: Residual 26213.38 0.04 0.04
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001
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