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ABSTRACT

Reduced rank nonlinear filters are increasingly utilized in data assimilation of geophysical flows but often require a set of ensemble for-
ward simulations to estimate forecast covariance. On the other hand, predictor–corrector type nudging approaches are still attractive due
to their simplicity of implementation when more complex methods need to be avoided. However, optimal estimate of the nudging gain
matrix might be cumbersome. In this paper, we put forth a fully nonintrusive recurrent neural network approach based on a long short-
term memory (LSTM) embedding architecture to estimate the nudging term, which plays a role not only to force the state trajectories to
the observations but also acts as a stabilizer. Furthermore, our approach relies on the power of archival data, and the trained model can be
retrained effectively due to the power of transfer learning in any neural network applications. In order to verify the feasibility of the proposed
approach, we perform twin experiments using the Lorenz 96 system. Our results demonstrate that the proposed LSTM nudging approach
yields more accurate estimates than both the extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) when only sparse observations
are available. With the availability of emerging artificial intelligence friendly and modular hardware technologies and heterogeneous comput-
ing platforms, we articulate that our simplistic nudging framework turns out to be computationally more efficient than either the EKF or EnKF
approaches.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012853., s

I. INTRODUCTION

Data assimilation (DA) is a methodology where the observa-
tions are utilized to correct the results from amathematical model to
reconstruct the spatiotemporal dynamics of a system.1–3 DA is used
extensively for weather forecasting, where there is a growing num-
ber of observations coming from satellites and in situ monitoring.
Variational and sequential schemes are two of the most widely used
approaches in dynamical data assimilation. For the former, DA is
formulated as a minimization problem, where the objective function
is defined as the discrepancy between real observations and model’s
predictions based on a given set of initial conditions and parameters.
The argument of this minimization problem is the set of model’s
initial conditions and parameters that need to be tuned to drive the

predictions toward the observations. On the other hand, sequential
methods usually rely on statistical inference using Bayesian analysis,
where the current measurements are used to correct the prior model
forecasts to get a better posterior estimate, usually called the analysis
in DA terminology.

One of the key limitations of DA methods is that they rely on
a forward model whose dynamics is known. For high-dimensional
systems such as geophysical flows, standard DA methods suffer
from the curse of dimensionality. With the increasing resolution
of numerical models, the nonlinearities are likely to become so
strong that DA algorithms based on linearization might fail.4 In
recent years, with an explosion of data generated from observations,
experimental measurements, and numerical simulations, there is a
growing interest in applying data-driven methods along with DA.5
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Mostly, efforts were focused on using data-driven models in lieu
of conventional (physics-based) models in order to accelerate the
DA computations. Tang, Liu, and Durlofsky6 developed a surrogate-
based model based on convolutional and recurrent neural networks
for predicting dynamical subsurface flows and employed it in the DA
framework as an emulator to the forward dynamical model. There
have been several other studies that demonstrated the potential of
data-driven methods in the accurate prediction of complex phys-
ical systems such as flooding,7 global atmospheric model,8 quasi-
geostrophic flows,9 chaotic systems,10,11 soil water dynamics,12 and
tsunami modeling.13 Recent works have also drawn ideas to synthe-
size DA with reduced order models.14–23 Bocquet et al.24 proposed a
hybrid framework by combining DA and machine learning (ML) to
estimate the model, the state trajectory, andmodel error statistics for
high-dimensional chaotic systems from partial and noisy observa-
tions. Brajard et al.25 proposed an algorithm where neural networks
provide a surrogate forward model to DA, and DA provides a time
series of complete states to train the neural network. They illustrated
the convergence of the proposed algorithm for the Lorenz 96 sys-
tem and achieved the accurate forecasts up to two Lyapunov time
units.

Correspondingly, ML tools can also benefit from DA algo-
rithms. Abarbanel, Rozdeba, and Shirman26 offer a perspective on
the equivalence betweenML and statistical data assimilation and dis-
cuss howmethods developed in DA can be potentially useful forML.
Bocquet et al.27 proposed DA as a learning tool to infer ordinary
differential equations for dynamical systems solely from noisy data
and showed its connection with deep learning methods. Pérez-Ortiz
et al.28 showed that the long short-term memory (LSTM) net-
work can be trained efficiently with better generalization using the
decoupled extended Kalman filter (EKF).29

As an extension to the current efforts of using ML tools in DA
context, we propose a modular neural-network based DA frame-
work. Specifically, we utilize ML to achieve the fusion between the
model’s estimates and noisy observations to provide more accurate
predictions, rather than usingML as a facilitator to just accelerate the
existing DA algorithms. To accomplish this, we train a LSTM neural
network to “nudge” model’s forecast given a set of sparse obser-
vations. Nudging is a relatively simple DA approach that uses the
forecast error, defined as the difference between model predictions
and measurements, to constrain and correct the model evolution.
Nudging was introduced by Anthes30 for the initialization of hurri-
cane models from real observational data. In nudging methods, the
state analysis is approximated as a linear superposition between its
model forecast and forecast error. Despite its conceptual simplicity,
nudging schemes often require ad hoc approximation of the nudg-
ing (or weighting) matrix. In our framework, we relax this linear
superposition assumption and avoid those ad hoc approximations
by training an LSTM neural network to nonlinearly blend model’s
forecast and sparse observations.

We demonstrate and test the proposed LSTM-DA framework
using the Lorenz 96 system as a benchmark problem in geophys-
ical science applications. We illustrate the success of LSTM-DA
using different sets of observations with varying levels of noise
and sparsity. In particular, we consider combinations between data-
rich, data-deficient, observation-rich, and observation-deficient set-
tings. We also compare our results against some of the common
DA techniques. Specifically, we discuss the results of the extended

Kalman filter (EKF), ensemble Kalman filter (EnKF), determinis-
tic ensemble Kalman filter (DEnKF), and a simple forward nudg-
ing method. Our LSTM-DA framework can be considered very
much similar to the methodology proposed by Zhu et al.31 in
which the fully connected neural network was used to learn the
uncertainty in the mathematical model arising from linearization,
discretization, and model reduction. The difference in our pro-
posed framework is that we employ the LSTM neural network to
learn the nudging correction term in order to cure the discrep-
ancy between prior predictions and measurements that might arise
due to inaccurate initial conditions, boundary conditions, or model
parameters.

The rest of the manuscript is outlined here. In Sec. II, we dis-
cuss the nudging method as a simple alternative to nonlinear filters,
which is then extended as a base for our proposed LSTM-DA frame-
work in Sec. II B. We define the DA setup using Lorenz 96 system
in Sec. III. After that, we provide our results in Sec. IV as well as
relevant discussions and comparisons using different sets of his-
torical data and observations. Finally, we draw our conclusions as
well as the limitations and potential extensions of the present study
in Sec. V. In Appendix A, we describe three of the most common
nonlinear filtering techniques as benchmarks to compare our frame-
work against. In particular, we briefly outline the extended Kalman
filter, which is a first-order adaptation of the standard Kalman fil-
ter to deal with nonlinear models. We then introduce the ensemble
Kalman filter and its deterministic version as reduced rank variants
of nonlinear filters.

II. DATA ASSIMILATION METHODOLOGY

The central goal of DA is to extract the information from obser-
vational data to correct dynamical models and improve their pre-
diction. There are different approaches such as variational methods
such as 4D-Var and stochastic methods such as ensemble filters that
are widely used in DA. Several textbooks on data assimilation offer
academic explanations and discussion on these methods.1–3,32–34

For demonstration, we consider the dynamical system whose
evolution is governed by

xk+1 ≙M(xk) +wk+1, (1)

where xk ∈ R
n is the state of the dynamical system at discrete time tk

and M : Rn
→ R

n is the nonlinear model operator that defines the
temporal evolution of the system. The term wk+1 denotes the model
noise that takes into account the mathematical model error, numer-
ical approximations, and the boundary conditions. In our study,
we assume that the model noise is drawn from a multivariate nor-
mal distribution with zero mean and a covariance matrix Qk, i.e.,
wk ∼ N(0,Qk).

Let zk ∈ R
m be observations of the state vector obtained through

noisy measurements procedure as follows:

zk ≙ h(xk) + vk, (2)

where h(⋅) is a nonlinear function that maps Rn
→ R

m, also known
as the observational operator defining a map between state space
and measurement space, and vk ∈ R

m is the measurement noise.
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We assume that the measurement noise is a white Gaussian noise
with zero mean and the covariance matrix Rk, i.e., vk ∼ N(0,Rk).
Furthermore, we assume that the noise vectors wk and vk at two dif-
ferent time steps are uncorrelated, which is a common assumption in
data assimilation problems. In this section, first, we review nudging-
based data assimilation methods and then present our approach
of long short-term memory nudging method that can be used for
a variety of problems. Along with nudging methods, for compar-
ison purposes, we also discuss briefly different nonlinear filtering
algorithms for sequential data assimilation in Appendix A.

A. Nudging dynamics

Nudging is a data assimilation method that was introduced by
Anthes30 for the initialization of hurricane models from real obser-
vational data. Contrary to variational and sequential data assimi-
lation methods that minimize the cost function based on the error
between model forecast and observations, nudging methods utilize
the forecast error as a constraint to the model evolution equation.
The evolution of the dynamical system based on nudging methods
can be written as

xk+1 ≙M(xk) +Gkek, (3)

where Gk ∈ R
n×m is called the time varying nudging coefficient

matrix. The forecast error ek in Eq. (3) is computed as follows:

ek ≙ zk − h(xk). (4)

The correction term in Eq. (3) is proportional to ek ∈ R
m (i.e., in

the observation space), and therefore, this form of nudging is called
observation nudging. The literature on nudging can be divided
into different classes/versions based on how the nudging coeffi-
cient matrix is computed. Lakshmivarahan and Lewis35 offer an
overview of the theoretical aspect of nudging methods and present
promising directions of research on the nudging process of dynamic
data assimilation. Nudging methods have been applied for different
applications such as the forecast of Indian Monsoon,36 diagnostic
studies of mesoscale processes in mid-latitude weather systems,37,38

and operational predictions in meteorology and oceanography.39,40

Nudging methods have also been shown to increase the long-term
accuracy of time-dependent partial differential equations.41

Zou, Navon, and Le Dimet42 proposed a parameter-estimation
approach to obtain optimal nudging coefficients using a variational
data assimilation method. They estimated the parameters of the
nudging coefficient matrix by solving the constrained minimization
problem utilizing the Lagrangian formulation. Their cost function
consists of two parts: the first part corresponds to the misfit between
the model results and observations and the second part was related
to keeping the new estimate of nudging coefficients close to its
prior estimate. They enforced the nudged dynamics given in Eq. (3)
as a strong constraint to the optimization problem. They demon-
strated the performance of the optimal nudging method for an adia-
batic version of the National Meteorological Center (NMC) spectral
model with 18 vertical layers. Vidard, Le Dimet, and Piacentini43

introduced another approach to estimate the optimal nudging coef-
ficient matrix using the Kalman filter. They illustrated the proposed
approach for the Burgers equation and shallow-water equations in
a twin experiment framework and showed noticeable improvement

in the prediction. Auroux and Blum44 introduced the back and
forth nudging (BFN) algorithm where the set of observations are
incorporated into the model by running it forward in time, starting
with some initial condition. After the forward run is completed, the
model is again run backward in time, starting from the final state
obtained by the standard nudging method. During the backward
integration, the use of opposite sign for the nudging term to forward
integration makes this algorithm numerically stable. This procedure
is repeated in the BFN algorithm until the convergence. Therefore,
it helps reduce forecast error on a finite time window. One of the
advantages of the BFN algorithm is that it does not require the
linearization of nonlinear equations in order to have the adjoint
model or to solve any optimization problem. The BFN algorithmwas
tested for the Lorenz 63 model and for the quasi-geostrophic model
in the presence of perfect and noisy observations45 and showed
comparable prediction skills to the 4D-VAR algorithm.

Spectral nudging is another technique where the nudging term
is added in the spectral domain with maximum efficiency for large
scales and no effect for small scales.46 This method has been suc-
cessfully applied to force large-scale atmospheric states from global
climate models onto a regional climate model.47–51 The main idea
in spectral nudging is that small-scale details for weather prediction
are governed by the interplay between larger-scale atmospheric flow
and geographic features such as mountains and land–sea distribu-
tion. It is computationally impractical to resolve these small scales
in global climate models. Therefore, spectral nudging is applied to
match overlapping scales in global and regional climate models by
forcing the regional model to behave as a global model. Spectral
nudging method has also been applied for inferring flow parame-
ters for turbulent flows,52 and for three-dimensional homogeneous
isotropic turbulence.53 There are also nudging methods that make
use of the present and past observations in the formulation of the
forcing term to drive the model evolution toward observation.54,55

An et al.56 used the time delayed nudging method54 for estimating
the state of the geophysical system from sparse observation data.

B. Long short-term memory nudging

With the huge amount of data generated from high-fidelity
numerical simulations, non-invasive experimental techniques such
as particle image velocimetry (PIV), and satellite data, there is a
growing interest in using machine learning for data assimilation.26,57

One of the difficulties in weather and climate prediction is that
atmospheric flows are multiscale in nature and their dynamics are
typically chaotic. Several data-driven algorithms can address these
challenges. The recurrent neural networks (RNNs) are particularly
attractive for complex dynamical systems due to their ability to cap-
ture temporal dependencies and to take state history into account for
future state prediction. One of the problems with RNN is that the
gradient vanishes during the learning procedure. Long short-term
memory58 is a type of RNN that alleviates this issue of vanishing
gradient59 by employing cell architecture that remembers or forgets
information.

There is a rich literature on the application of LSTM for mod-
eling chaotic dynamical systems. Vlachas et al.11 proposed a data-
driven forecasting method for the high-dimensional chaotic system
by modeling their temporal dynamics on reduced order space using
LSTM. They also integrated the LSTMwith a mean stochastic model
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to ensure convergence and demonstrated its improved prediction
performance compared to the Gaussian process. In Wan et al.,60 the
LSTM was employed to learn the mismatch between the imperfect
Galerkin based reduced order model and the actual dynamics pro-
jected onto the reduced order space. They showed the improved per-
formance of the proposed framework for the prediction of extreme
events. Jia et al.61 introduced the physics-guided RNN that combines
the LSTM and physics-based model to model the dynamics of tem-
perature in lakes. They utilized a physics-based regularization as a
penalty term to the optimization cost function to enforce physics
into the training. Apart from LSTM, other machine learning algo-
rithms such as reservoir computing have been used for modeling
chaotic dynamical systems10,62 and residual network for predicting
dynamical system evolution.63,64 In a recent study, Vlachas et al.65

investigated the performance of LSTM trained with backpropaga-
tion through time and reservoir computing for long term forecasting
of chaotic dynamical systems.

Zhang et al.66 presented an LSTM based Kalman filter for data
assimilation of two-dimensional spatio-temporal varying depth of
ocean field for underwater glider path planning. In their study, the
temporal evolution of the spatial basis function was modeled using
LSTM. They train the LSTM network to predict the future tempo-
ral coefficients based on the historical states of these coefficients.
Jin et al.67 utilized LSTM to perform observation bias correction for
data assimilation of dust storm prediction. They showed that with
the LSTM model for bias corrections, existing measurements are
used precisely and that improves the resulting prediction accuracy.
In the work by Loh, Omrani, and van der Linden,68 the LSTM was
deployed as a prediction model for their EnKF approach to achieve
real-time production forecast in natural gas wells. Xingjian et al.69

proposed a convolutional LSTM framework to predict the rainfall
intensity over a short period of time and illustrated its ability to
capture more improved correlation than the existing methods.

Motivated by the previous successes of employing neural net-
works for making better predictions in geophysical applications, in
the present study, we introduce an LSTM nudging scheme. The
LSTM network is trained to learn the correction term based on the
background state of the system and observations. To train the LSTM
network, we initialize the state of the system for different training
sets from prior distribution of the true initial state. This step is sim-
ilar to initializing different ensemble members in the case of the
EnKF algorithm. We then evolve the system with erroneous initial
conditions and compute the correction term at all observation points
as follows:

ϵk(i) ≙ X̂k(i) − xk. (5)

The input features to the LSTM network (denoted by Xk) consist
of full state of the system (from erroneous initial conditions) and
current observations, i.e., Xk ≙ {X̂k(i); zk} ∈ Rn+m, where m is the
number of observations. Based on these input features, the LSTM
is trained to learn the correction term for all states, i.e., the output
of the LSTM is Yk ≙ {ϵk(i)} ∈ Rn. The LSTM network is capable
of capturing the temporal dependencies and utilizing it to forecast
the system’s future state. Therefore, we can also train the LSTM net-
work by including the temporal history of the system’s states and
observations as input features. For further details on incorporating
the temporal history of the system’s state into training, refer to the

work of Rahman et al.9 The procedure for the training phase of the
LSTM nudging scheme is outlined in Algorithm 1.

We adopt the predictor–corrector approach during online
deployment. Since the LSTM network is trained to learn the map-
ping from the state of the system generated with the erroneous ini-
tial condition, we start with two systems. We use the superscript
E to denote the system with the erroneous initial condition and
C to denote the evolution of the system whose state is corrected
at each observation point. The procedure for online deployment
is reported in Algorithm 2. We start with initializing two systems
with the same initial condition based on some educated guess. The
forward dynamics of erroneous and corrected systems are evolved
simultaneously as

X
E
k+1 ≙M(XE

k), (6)

X
C
k+1 ≙M(XC

k ). (7)

Once the observations are available, we determine the correction
term using the trained LSTM network as follows:

ϵk+1 ≙M({XE
k+1; zk+1}). (8)

This correction is for the state of the system generated with the erro-
neous initial condition. Therefore, the correction is added to the
erroneous system’s state at that time and assigned to the corrected
system using the following superposition:

X
C
k+1 ≙ X

E
k+1 + ϵk+1. (9)

The schematic of the LSTM nudging framework is depicted
in Fig. 1. We highlight some of the features of the LSTM nudging
framework here. The LSTM nudging framework is highly modu-
lar, and it can be implemented with other types of neural network

ALGORITHM 1. LSTM Nudging (training phase).

1: Initialize the state of the system for different training sets from
prior distribution of x0 ∼ N(m0, P0).

X̂0(i) ≙m0 + y0(i),
where y0(i) ∼ N(0, P0).

2: Integrate the dynamical system and store the system’s state at all
observation points, i.e., at time t1, . . ., tk.

3: Compute the correction term at time t1, . . ., tk with respect to the
true state of the system as follows:

ϵk(i) ≙ X̂k(i) − xk,
where xk is the true state of the system at tk.

4: Each sample of the input training matrix Xk and corresponding
output data matrix Yk is constructed as follows:

Xk ≙ {X̂k(i); zk} ∈ Rn+m,

Yk ≙ {ϵk(i)} ∈ Rn,

wherem is the number of observations.
5: Train the LSTMmodel to learn the mapping from input to output

M : Xk ⇒ Yk.
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ALGORITHM 2. LSTM nudging (online deployment).

1: Initialize the state of the system for twomembers with an educated
guess for an initial condition.

XE
0 ≙ x0,

XC
0 ≙ x0.

2: For k = 0, 1, . . ., proceed as follows:
• Forecast step: integrate the state estimate for two systems from
time tk to tk+1 as follows:

XE
k+1 ≙M(XE

k),
XC
k+1 ≙M(XC

k ).
• Data assimilation step: once the observations are available at
time tk+1, they are used to determine the correction term with
the trained LSTM network and correct the state estimate as
follows:

ϵk+1 ≙M({XE
k+1; zk+1}),

XC
k+1 ≙ X

E
k+1 + ϵk+1.

architectures also based on the size or type of problems. For exam-
ple, convolutional autoencoders are gaining popularity to find the
nonlinear basis functions of complex physical systems and they are
complemented with the LSTM network for learning the latent-space

dynamics.70–76 The LSTM nudging framework can be easily applied
to high dimensional systems, where convolutional autoencoders are
employed for dimensionality reduction and the LSTM is trained
to learn the nudging dynamics in latent-space instead of high-
dimensional space. Novel neural network architectures such as gen-
erative adversarial networks (GANs)77,78 can also be applied to
learn the nudging dynamics. Another feature of the LSTM nudging
scheme is that once the network is trained with the archival or back-
ground data, it can be retrained efficiently with transfer learning as
the new observation data become available. Therefore, training the
LSTM network for the first time is the only computationally heavier
part of the LSTM nudging scheme. Our main goal in this study is to
illustrate that neural networks can be effectively trained to provide
accurate and stable nudging dynamics.

III. DATA ASSIMILATION PROBLEM SETUP

In this section, we describe the Lorenz 96 model proposed by
Lorenz,79 which is commonly used as a prototypical test case in data
assimilation. This model describes the temporal evolution of atmo-
spheric quantity discretized spatially over a single latitude circle. The
system of ordinary differential equations governing the Lorenz 96
model can be written as

dui

dt
≙ ui−1(ui+1 − ui−2) − ui + F (10)

for i ∈ {1, 2, . . ., n}. The first term on the right-hand side of
Eq. (10) is the nonlinear advection term, the second term presents an

FIG. 1. Overview of the LSTM-DA framework. The LSTM-DA framework consists of three main steps: data preprocessing, training the neural network, and the deployment of
trained network.
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internal dissipation, and the third term presents an external forcing.
We use n = 40 and F = 10 in our analysis. The forcing F = 10 is cho-
sen as a strongly supercritical value to make the system sufficiently
chaotic80 and have a similar doubling time that is more compatible
with larger models.81 We apply the periodic boundary conditions at
ghost points, i.e., u0 = un, u−1 = un−1 and un+1 = u1.

We use the fourth-order Runge–Kutta scheme for time integra-
tion with a time step of Δt = 0.005. To generate a physical initial
condition for the forward run, we start with an equilibrium con-
dition at time t = −5. The equilibrium condition for the model is
ui = F for i ∈ {1, 2, . . ., n}. We introduce a very little perturbation
to the equilibrium state for the state u20, i.e., we set u20 = F + 0.01
to generate chaotic dynamics and then do the time integration up to
t = 0. Once the true initial condition is generated, we run the forward
solver up to time t = 10.

The twin experiment is one of the most commonly used meth-
ods to validate any data assimilation algorithm before it can be
applied to real-life applications.82 For twin experiments, we first gen-
erate the n-dimensional data for the Lorenz 96 model and select m
observations. These observations are obtained by adding some noise
to the true state of the system to take experimental uncertainties and
measurement error into account. The observations are also sparse in
time, meaning that the time interval between two observations can
be different from the time step of the model. For our twin experi-
ments, we assume that observations are recorded at every tenth time
step of the model. Therefore, the time difference between two obser-
vations is δt = 0.05. The analysis time step δt = 0.05 is representative
of 6 h of a data assimilation cycle of global meteorological models.
The accurate estimation of the full state of the system depends upon
the number of observations that are assimilated by the model.83

We assume that observation locations are constant throughout the
time unlike asynchronous observations where they can be rotated.84

We compare the performance of traditional data assimilation algo-
rithms and the proposed LSTM nudging algorithm for three sets of

observations. The first set of observations is very sparse with only
10% of the full state of the system (i.e.,m = 4), utilizing observations
for states [u10, u20, u30, u40] ∈ R

4. In a second set of observations
(m = 8), we employ observations at [u5, u10, . . ., u40] ∈ R

8 for the
assimilation. The third set of observations consists of 50% of the full
state of the system (m = 20), i.e., observations at states [u2, u4, . . .,
u40] ∈ R

20 for the assimilation.

IV. RESULTS

In this section, we describe the results of numerical experiments
with the Lorenz 96model using algorithms discussed in Secs. II, II A,
and II B. We assume that our model is perfect for all numerical
experiments except for the EKF and EnKF algorithms. For these
two algorithms, it is found that an introduction of small uncertainty
in the model provides more accurate predictions than the assump-
tion of a perfect model. For the aforementioned two algorithms, we
assume that the model noise is drawn from the Gaussian distribu-
tion with zero mean and variance 1 × 10−4. The observations are
created by adding random noise from Gaussian distribution with
zero mean and variance 1 × 10−2 to the true state of the system.
The erroneous initial condition is generated by adding a noise from
Gaussian distribution of zero mean and 1 × 10−2 variance to the
true initial condition. To ensure a fair comparison between EnKF
and DEnKF, we use an equal number of ensembles in both algo-
rithms. For the comparison, we plot time evolution of states u10, u21,
u39 and also the full state trajectory of the Lorenz 96 model. We use
black lines to denote true states, blue dashed lines to denote states
with the erroneous initial condition, and green dashed-dotted lines
for assimilated states. The observations for the state u10 are shown
with red circles in all the time series plots.

In Fig. 2, we present the time evolution of the selected states
for three different numbers of observations included in the assimila-
tion of the EKF algorithm. There is an excellent agreement between

FIG. 2. Selected trajectories of the Lorenz 96 model with the analysis performed by the extended Kalman filter (EKF) using observations from m = 4 (left), m = 8 (middle),
and m = 20 (right) state variables at every ten time steps.
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true and assimilated states u21 and u39 when more than 20% obser-
vations are utilized for assimilation. We also provide the full state
trajectory of the Lorenz 96 model in Fig. 3. The results obtained
clearly show that the EKF algorithm can determine the correct
state trajectory with more than 20% observations, i.e., for m ≥ 8.
We observe a discrepancy in prediction after t ∼ 7 when only
four observations are used in the assimilation step. Figure 4 shows
the time evolution of the selected states predicted by using the
EnKF algorithm with N = 40 ensemble members. We notice some
discrepancy between the true and predicted states withm = 12 obser-
vations after t ∼ 7.5. If we compare the full state trajectory predic-
tion by the EnKF algorithm in Fig. 5, we can conclude that there
is almost a perfect match between true and assimilated states with
more than eight observations. Since the EnKF algorithm is based
on the Monte Carlo framework, its accuracy can be improved by
applying an increased number of ensembles. The typical number
of ensembles is O(100) for high-dimensional systems,85–87 and we
often use localization approaches. Considering that the Lorenz 96
model is a lower-dimensional system with n = 40 states, we apply
only 40 ensemble members without using any localization kernel. If
we consider the computational cost of the EKF algorithm, the major
bottleneck is the propagation of the error covariance matrix as given

in Eq. (A5). The computational overhead of the EnKF algorithm
goes up with an increase in the number of ensembles. However, with
the advancement in parallel algorithms and high-performance com-
puting, ensemble Kalman filter algorithms are particularly attractive
data assimilation of complex physical systems.88

As we observed in Fig. 5, the use of virtual observations in the
EnKF algorithm leads to suboptimal performance when fewer obser-
vations are used for assimilation with a small number of ensembles.
The EnKF data solution converges toward a true solution with an
increase in the number of ensembles. The DEnKF algorithm is the
deterministic version of the EnKF algorithm where no virtual obser-
vations are used. Instead of using virtual observations, the DEnKF
algorithm updates the ensemble mean with the standard analysis
equation, and ensemble anomalies are updated separately with half
the Kalman gain in the same equation.89 In Fig. 6, we illustrate the
time evolution of selected states for different percentages of observa-
tions used in the assimilation step.We notice that even with just four
observations, the DEnKF algorithm is able to correct the erroneous
states up to the final time t = 10. From the results depicted in Fig. 7,
we can deduce that the DEnKF algorithm leads to a better perfor-
mance than the EnKF algorithm when the number of observations
is smaller.

FIG. 3. Full state trajectory of the Lorenz 96 model with the analysis performed by the extended Kalman filter (EKF) using observations from m = 4 (left), m = 8 (middle), and
m = 20 (right) state variables at every ten time steps.
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FIG. 4. Selected trajectories of the Lorenz 96 model with the analysis performed by the ensemble Kalman filter (EnKF) with N = 40 member ensemble using observations
from m = 4 (left), m = 8 (middle), and m = 20 (right) state variables at every ten time steps.

FIG. 5. Full state trajectory of the Lorenz 96 model with the analysis performed by the ensemble Kalman filter (EnKF) with N = 40 member ensemble using observations from
m = 4 (left), m = 8 (middle), and m = 20 (right) state variables at every ten time steps.
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FIG. 6. Selected trajectories of the Lorenz 96 model with the analysis performed by the deterministic ensemble Kalman filter (DEnKF) with the N = 40 member ensemble
using observations from m = 4 (left), m = 8 (middle), and m = 20 (right) state variables at every ten time steps.

FIG. 7. Full state trajectory of the Lorenz 96 model with the analysis performed by the deterministic ensemble Kalman filter (DEnKF) with the N = 40 member ensemble using
observations from m = 4 (left), m = 8 (middle), and m = 20 (right) state variables at every ten time steps.
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FIG. 8. Selected trajectories of the Lorenz 96 model with the analysis performed by the forward nudging with m = 20 observations state variables at every ten time steps for
τ = 50Δt (left), τ = 100Δt (middle), and τ = 200Δt (right).

FIG. 9. Full state trajectory of the Lorenz 96 model with the analysis performed by the forward nudging with m = 20 observations state variables at every ten time steps for
τ = 50Δt (left), τ = 100Δt (middle), and τ = 200Δt (right).
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FIG. 10. Selected trajectories of the Lorenz 96 model with the analysis performed by the forward nudging with τ = 150Δt using observations from m = 4 (left), m = 8 (middle),
and m = 20 (right) state variables at every ten time steps.

FIG. 11. Full state trajectory of the Lorenz 96 model with the analysis performed by the forward nudging with τ = 150Δt using observations from m = 4 (left), m = 8 (middle),
and m = 20 (right) state variables at every ten time steps.
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FIG. 12. Selected trajectories of the Lorenz 96 model with the analysis performed by the LSTM nudging with the N = 40 member ensemble for training using observations
from m = 4 (left), m = 8 (middle), and m = 20 (right) state variables at every ten time steps.

FIG. 13. Full state trajectory of the Lorenz 96 model with the analysis performed by the LSTM nudging with the N = 40 member ensemble for training using observations from
m = 4 (left), m = 8 (middle), and m = 20 (right) state variables at every ten time steps.
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FIG. 14. Selected trajectories of the Lorenz 96 model with the analysis performed by the LSTM nudging with the N = 40 member ensemble for training using observations
from m = 2 (left), m = 3 (middle), and m = 4 (right) state variables at every ten time steps.

FIG. 15. Full state trajectory of the Lorenz 96 model with the analysis performed by the LSTM nudging with the N = 40 member ensemble for training using observations from
m = 2 (left), m = 3 (middle), and m = 4 (right) state variables at every ten time steps.
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The nonlinear filtering methods discussed in Appendix A are
computationally expensive and are prone to the curse of dimen-
sionality with an increase in the resolution of the forward numeri-
cal model. Nudging methods, on the other hand, are computation-
ally inexpensive and straightforward to implement. As described in
Sec. II A, nudging is accomplished by adding a correction term to the
dynamical model, which is proportional to the difference between
observations and model forecast. One of the main limitations of
nudging methods is the ad hoc specification of the nudging relax-
ation coefficient, and it is not clear how to choose this coefficient to
obtain an optimal solution.90 Here, we demonstrate how the choice
of nudging coefficient affects the prediction when 20 observations
are available for assimilation. Since the nudging coefficient repre-
sents the relaxation of time scale, we use a constant value for the
nudging coefficient that is a function of the time step of the model.
Also, the nudging coefficient is assumed to be constant throughout
the time integration, i.e., Gk = τ, where τ is a function of the time
step of the model. Figure 8 displays the time evolution of the selected
states for three different values of the nudging coefficient. We notice
that for a higher value of τ, the nudging method is not able to cor-
rect the model forecast accurately. Figure 9 provides the full state
trajectory of the Lorenz 96 model with different nudging coefficient

matrices. We observe that the error is sufficiently low at τ = 100Δt.
Although, the prediction can be further refined by fine-tuning of the
nudging coefficient matrix.

Figures 10 and 11 present the time evolution of the selected
states and full Lorenz 96 system for different numbers of observa-
tions with τ = 150Δt. We can easily see that the prediction capability
of the nudging scheme is poor when less number of observations
are available for the assimilation. Indeed, the performance of the
nudging scheme can be improved by the optimal specification of
the nudging coefficient42 or by using the back and forth nudging
algorithm.44 However, the optimal nudging coefficient computa-
tion involves obtaining an adjoint model and solving a constrained
minimization problem. Also, the back and forth nudging algorithm
requires O(10) iterations for convergence, and the computational
cost will be large for high-dimensional systems. Therefore, machine
learning algorithms that are successful in finding the nonlinear map-
ping between two quantities can be exploited to learn the nudging
dynamics.

Now, we describe the results of numerical experiments with the
LSTM nudging scheme described in Sec. II B. For the fair compar-
ison with the EnKF and DEnKF algorithms, we use the data gen-
erated from N = 40 perturbed initial conditions for the training of

FIG. 16. Full state error of the Lorenz 96 model with the analysis performed by the ensemble Kalman filter (EnKF), deterministic ensemble Kalman filter (DEnKF), and LSTM
nudging with the N = 200 member ensemble using observations from m = 2 (left), m = 3 (middle), and m = 4 (right) state variables at every ten time steps.
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the LSTM network. These perturbed initial conditions are created
by adding noise from the Gaussian distribution of zero mean and
1 × 10−2 variance to the erroneous initial condition. The training
data are obtained by integrating the model with these perturbed ini-
tial conditions from time t = 0 to t = 10 with Δt = 5 × 10−3 and
then storing the states at all times where observations are present.
Therefore, there will be 40 000 samples available for training the
LSTM network. The LSTM network is trained using the procedure
described in Algorithm 1. We use fairly simple LSTM architecture
with two hidden layers consisting of 80 LSTM cells each and train
the network for 2500 epochs. We apply the ReLU activation func-
tion and Adam optimizer for the optimization. We found that our
training is not highly sensitive to neural network hyperparameters,
and a similar level of accuracy can be achieved with other sets of
hyperparameters. Figure 12 presents the time evolution of selected
states for three different numbers of observations. We see that the
LSTM network has learned the mapping from input data to the cor-
rection term and is able to produce the correct trajectory even for
those states for which observations are not available. In Fig. 13, we
provide the full state trajectory of the Lorenz 96 model for the LSTM
nudging method. We get a sufficient level of accuracy comparable to
nonlinear filtering algorithms with 20% observations.

From our analysis of numerical experiments with three sets of
observations, we can conclude that the LSTM network can learn
the nudging dynamics efficiently. Some of the other questions that
we want to investigate in this study are as follows: How sparse can
the observations be for an accurate prediction? How much training
data are required for training the network effectively? Figure 14 dis-
plays the time evolution of the selected states for the LSTM nudging
scheme with very sparse observations, i.e., m = 2, 3, and 4, and we
observe a large discrepancy between true and predicted states with
less than 10% observations. Figure 15 reports the full state trajectory
for the Lorenz 96 model with very sparse observations. The results
in Figs. 14 and 15 suggest that at least 10% observations are neces-
sary for producing the correct prediction with low error. We point
out here that we utilized the data created from only 40 perturbed
initial conditions for training, and it is well known that the perfor-
mance of the neural network can be improved by training with more
data.

In Figs. 16 and 17, we illustrate the improvement in prediction
for highly sparse observations as the amount of data employed for
training the LSTM network is increased. We show only the error
plot (the difference between true and predicted states) for concise-
ness. We can easily observe that the error is large for the EnKF

FIG. 17. Full state error of the Lorenz 96 model with the analysis performed by the ensemble Kalman filter (EnKF), deterministic ensemble Kalman filter (DEnKF), and LSTM
nudging with N = 400 member ensemble using observations from m = 2 (left), m = 3 (middle), and m = 4 (right) state variables at every ten time steps.
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and DEnKF algorithms compared to the LSTM nudging scheme
when only two or three observations are available for assimilation.
When four observations are present, we see a similar level of accu-
racy for EnKF, DEnKF, and LSTM nudging method. If we compare
the error in Figs. 16 and 17, there is an improvement in the pre-
diction as we increase the training data. The results presented in
Figs. 16 and 17 are obtained by utilizing N = 200 and N = 400
ensemble members for the EnKF and DEnKF algorithms. The same
number of perturbed initial conditions are also used for training
the LSTM network. Therefore, in terms of computational cost, all
three methods can be considered equivalent because the same num-
ber of forward numerical models are integrated from initial time to
final time for all three methods. In terms of the storage, the LSTM
nudging is more demanding as it requires the storage of full state
for all training sets (i.e., perturbed initial condition) at all observa-
tion points for the training. However, there is no need to store the
solution of all ensemble members in the EnKF and DEnKF algo-
rithm. This limitation can be addressed by transfer learning, where
the weights and biases of the neural network are updated by train-
ing its last few layers with new data. Therefore, training the LSTM
network for the first time is a computationally intensive task, and
the LSTM network can be retrained as new observations become
available.

V. CONCLUSIONS

In the present study, we introduced the LSTM nudging scheme
that learns the nudging dynamics from the full state of the sys-
tem and partial observations. We illustrate the approach for the
Lorenz 96 system and compare its performance against extended
Kalman filter (EKF), ensemble Kalman filter (EnKF), and deter-
ministic ensemble Kalman filter (DEnKF) approaches. We consider
different aspects of the LSTM nudging scheme such as sparsity
in observations and the amount of available data for training the
LSTM network. We successfully demonstrate that the LSTM net-
work can be trained to learn the nudging dynamics with extremely
sparse observations provided that there is a large amount of train-
ing data. In terms of computational overhead, training the neural
network is the most demanding task. However, this is a one time
task, and future observations can be incorporated by retraining the
neural network with transfer learning at a much less computational
cost.

The results of our numerical experiments with the LSTM nudg-
ing scheme indicate its potential benefit of assimilation from very
sparse observations. Another benefit is that there are nomatrix com-
putational operations such as Kalman gain calculation. One of the
important caveats of the LSTM nudging scheme is that the neural
networks are data-hungry, and hence, a large amount of archival or
background data will be necessary to train the neural network. The
suitability of the LSTM nudging scheme for DA problems is sum-
marized in Fig. 18, where the DA problems are classified based on
the sparsity of observations and the amount of archival background
information. The LSTM nudging scheme is well suited for prob-
lems where observations are very sparse and there is an availability
of archival background information (i.e., type I problems). These
problems can arise when obtaining observations is very challeng-
ing or expensive, such as the sparse rain gauge network over com-
plex topography.91 Another limitation is that the training procedure

FIG. 18. Segregation of problems encountered in data-assimilation based on the
observations and archival/ensemble background data. LSTM nudging method
is particularly suitable where there is a rich amount archival or background
information available for training the network and observations are sparse.

in the present form will not be feasible for very high-dimensional
systems. One of the solutions to address this constraint is to uti-
lize reduced order modeling (ROM) approaches for dimensionality
reduction, and recently, machine learning methods are found to
give accurate, stable, and robust ROMs for physical systems. Since
the LSTM nudging scheme is flexible, we foresee that this approach
can be extended to large scale systems by blending it with ROM
approaches. One more reservation of the LSTM nudging method is
that it does not predict the uncertainty in analyzed states.

In the present work, we focus on a relatively simple chaotic sys-
tem that adequately captures the essence of a variety of prediction
problems. On the other hand, we can arguably discuss that many
methods in chaotic synchronization might work well only for some
specific systems. To elucidate this further, although not shown in
this report, we verify that our proposed method is robust in para-
metric variability (e.g., we can reproduce similar conclusions using
F = 8 in our model). With this in mind, however, we highlight that
the robustness of the LSTM nudging scheme needs further inves-
tigation for problems that exhibit higher level of complexity than
the Lorenz 96 model. Therefore, in our future studies, we intend
to explore the feasibility of the LSTM nudging approach for more
complex settings such as the two-scale Lorenz 96 system79 and shell
models for turbulence.92–96

We re-emphasize here that the significance of the proposed
LSTM nudging method on the prototype model does not mean that
it can be directly extended to higher-dimensional and more com-
plex problems. In this work, we assumed that the model is perfect
and the noise is Gaussian, which is a very idealized condition. In
actual scenarios, real weather forecast models are approximate and
contain a lot of parameterizations for subgrid scale processes. There-
fore, one can look at the results of numerical experiments presented
in this study as the early findings, and substantial future work is
required for the demonstration of the proposed method in a realistic
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situation. As a part of future studies, we plan to illustrate the LSTM
nudging method for a two-dimensional quasi-geostrophic model
with an application of the convolutional autoencoder for dimen-
sionality reduction. Neural networks have also been shown to be
capable of discovering hidden information about the physical pro-
cesses embedded in the data,97,98 and we will integrate these methods
with the LSTM nudging scheme for imperfect models.
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APPENDIX A: NONLINEAR FILTERING

In this appendix, we outline the algorithms for extended
Kalman filter (EKF), ensemble Kalman filter (EnKF), and determin-
istic ensemble Kalman filter (DEnKF). In sequential data assimi-
lation problems, the objective is to estimate the state xk given the
observations up to time tk, i.e., z1, . . ., zk. When we use observations
to estimate the state of the system, we say that the data are assim-
ilated into the model. There is a number of studies that deal with
non-Gaussian distributions for noise vectors.99–101 However, this is
outside the scope of this study, and we restrict to the assumption of
Gaussian noise for model and measurement errors.

We will use the notation x̂k to denote an analyzed state of the
system at time tk when all of the observations up to and including
time tk are used in determining the state of the system. When all
the observations before (but not including) time tk are utilized for
estimating the state of the system, then we call it the forecast esti-

mate and denote it as x f

k
. We use the notation Pk to denote the error

covariance matrix. The error covariance matrix for the state vector
xk is defined as

Pk ≙ E∥(xk − E∥xk∥)(xk − E∥xk∥)T∥, (A1)

where E[⋅] denotes the expected value. We use P̂k to denote the

error covariance for an analyzed state x̂k and P
f

k
denotes the error

covariance for the forecast estimate x f

k
.

1. Extended Kalman filter

To start with an EKF algorithm, we initialize the state of the
system and error covariance matrix,

x̂0 ≙ E∥x0∥, (A2)

P̂0 ≙ P0. (A3)

Then, we evolve the state of the system between two observation
points (from time tk to tk+1) using the known nonlinear dynamics,

x
f

k+1 ≙M(̂xk), (A4)

and the error covariance matrix is propagated between two observa-
tion points using

P
f

k+1 ≙ DMP̂kD
T
M +Qk+1. (A5)

Here, DM ∈ R
n×n is the Jacobian of the model M(⋅) and the super-

script T denotes the transpose of the matrix. Once the observation
zk+1 becomes available at time tk+1, we assimilate it into the forecast
state using

x̂k+1 ≙ x
f

k+1 +K∥zk+1 − h(xfk+1)∥. (A6)

The matrix K ∈ R
n×m refers to the Kalman gain matrix and is

computed as

K ≙ P
f

k+1D
T
h∥DhP

f

k+1D
T
h + Rk+1∥−1, (A7)

where Dh ∈ R
m×n is the Jacobian of observation function h(⋅).

The Kalman gain matrix decides the influence of measurements on
the estimated state. When the measurement error covariance Rk+1

approaches zero, the Kalman gain K gives more weight to the resid-

ual defined as [zk+1 − h(xfk+1)]. On the other hand, when the error

covariance Pf

k+1 is very small, the Kalman gain K weights the resid-
ual less heavily. Each row of the Kalman gain matrix contains the
influence of all observation points on one element of the state xk+1
corresponding to that row. The analyzed error covariance matrix is
calculated by

P̂k+1 ≙ (I −KDh)Pf

k+1, (A8)

where I ∈ Rn×n is an identity matrix. The complete procedure for the
EKF is summarized in Algorithm 3.

2. Ensemble Kalman filter

When the system is high-dimensional, i.e., n is very large, then
the computations for the EKF algorithm are practically infeasible. In
addition, the EKF algorithm requires computation of Jacobians, and
it might be numerically difficult to compute Jacobians for complex
models. Ensemble filtering techniques are attractive for such systems
where the approximate state of the system is estimated using the
standard Monte Carlo framework. In EKF, the mean estimate of the
state x̂k and the error covariance matrix P̂k are updated sequentially.
In contrast to an EKF algorithm, we apply the forecast step to an
ensemble of states in the EnKF algorithm.1 The sample mean and
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ALGORITHM 3. Extended Kalman filter.

1: Initialize the state of the system and error covariance.

x̂0 ≙ E∥x0∥,
P̂0 ≙ P0.

2: For k = 0, 1, . . ., proceed as follows:
• Forecast step: integrate the state estimate and its error
covariance from time tk to tk+1 as follows:

x
f

k+1 ≙M(̂xk),
P
f

k+1 ≙ DMP̂kD
T
M +Qk+1.

• Data assimilation step: once the observations are available at
time tk+1, they are incorporated into the state estimate and error
covariance estimation as follows:

x̂k+1 ≙ x
f

k+1 +K∥zk+1 − h(xfk+1)∥,
K ≙ P

f

k+1D
T
h∥DhP

f

k+1D
T
h + Rk+1∥−1,

P̂k+1 ≙ (I −KDh)Pf

k+1.

covariance of the ensembles analyses represent the analyzed state
estimate x̂k and error covariance matrix P̂k.

Let x0 be an initial condition drawn from the Gaussian dis-
tribution with mean m0 and the covariance matrix P0, i.e., x0
∼ N(m0,P0). In our notation, we use Xk(i) to denote the ith mem-
ber of ensembles and N is the size of ensembles, i.e., i = 1, 2, . . ., N.
We initialize the state of the system for all ensemble members from
known distribution of the initial condition for the system as

X̂0(i) ≙m0 + y0(i). (A9)

Then, we forecast the state of the system for all ensemble members
between two observation points (i.e., from time tk to tk+1) using the
nonlinear model dynamics as

X
f

k+1(i) ≙M(X̂k(i)) +wk+1. (A10)

The forecast state estimate and error covariance are calculated based
on the sample mean and sample variance of all ensembles as follows:

x
f

k+1 ≙
1

N

N

∑
i=1

X
f

k+1(i), (A11)

P
f

k+1 ≙
1

N − 1

N

∑
i=1

E
f

k+1(i)∥Ef

k+1(i)∥T, (A12)

where

E
f

k+1(i) ≙ Xf

k+1(i) − xfk+1. (A13)

Once the observations zk+1 are available at time tk+1, we create N
different virtual observations using

Zk+1(i) ≙ zk+1 + vk+1(i). (A14)

In the original formulation of the EnKF algorithm proposed by
Evensen,102 virtual observations were not used in the assimilation
step. However, Burgers, Jan van Leeuwen, and Evensen103 showed
that it is essential to include random perturbations to observations
to ensure that the analyzed covariance is not underestimated. Once
the virtual observations are generated, the forecast state estimate for
all ensembles are assimilated by

X̂k+1(i) ≙ Xf

k+1(i) +K∥Zk+1(i) − h(Xf

k+1(i))∥. (A15)

The Kalman gain K is computed using the same formula as the EKF
algorithm. The analysis state estimate is calculated using the sam-
ple mean of the analyzed state estimate for all ensemble members as
follows:

x̂k+1 ≙
1

N

N

∑
i=1

X̂k+1(i). (A16)

The complete procedure for the EnKF is summarized in Algo-
rithm 4.

ALGORITHM 4. Ensemble Kalman filter.

1: Initialize the state of the system for different ensemble members.

X̂0(i) ≙m0 + y0(i),
where y0(i) ∼ N(0, P0).

2: For k = 0, 1, . . ., proceed as follows:
• Forecast step:
– Integrate the state estimate all ensemble members from time
tk to tk+1 as follows:

X
f

k+1(i) ≙M(X̂k(i)) +wk+1.

– Compute the sample mean and error covariance as follows:

x
f

k+1 ≙
1
N

N

∑
i=1

X
f

k+1(i),
E
f

k+1(i) ≙ Xf

k+1(i) − xfk+1,
P
f

k+1 ≙
1

N−1

N

∑
i=1

E
f

k+1(i)∥Ef

k+1(i)∥T.
• Data assimilation step:
– Once the observations are available at time tk+1, generate N
realizations of virtual observations as follows:

Zk+1(i) ≙ zk+1 + vk+1(i),
where vk+1(i) ∼ N(0, Rk+1).

– Assimilate the state estimate with virtual observations for all
ensemble members as follows:

X̂k+1(i) ≙ Xf

k+1(i) +K∥Zk+1(i) − h(Xf

k+1(i))∥,
K ≙ P

f

k+1D
T
h∥DhP

f

k+1D
T
h + Rk+1∥−1.

– Compute the samplemean to get analysis state estimate at time
tk+1,

x̂k+1 ≙
1
N

N

∑
i=1

X̂k+1(i).
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3. Deterministic ensemble Kalman filter

Sakov and Oke89 proposed a modification in traditional EnKF
that results into matching the analyzed error covariance to that of
the standard Kalman filter without the need for virtual observations.
We start the DEnKF algorithm in a similar manner as the EnKF
algorithm by initializing the state estimate for all ensemble members
using

X̂0(i) ≙m0 + y0(i). (A17)

The anomalies between the forecast estimate of all ensembles and its
sample mean are computed utilizing

A
f

k+1(i) ≙ X f

k+1(i) − xfk+1, (A18)

where

x
f

k+1 ≙
1

N

N

∑
i=1

X
f

k+1(i). (A19)

The error covariance matrix becomes

P
f

k+1 ≙
1

N − 1

N

∑
i=1

A
f

k+1(i)∥Af

k+1(i)∥T. (A20)

Once the observations are available at time tk+1, the forecast state
estimate is assimilated as

x̂k+1 ≙ x
f

k+1 +K∥zk+1 − h(xfk+1)∥, (A21)

where the Kalman gain K is computed in a similar manner as the
EKF algorithm as follows:

K ≙ P
f

k+1D
T
h∥DhP

f

k+1D
T
h + Rk+1∥−1. (A22)

The anomalies for all ensemble members are updated separately
with half the Kalman gain. Therefore, the analyzed anomalies for all
ensemble members are calculated using the following expression:

Âk+1(i) ≙ Af

k+1(i) − 1

2
KDhA

f

k+1(i). (A23)

The analyzed state estimate for all ensemble members is then
obtained by offsetting the analyzed anomalies with the analyzed state
estimate and is computed using

X̂k+1(i) ≙ Âk+1(i) + x̂k+1. (A24)

The procedure for the deterministic EnKF (DEnKF) is summa-
rized in Algorithm 5. In practice (e.g., when n ≫ N), we com-
pute Eq. (A22) using its square root version (without storing or

computing Pf

k+1 explicitly),

K ≙
1

N − 1
A

f (DhA
f )T[ 1

N − 1
(DhA

f )(DhA
f )T + R]−1, (A25)

where a size of Rn×N matrix is concatenated as follows:

A
f
≙ ∥Af

k+1(1),Af

k+1(2), . . . ,Af

k+1(N)∥. (A26)

ALGORITHM 5. Deterministic ensemble Kalman filter.

1: Initialize the state of the system for different ensemble members.

X̂0(i) ≙m0 + y0(i),
where y0(i) ∼ N(0, P0).

2: For k = 0, 1, . . . proceed as follows:
• Forecast step:
– Integrate the state estimate all ensemble members from time
tk to tk+1 as follows:

X
f

k+1(i) ≙M(X̂k(i)).
– Compute the sample mean, ensemble anomalies, and error
covariance as follows:

x
f

k+1 ≙
1
N

N

∑
i=1

X
f

k+1(i),
A

f

k+1(i) ≙ Xf

k+1(i) − xfk+1,
P
f

k+1 ≙
1

N−1

N

∑
i=1

A
f

k+1(i)∥Af

k+1(i)∥T.
• Data assimilation step:
– Once the observations are available at time tk+1, assimilate the
forecast state estimate with the observation as follows:

x̂k+1 ≙ x
f

k+1 +K∥zk+1 − h(xfk+1)∥,
K ≙ P

f

k+1D
T
h∥DhP

f

k+1D
T
h + Rk+1∥−1.

– Compute the analyzed anomalies as follows:

Âk+1(i) ≙ Af

k+1(i) − 1
2KDhA

f

k+1(i).
– Calculate the analyzed ensemble using the analyzed state
estimate and analyzed anomalies as follows:

X̂k+1(i) ≙ Âk+1(i) + x̂k+1.

In other words, we skip computing Eq. (A20) and use its reduced-
rank square root definition given by

P
f

k+1 ≙
1

N − 1
A

f (Af )T . (A27)

APPENDIX B: JACOBIAN OF THE MODEL AND
OBSERVATION MATRIX

We apply a fourth-order Runge–Kutta (RK4) numerical
scheme for temporal integration of the Lorenz 96 model, and it can
be written as follows:

u
k+1
≙ u

k +
Δt

6
(g1 + 2g2 + 2g3 + g4), (B1)

where

g1 ≙ f(uk), (B2)

g2 ≙ f(uk + Δt

2
⋅ g1), (B3)
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g3 ≙ f(uk + Δt

2
⋅ g2), (B4)

g4 ≙ f(uk + Δt ⋅ g3). (B5)

The function f is the right-hand side of the Lorenz 96 model, and in
the discrete form, it can be written as

fi ≙ ui−1(ui+1 − ui−2) − ui + F. (B6)

The Jacobian of the function f is defined as follows:

J ≙
∂f

∂u
≙ [ ∂fi

∂uj
] for 1 ≤ i, j ≤ n. (B7)

The Jacobian J will be a R
n×n matrix. The Jacobian of the model

DM ∈ R
n×n can be computed by applying the chain rule to Eq. (B1)

and is given as follows:

DM ≙ I + Δt ⋅ J +
1

2
Δt

2
⋅ J

2 +
1

6
Δt

3
⋅ J

3 +
1

24
Δt

4
⋅ J

4, (B8)

where I ∈ Rn×n is an identity matrix.
The Jacobian of observation is denoted by Dh ∈ R

m×n and is
computed as follows:

Dh ≙ [∂hi
∂uj
], (B9)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Since we use linear observations, Dh

will be a constant sparse matrix. Each row of the matrixDh will con-
sist of all zeros except for the corresponding observation location,
where it will have the value of one.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article. For interested readers, we also provide a GitHub
repository (https://github.com/surajp92/LSTM_Nudging) describ-
ing the algorithms’ Python implementations for the reproduction of
the numerical experiments discussed in the present study.
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