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Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are
crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground
data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study,
a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO)
algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP),
number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures
including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP
model, the LSTMmodel, and the BO-LSTMmodel. Furthermore, sensitivity studies were carried out to evaluate the importance of
input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most
important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading
rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is
capable of predicting TWAP which serves for shield-roof status intelligent perception.

1. Introduction

With the surge in energy demands and mining intensity,
shallow resources are decreasing while deep resources are
gradually exploited [1]. High ground stress induced by deep
mining complicates mine pressure behaviors, including par-
tial roof fall, rib spalling [2], shield crushing, and even rock
burst [3]. Mine pressure monitoring is an important means
to ensure safe and efficient production in coal mines. Mine
pressure data in the roof-control area are comprised of basic
data (roof-to-floor convergence, shield load, and leg closure)
and statistical data (fissure development, the number of gob
steps, etc.) [4]. In recent years, microseismic signals and elec-

tromagnetic radiation signals have been included in the data-
set [5]. In fact, time-weighted average pressure (TWAP) in
the dataset, which belongs to shield supporting feedback
and one of the judgment bases for roof weighting, is signif-
icant for weighting prediction [6]. As electronic technology
and sensor theories advance, the information transmission
speed and accuracy have achieved a leap-forward development
thanks to the shield electrohydraulic monitoring technology [7].
However, deep analysis on nonlinear and nonstationary shield
pressure signals remains challenging, and there is a lack of cor-
relation analysis on information monitored by different sta-
tions. Machine learning (ML) is a branch of artificial
intelligence that has experienced tremendous progress in the
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last two decades. Therefore, research on ML-based TWAP pre-
diction of shields in the fully mechanized working face is mean-
ingful for realizing the intelligent perception and coupling
adaptation of shield-roof status.

ML has been extensively applied to mining engineering at
an astounding rate primarily for the purposes of mine disaster
monitoring (e.g., gushing water, gas, and mine pressure [8–
11]) and roadway excavation technology (e.g., coal-rock inter-
face recognition and digital drilling [12–17]). With respect to
mine pressure monitoring, Li et al. [18] optimized the back-
propagation (BP) neural network by using the particle swarm
optimization (PSO) algorithm and established a PSO-BP
model for assessing rock burst risk. Tan et al. [19] optimized
the BP neural network by using the genetic algorithm (GA)
and established a GA-BP mine pressure prediction model for
predicting the weighting interval and intensity. Sun et al.
[20] processed the monitored mine pressure data by means
of chaotic analysis and established a shield pressure prediction
model based on a support vector machine. The above
researches all strived to predict roof weighting based on the
traditional neural network. Although some researchers opti-
mized the neural network by using the PSO algorithm, they
failed to fully consider the time sequence of mine pressure
data. Problems remain in the adaptability between intelligent
optimization algorithms and neural networks. In addition,
researchers rarely built a weighting prediction model consid-
ering the load-bearing information of shields (e.g., TWAP),
and the characteristic parameters of shield supporting cycle
lacks in-depth exploration. In summary, the weighting predic-
tion model can still be optimized to a large extent.

Despite the application of various ML algorithms to roof
weighting prediction, the applicability and mobility of these
algorithms are questioned for two reasons. First, mine pres-
sure behaviors possess strong periodicity which is reflected
by the time sequence change in shield pressure data, so it is
essential to choose a model suitable for dealing with time
sequence problems. Second, due to the improper choice of
input variables, a model matching the current engineering
background can hardly be adjusted adaptively to the best
performance in another engineering background. Long
short-term memory (LSTM), first proposed by Hochreiter
and Schmidhuber [21], is an excellent deep learning network
widely adopted in fields such as natural language processing
and time sequence prediction [22–24]. Since its establish-
ment, the LSTM model demonstrates extraordinary perfor-
mance for mine pressure prediction [25]. It is absolutely
essential to select a suitable intelligent optimization algo-
rithm to adjust its parameters. The commonly used optimi-
zation algorithms include the GA, the simulated annealing
(SA) algorithm, the PSO algorithm, and the Bayesian optimi-
zation (BO) algorithm. Among these algorithms [26–32], the
BO algorithm whose iterations are few is able to quickly find
the optimal value without wasting resources. Such a feature
enables this algorithm to be applicable to the coal mine field.

Several contributions of the study are summarized as fol-
lows: (1) Loading rates in each period are applied to TWAP
prediction for the first time. (2) The BO-LSTM hybrid model
is proposed to better predict the TWAP value in the next sup-
porting cycle by setting appropriate input parameters, and this

value is regarded as the criterion for weighting prediction. The
study is mainly aimed at efficiently and accurately predicting
the TWAP value in the next shield supporting cycle through
the BO-LSTMmodel and serving for the intelligent perception
of shield-roof status. The input parameters include setting
pressure (SP), final pressure (FP), loading rates in each period,
and number of yielding (NY) [33–36]. Considering that model
development and validation require sufficient available shield
data, the 22307 fully mechanized working face of the Bulianta
Coal Mine was taken as the study area. The Pearson correla-
tion coefficient was adopted for analyzing correlation between
the input parameters and the output parameter. Meanwhile,
the sensitivity between the input parameters and the output
parameter was analyzed in depth.

2. Dataset Preparation

2.1. Description of the Study Area. The Bulianta Coal Mine,
located in Inner Mongolia (Figure 1(a)), is selected as the study
area. The buried depth of the 22307 working face is 88-245m,
and the average thickness, face length, and strike length are
7.25m, 301m, and 4954.05m, respectively. The geological col-
umn is exhibited in Figure 2. The lithological formations above
the coal seam (thickness 85-230m) consist of mudstone and
sandstone, while the thickness of loose layer is 8-23m.

The 22307 working face is equipped with 150
ZY/18000/32/70D shields whose numbers are given in
Figure 1(b). A PM32 electrohydraulic controller and a pres-
sure sensor are arranged on each shield (Figure 1(c)). The
data acquisition and transmission method is presented in
Figure 1(d) [37]. Specifically, the pressure data collected by
the sensors are conveyed through the CAN bus network to
the ground server and the host computer, and then the auto-
matic control of the shields is realized through the decision of
the host computer. The self-developed Status of Shield and
Roof IntelliSense (SSRI) system, integrated with the data
mining and cycle analysis technology, is capable of efficiently
and accurately analyzing massive monitoring data and coop-
erates with the host computer to make decisions intelligently.
Detailed architecture and working principle of the SSRI sys-
tem can be found in the literature [38].

With the aid of the SSRI system, a total of over 56,000
pieces of data are extracted from the massive pressure data
of 80 shields in the 22307 working face (Figure 3(a)). In this
study, three shields, i.e., 1#, 40#, and 80#, from the end to the
middle of the working face are selected as the research object.
The processed pressure data of the three shields are displayed
in Figure 3(b). The pressure data of each shield contains n
supporting cycles reflecting the relationship between the
shield and the surrounding rock.

2.2. Data collection

2.2.1. Output. The output variable is TWAP. The shield sup-
porting cycle refers to the pressure variation process of a
shield, including its setting, loading/unloading, and forward
moving. The cycles can be obtained from the pressure data
in Figure 3(b). TWAP [39], a characteristic quantity reflect-
ing the pressure variation in shield cycles, is the basis for
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Figure 1: Description of the study area: (a) location of the Bulianta Coal Mine; (b) positions and numbers of shields; (c) positions of pressure
sensors and PM32 controllers; (d) data acquisition and transmission method and SSRI system.
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Figure 3: Processed pressure data: (a) pressure data of shields in the 22307 working face; (b) partial processed pressure data of 1#, 40#, and
80# shields.
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judging periodic weighting. Its value can be calculated by
equation (1) according to the time sequence variation curve
of shield pressure in each supporting cycle (Figure 4).

Pt =
1/2ð Þ∑

m
n=1 Pn−1 + Pnð Þtn
∑m

n=1tn
, ð1Þ

where Pt is TWAP (MPa); Pn is the shield pressure (MPa); tn
is the total time (min).

In this study, the SSRI system can identify the number of
cycles in each pressure data set and calculate the TWAP value
in each cycle. The processed results of the pressure data
(Figure 3(a)) indicate that each shield contains 600 support-
ing cycles. The overall TWAP data within 1100 h are shown
in Figure 5.

2.2.2. Input Variables. The input variables are multidimen-
sional feature parameters of supporting cycles. As can be
observed in Figure 4, the typical shield supporting cycle can
be simplified into three periods in accordance with the loa-
ding/unloading characteristics: initial period (T1), relatively
stable period (T2), and cutting influenced and neighboring
shield movement period (T3). Based on the loading charac-
teristics of the supporting cycle in different stages, the SSRI
system can extract 27 characteristic parameters by employing
multiple algorithms such as Naive Bayes, clustering, classifi-
cation, and correlation. In addition to SP and FP, loading
rates and NY are also included in these parameters as input
variables for TWAP prediction.

The 27 characteristic parameters of TWAP factors
are subjected to gray correlation analysis. Among them,
9 parameters with high correlation degrees, namely, SP,
revised setting pressure (RSP), FP, NY, loading rates in
the initial period (LRIP 5min and LRIP 10min), loading

rate in the relatively stable period (LRRSP), loading rate
in the cutting influenced and neighboring shield move-
ment period (LRCMP), and TWAP in the last support-
ing cycle (TWAP last), are regarded as input variables
in this study.

(1) SP and RSP. SP, an active supporting force provided by
the shield to the roof, plays a crucial role in ground control-
ling in the working face (point A in Figure 4). After shield
pressure reaches SP, it will first experience a short-term
(1-3min) drop and then rise slowly or stabilize. The shield
leg pressure at this moment is the actual SP provided by
the shield to the roof, and it is defined as the RSP (point B
in Figure 4).

(2) FP. The FP of a shield (point C in Figure 4), which is nor-
mally considered as the maximum supporting load in the
whole supporting cycle, is attained when its neighboring
shields are lowered and advanced.

(3) Loading Rates. Loading rates refer to the rates of load
changes in the T1, T2, and T3 stages in Figure 4. They reflect
the state of roof activity in different time periods. Among the
three, LRIP =M1/T1, LRRSP =M2/T2, and LRCMP =M3/T3

. It is noteworthy that LRIP (5min) and LRIP (10min) refer
to the ratio of resistance change to time within the first 5min
and 10min in the T1 stage, respectively.

(4) NY. When the shield pressure reaches or exceeds the
rated shield capacity, high-pressure emulsion overflows for
protecting the shield leg under the condition that working
face production is suspended for a long time or that the roof
activity is intense. The process of yield valve opening and
closure is called a yielding cycle. The number of yielding
cycles is an important indicator reflecting the intensity of
roof activity.
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The data of 9 feature parameters in this study are prelim-
inarily analyzed in Table 1.

3. Methods Used

3.1. Fundamental Theory of LSTM and BOA

3.1.1. Long Short-Term Memory Networks (LSTM). LSTM
neural networks are especially applicable to processing highly
time-dependent problems. Roof weighting has notable peri-
odic characteristics, as the pressure waveform is a strong time
series whose front and back inputs are considerably corre-
lated. Thus, LSTM neural networks are applied to predicting
TWAP of shields.

The LSTM neural unit is optimized on the basis of the
recurrent neural network (RNN) by adding control gates
inside the units. The addition of a new cell state input enables
the LSTM to remember and retain historical information.
The entire neural unit is controlled by the input gate, the for-
get gate, and the output gate.

The internal structure of the LSTM neural unit at three
consecutive times is illustrated in Figure 6 where x is the
input vector of the neural unit at the current time; h is the
output vector of the neural unit; C is the cell state; σ and
tan h are both activation functions; f , i, and O are the forget
gate, the input gate, and the output gate, respectively; andW
and b are the weight and the deviation matrix, respectively.

Equations (2)–(7) show the internal operations followed
by neural units:

f t = σ W f ⋅ ht−1, xt½ � + bf
� �

, ð2Þ

it = σ W i ⋅ ht−1, xt½ � + bið Þ, ð3Þ

~Ct = tanh WC ⋅ ht−1, xt½ � + bCð Þ, ð4Þ

Ct = f t ⋅ Ct−1 + it ⋅ ~Ct , ð5Þ

Ot = σ WO ⋅ ht−1, xt½ � + bOð Þ, ð6Þ

ht =Ot ⋅ tanh Ctð Þ: ð7Þ

3.1.2. Bayesian Optimization (BO) Algorithm. The BO algo-
rithm is a kind of probability distribution optimization algo-
rithm used for the automatic tuning of ML hyperparameters.
The algorithm, whose core idea is to give an optimized objec-
tive function and update the posterior distribution of the
objective function by continuously adding sample points, is
mainly oriented to solving complex black box problems with
multimodality, nonconvexity, high dimensionality, and high
evaluation costs. Established on the basis of the Gaussian
process, it considers the previous parameter information
and constantly updates the prior. It not only greatly saves
the optimization cost due to the small number and fast speed
of iterations, but it also boasts good performance against both
convex and nonconvex optimization problems. The basic
flow of the BO algorithm is listed in Figure 7.

3.2. Modelling Methodology. Shield data, a kind of strong
time series data, feature instability, nonlinearity, and periodic
uncertainty. In this study, a prediction model regarding
shield pressure data is built based on LSTM networks. Since
data of various shields are not synchronized with significant
differences, the BO algorithm is combined with the LSTM
model so that the hyperparameters match the data character-
istics of each shield.
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Table 1: Descriptive statistics of inputs and output.

Parameter
Min
value

Max
value

Mean
value

Standard
deviation

TWAP 2.00 46.19 27.55 8.93

SP 1.8 46.2 23.38 6.79

FP 1.8 47.7 31.26 11.00

RSP 1.5 46.2 22.13 7.24

LRIP (5min) -4.39 5.30 0.38 0.93

LRIP (10min) -2.45 4.83 0.31 0.68

LRRSP -0.38 0.46 0.02 0.05

LRCMP -8.60 5.36 0.35 0.84

NY 0 19 0.41 1.62
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The framework of the BO-LSTM model is listed in
Figure 8. It is known that both the structure andmodel param-
eters of an artificial neural network exert an influence on the
performance of the model, so the number of units in the
LSTM layers, the parameter of the dropout layer, the batch
size, and the optimizer learning rate are selected as the optimi-
zation objects of the Bayesian optimizer. The model is com-
posed of an input layer, two LSTM layers, a dropout layer,
and an output layer. The loss function adopts the mean square
error (MSE), and the model training process is optimized
through the Adam algorithm. The optimization value ranges
of hyperparameters are set as follows: number of units in the
LSTM layers (1, 80), batch size (1, 80), optimizer learning rate
(0.0001, 0.01), and parameter of the dropout layer (0.1, 0.6).

The BP model and the LSTMmodel are taken as contrast
models in this study. The BP model is comprised of an input
layer, two hidden layers (20 units), a dropout layer (0.2
parameter), and an output layer. The LSTM model consists
of an input layer, a LSTM layer (20 units), a dropout layer
(0.2 parameter), and an output layer. The learning rate of
the Adam optimizer is 0.01.

The flow of the BO-LSTM model is as follows:

Step 1. To divide the experimental data into the training set
and the test set.

Step 2. To initialize the BO algorithm by taking batch size,
optimizer learning rate, and dropout layer parameter in the
LSTM network model as optimization objects.

Step 3. To randomly calculate the current function distribu-
tion according to the formula.

Step 4. To adjust the current function distribution according
to the strategy selected by the selection function.

Step 5. To judge whether the termination condition is met. If
it is met, the optimal hyperparameter values are returned;
otherwise, Step 4 is returned.

Step 6. To construct the LSTM network model with the
optimal hyperparameters.

Step 7. To conduct training and testing.

3.3. Statistical Assessment. The assessment of this study was
carried out using MSE and the mean absolute error (MAE)
[40], the most common indicators for ML model validation
and comparison. The equations of the two indexes are as
follows:

MAE =
1

N
〠
N

n=1

cyn − yn
�� ��, ð8Þ

MSE =
1

N
〠
N

n=1

yn∧ − ynð Þ2: ð9Þ

where N is the number of instances; ŷn is the value predicted
by the model; yn is the true value. The two indexes can both
represent the error between ŷn and yn. A smaller value of the
index is indicative of a smaller deviation of the predicted value
from the true value and better performance of the model.

4. Results and Discussion

4.1. Correlations among Inputs and Output. The relationships
between the 9 input variables and the output variable have
been investigated based on the Pearson correlation coeffi-
cient [41]. Figure 9 is a distribution diagram of correlation
coefficients among variables. The results show that SP, LRIP,
FP, NY, and RSP are all positively correlated with TWAP,
and the loading rates in the three stages (T1, T2, and T3) will
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affect the variation of the TWAP value. NY will lead to con-
stant fluctuations of shield supporting pressure. When the
yield valve opens too frequently, the TWAP value will fluctu-
ate accordingly.

4.2. Predictive Capability of the Models

4.2.1. TWAP Prediction for 1# Shield. The TWAP values pre-
dicted by the three models on the test sets and the actual
TWAP values for 1# shield are compared in Figure 10.
Among the 297 pieces of 1# shield data (Sept. 27, 2014-Oct.
17, 2014), 70% are taken as the training set and 30% are used
as the test set.

Figure 10(a) displays the results predicted by the BP
model, the MSE value and MAE value being 0.0117 and
0.0816, respectively. Figure 10(b) exhibits the results pre-
dicted by the LSTM model, the MSE value and MAE value
being 0.0106 and 0.0689, respectively. Figure 10(c) gives the
results predicted by the BO-LSTM model. After being tuned
by the BO algorithm, the hyperparameters of the BO-LSTM
model are as follows: the number of units in the LSTM layer
is 42, the batch size is 52, the optimizer learning rate is
0.0094, and the dropout layer parameter is 0.58. In this case,
the MSE value and MAE value are 0.0095 and 0.0656,
respectively.

4.2.2. TWAP Prediction for 40# Shield. The TWAP values
predicted by the three models on the test sets and the actual
TWAP values for 40# shield are compared in Figure 11.
Among the 662 pieces of 40# shield data (Sept. 27, 2014-
Nov. 11, 2014), 70% are taken as the training set and 30%
are used as the test set.

Figure 11(a) displays the results predicted by the BP
model, the MSE value and MAE value being 0.0194 and
0.1058, respectively. Figure 11(b) exhibits the results pre-
dicted by the LSTM model, the MSE value and MAE value
being 0.0165 and 0.0924, respectively. Figure 11(c) gives the
results predicted by the BO-LSTM model. After being tuned
by the BO algorithm, the hyperparameters of the BO-LSTM
model are as follows: the number of units in the LSTM layer
is 77, the batch size is 65, the optimizer learning rate is
0.0061, and the dropout layer parameter is 0.24. In this case,
the MSE value and MAE value are 0.0155 and 0.0886,
respectively.

4.2.3. TWAP Prediction for 80# Shield. The TWAP values
predicted by the three models on the test sets and the actual
TWAP values for 80# shield are compared in Figure 12.
Among the 645 pieces of 80# shield data (Sept. 27, 2014-
Nov. 11, 2014), 70% are taken as the training set and 30%
are used as the test set.
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Figure 12(a) displays the results predicted by the BP
model, the MSE value and MAE value being 0.0334 and
0.1442, respectively. Figure 12(b) exhibits the results pre-
dicted by the LSTM model, the MSE value and MAE value
being 0.0331 and 0.1436, respectively. Figure 12(c) gives the
results predicted by the BO-LSTM model. After being tuned
by the BO algorithm, the hyperparameters of the BO-LSTM
model are as follows: the number of units in the LSTM layer
is 69, the batch size is 28, the optimizer learning rate is
0.0041, and the dropout layer parameter is 0.42. In this case,
the MSE value and MAE value are 0.0315 and 0.1362,
respectively.

4.2.4. Analysis of Prediction Results. The errors of the predic-
tion results by the BP, LSTM, and BO-LSTM models are
shown in Figure 13, according to which the BO-LSTMmodel
achieves the best prediction performance. Compared with
the BP model, the LSTM model succeeds in reducing the
errors when it is used to predict the TWAP data of shields.
This result suggests that the LSTM model is more suitable
for processing TWAP data with a notable time sequence than
the BP model. Moreover, the BO-LSTM model whose hyper-
parameters have been automatically tuned by the BO algo-
rithm boasts an improved performance compared with the
LSTM model which has not received BO optimization, with
the errors of the three shields by the BO-LSTM model all
being smaller than those by the LSTM model and the BP

model. The result confirmed the feasibility of the BO algo-
rithm in improving the performance of the LSTM model.

The BP model presents the largest errors because its
TWAP prediction is based on the data of the previous
moment. It lacks the memory of data characteristics in the
past. The LSTMmodel demonstrates a better prediction per-
formance because it memorizes data characteristics in the
past. However, it fails to be well compatible with the differ-
ence in data characteristics of each shield because the shield
weightings in the 22307 working face are not synchronous
while the LSTM model adopts the same set of hyperpara-
meters to train the data of shields. In contrast, the BO-
LSTM model boasts the smallest prediction errors because
it not only possesses the advantages of the LSTM model but
also finds out the hyperparameters that are the most suitable
for the current data in accordance with the distinct character-
istics of shields.

With respect to the spatial evolution, the MSE value and
MAE value increase from 1# shield to 80# shield, demon-
strating that the prediction error of the shield (80#) in the
middle is larger than that of the shield (1#) in the end. The
reason is that compared with 1# shield, 80# shield corre-
sponds to a smaller weighting interval and experiences more
fluctuant supporting pressure [42].

In short, the BO-LSTMmodel proposed in this study can
quickly and effectively predict the TWAP values of shields at
different positions. Its performance may be improved due to
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the different conditions of coal seam occurrence. One advan-
tage of hybrid ML models like the BO-LSTM model is that
they can process large and complex data. Hence, such models
are suitable for TWAP prediction of shields in the fully
mechanized mining face.

4.3. Sensitivity Study of Input Variables. To better grasp the
influence of each input variable on prediction of TWAP
values, the sensitivity of input parameters was analyzed by
partial dependency plots (PDP), and the importance of input
parameters was analyzed by the algorithm XGBoost [43, 44].
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Figure 14: Partial dependence of the influencing variables on TWAP prediction.
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PDP is a popular tool to determine the sensitivity of the
output variable on the individual input variables [45]. The
horizontal axis represents all possible values of the input var-
iable, and the vertical axis represents the mean value of the
predicted output value. Figures 14(a)–14(h) demonstrate
the partial dependence of input variables (excluding LRIP
(10min)) and the output variable. The results reveal that
loading rates in different stages, FP, and TWAP (last) are
positively correlated with the TWAP value. SP and RSP are
positively correlated with the TWAP value before 27MPa,
whereas they are negatively correlated with it after this pres-
sure, indicating that 27MPa is the best SP. The TWAP value
varies more intensely with the changes in FP and TWAP
(last), compared with NY, SP, RSP, and loading rates in dif-
ferent stages.

To illustrate the importance of input variables more
clearly, the importance scores (IS) of all input variables were
deduced through normalizing the summation (Figure 15).
The results manifest that FP (IS: 0.277) exerts the greatest
influences on TWAP prediction, followed by TWAP (last)
(IS: 0.241), RSP (IS: 0.109), NY (IS: 0.077), SP (IS: 0.067),
and loading rates in different stages (IS: mostly around
0.06) in turn. From IS, it can be seen that FP and TWAP
(last) are the primary variables influencing the TWAP pre-
diction performance. The two parameters are also the basis
for judging roof weighting in traditional mining, and this
explains why the TWAP value varies more intensely with
the changes in FP and TWAP (last) in Figure 14.

Indeed, traditional feature parameters (e.g., FP and
TWAP (last)) remarkably influence the TWAP value in the
next supporting cycle, which has been proved by IS. Never-
theless, the total IS of LRIP, LRRSP, and LRCMP reaches
0.229, so it can be concluded that loading rates in different
stages are also indispensable for TWAP prediction.

In a supporting cycle, the feature parameters which are
later in time play a more important role in TWAP prediction.
For instance, LRCMP is more important than LRIP, and FP is
more important than SP and RSP. Meanwhile, the shield sup-
porting characteristic with a higher loading rate plays a
greater role in TWAP prediction.

In addition, NY also exerts a certain influence on
TWAP prediction. The importance of RSP on TWAP pre-
diction is larger than that of SP, probably because when
the shield is initially set, it has not fully contacted the roof
and SP cannot obviously reflect the roof condition. This
phenomenon exists commonly in shield supporting cycles.
For example, in the 22304 working face of the Buertai Coal
Mine in China and the LW23 working face of the Emerald
Coal Mine in the United States, 48.5% and 71.9% of shield
supporting cycles underwent a load decrement of over
1MPa after the shield was initially set, and the shield sup-
porting cycles within which the load decrement lasted
shorter than 1min accounted for 70.3% and 96%,
respectively.

In general, the above research results verify the impor-
tance of the thoroughly explored input variables to a certain
extent. It is believed that further research based on this view-
point will have far-reaching significance for the further devel-
opment of TWAP prediction.

5. Conclusions

In this study, the BO-LSTM model, a hybrid ML model inte-
grating the advantages of the LSTM model and the BO algo-
rithm, was proposed to predict the shield TWAP values for
the purpose of shield-roof status intelligent perception. A
total of over 56000 pieces of regionally correlated shield pres-
sure data were collected from the Bulianta Coal Mine, and
the SSRI system assisted in identifying the supporting cycles
and extracting characteristic parameters from them. Nine
parameters sharing large gray correlation degrees with the
output variable (TWAP), namely, SP, RSP, FP, NY, loading
rates, and TWAP (last), were selected as the input variables.
Statistical measures including MSE and MAE were used to
validate and compare the prediction performance of the BP
model, the LSTM model, and the BO-LSTM model. More-
over, PDP and IS were employed to evaluate the importance
of input parameters in the model study. The main conclu-
sions are as follows.
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(1) Among the three ML models, the BO-LSTM model
achieves the best performance in terms of MSE and
MAE, followed by the LSTM model and the BP
model in turn. Compared with the BP model, the
LSTM model is more applicable to processing data
with a notable time sequence. Furthermore, the BO
algorithm can find the hyperparameters most
suitable for the current data in accordance with the
distinct characteristics of shields, thus further
improving the prediction accuracy

(2) The assessment criteria increase from the shield (1#)
in the end to the shield (80#) in the middle, because
the former experiences less fluctuant TWAP than
the latter

(3) The input variables extracted by the SSRI system are
effective for TWAP prediction. The PDP and IS
results reveal that FP and TWAP (last) are the most
important parameters in TWAP prediction, followed
by RSP and NY. Besides, it is necessary to revise SP.
The total importance scores of loading rates in differ-
ent stages reach 0.229, indicating that loading rates
are also indispensable for TWAP prediction. Mean-
while, the shield supporting characteristic with a
higher loading rate plays a greater role in TWAP pre-
diction. In a supporting cycle, the characteristic
parameters which are later in time play a more
important role in TWAP prediction than those which
are earlier in time. For instance, FP is more important
than RSP, and LRCMP is more important than LRIP

Abbreviations

TWAP: Time-weighted average pressure
SP: Setting pressure
RSP: Revised setting pressure
FP: Final pressure
NY: Number of yielding
LRIP: Loading rates in the initial period
LRRSP: Loading rate in the relatively stable period
LRCMP: Loading rate in the cutting influenced and neigh-

boring shield movement period
ML: Machine learning
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