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Long Short-TermMemory (LSTM) is a kind of Recurrent Neural Networks (RNN) relating to time series, which has achieved good
performance in speech recogniton and image recognition. Long Short-Term Memory Projection (LSTMP) is a variant of LSTM
to further optimize speed and performance of LSTM by adding a projection layer. As LSTM and LSTMP have performed well in
pattern recognition, in this paper, we combine themwith Connectionist Temporal Classi	cation (CTC) to study piano’s continuous
note recognition for robotics. Based on the Beijing Forestry University music library, we conduct experiments to show recognition
rates and numbers of iterations of LSTM with a single layer, LSTMP with a single layer, and Deep LSTM (DLSTM, LSTM with
multilayers). As a result, the single layer LSTMP proves performing much better than the single layer LSTM in both time and the
recognition rate; that is, LSTMP has fewer parameters and therefore reduces the training time, and, moreover, bene	ting from the
projection layer, LSTMP has better performance, too.�e best recognition rate of LSTMP is 99.8%. As for DLSTM, the recognition
rate can reach 100% because of the e
ectiveness of the deep structure, but compared with the single layer LSTMP, DLSTM needs
more training time.

1. Introduction

Piano’s continuous note recognition is important for a robot,
whether it is a bionic robot, a dance robot, or a music robot.
�ere have been companies researching on music robots.
For example, Vadi produced by Vatti is able to identify a
voiceprint.

Most of the existing piano’s note recognition techniques
use Hidden Markov Model (HMM) and Radial Basis Func-
tion (RBF) to recognize musical notes with one musical note
at a time and therefore are not suitable for continuous note
recognition. Fortunately, in the 	eld of pattern recognition,
DeepNeuralNetworks (DNNs) have shown great advantages.
DNNs are used to recognize features extracted from a large
number of hidden nodes [1] and seek reverse partial guidance
through the chain rule and at the same time make the neural

network weight matrix convergence through training data
iteratively and then achieve recognition [2]. RNN adds a
time series based on DNN [3], which makes features have
time continuity [4, 5]. However, in experiments, we 	nd that
RNN’s time characteristics will disappear completely aer
four iterations [6], and a music note is generally longer than
a frame [7], so RNN is not suitable for piano’s continuous
note recognition [8]. Fortunately, a variant of RNN, named
LSTM, is proposed [9–12], in which an input gate, an output
gate, and a forgotten gate are added to memorize a long-
term cell state to maintain long-term memory [8, 9, 13–16].
Furthermore, LSTMP adds a projection layer to LSTM to
increase its e�ciency and e
ectiveness.

�is paper studies LSTM and LSTMP for piano’s contin-
uous note recognition, and in order to solve the temporal
classi	cation problem, we combine LSTM and LSTMP with
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Figure 1: �e LSTM network structure.

a method named CTC [17]. In experiments, we test the
performance of a single layer LSTM, Deep LSTM, and a
single layer LSTMP with di
erent parameters. Compared
with the traditional piano’s note recognition methods, LSTM
and LSTMP can recognize continuous notes, that is, some
simple piano music. �e experimental results show that a
single layer LSTMP can attain a recognition rate of 99.8% and
Deep LSTM can reach 100%, which proves that our methods
are quite e
ective.

�e rest of this paper is organised as follows. In Section 2,
we 	rst introduce the LSTM network architecture, and then
Deep LSTM. LSTMP is illustrated in Section 3. In Section 4,
we discuss CTC. �e experimental results are presented in
Section 5, and 	nally, in Section 6, we draw conclusions and

give our future work.

2. LSTM

2.1. 
e LSTMNetwork Architecture. LSTM is a kind of RNN
which succeeds to keep memory for a period of time by
adding a “memory cell.”�ememory cell ismainly controlled
by “the input gate,” “the forgetting gate,” and “the output
gate.” �e input gate activates the input of information to
thememory cell, and the forgetting gate selectively obliterates
some information in the memory cell and activates the
storage to the next input [18]. Finally, the output gate decides
what information will be outputted by the memory cell [19].

�e LSTM network structure is illustrated in Figure 1.
Each box represents di
erent data, and the lines with arrows
mean data �ow among these data. From Figure 1, we can
understand how LSTM stores memory for a long period of
time.

�e recognition procedure of LSTM begins with a set of
input sequences � = (�1, �2, . . . , ��) (�� is a vector) and 	nally

outputs a set of � = (�1, �2, . . . , ��) (�� is also a vector), which
is calculated according to the following equations:

�� = � (����� +�����−1 + 	�) (1)

�� = � (����� +�����−1 + 	�) (2)

�� = 1 − �� (3)

�� = � (����� +�����−1 + 	�) (4)

�� = �� ⊙ ��−1 + �� ⊙ �� (5)

�� = �� ⊙ ℎ�� (6)

�� = � (����� + 	�) . (7)

In these equations, � means the input gate, and � and �
are the output gate and the forget gate, respectively. � is the
information input to the memory cell, and � includes cell
activation vectors, and� is the information the memory cell
outputs. � represents weight matrices (e.g., ��� represents
theweightmatrix from input� to the input gate �). 	 is the bias
(	� is the input gate bias vector), and � and ℎ are the activation
function of cell inputting and cell outputting, respectively,
regarded as ��ℎ and ������ in most of the models and also
in this paper. ⊙ is the point multiplication in a matrix. � is the
activation function of the neural network output, and we use
������ in this paper.

Aer conducting some experiments, we 	nd that, com-
pared with the �� standard equation, (3) is more simple and
easier to converge. Not only does the training time become
less but also the number of iterations becomes smaller.
�erefore, in the neural networks in this paper, we use (3) to
calculate �� instead of the �� standard equation.

2.2. Deep LSTM. In piano’s continuous note recognition, we
also build a multilayer neural network to further increase the
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recognition rate. Deep LSTM adds an LSTM aer another
and so on [10]. �e added LSTMs have the same structure
as the original one. Each layer regards the output from
the last layer as the input of the next layer. We hope that
the neural networks in di
erent LSTM layers will learn
di
erent characteristics, so as to learn the various features of
musical notes from di
erent aspects and therefore improve
the recognition rate.

3. LSTMP-LSTM with a Projection Layer

In LSTM, there are a large number of calculations in the
various gates, calculating the number of parameters� in the
neural network. �e weight matrix dimension input by the
input gate, the output gate, and the cell state at this time is
�� ∗ ��, and the weight matrix dimension at the last time is
�� ∗ ��, and the output matrix dimension connected to the
output of the neural network is ��∗��, where �� and �� are the
dimensions of the input and the output, respectively, and �� is
the number of memory cells. We can easily get the following
formula:

�LSTM = 3 ∗ �� ∗ �� + 3 ∗ �� ∗ �� + �� ∗ ��; (8)

that is,

�LSTM = 3 ∗ �� ∗ �� + �� ∗ (3 ∗ �� + ��) . (9)

As we increase ��, �LSTM grows in a square pattern.
�erefore, increasing the number of memory cells to increase
the amount of memory costs a lot, but a smaller cell
number will bring a lower recognition rate, so we propose an
architecture named LSTMP, which can not only improve the
accuracy, but also e
ectively reduce the computations.

In the output layer of the neural network, LSTM outputs

a matrix of ��2 ∗ ��. �en, �� is sent into the output matrix
to be outputted and also serves as the input to the neural
network at the next time. We add a ��������� layer to the
LSTM architecture, and aer passing this layer, �� becomes
an �� ∗ ��matrix called ��, which replaces �� as the input of
the next neural network. When the memory cell number of
the neural network increases, the number of parameters in
the neural network is

�LSTMP = 3 ∗ �� ∗ �� + 3 ∗ �� ∗ �� + �� ∗ �� + ��

∗ ��;
(10)

that is,

�LSTMP = 3 ∗ �� ∗ �� + �� ∗ (4 ∗ �� + ��) . (11)

Calculating�LSTM − �LSTMP, we have

�LSTM − �LSTMP = �� ∗ (3 ∗ �� + ��) − ��

∗ (4 ∗ �� + ��) .
(12)

�erefore, in LSTMP, the factor that a
ects the total
number of parameters changes from �� ∗ �� to �� ∗ ��. We
can change the value of ��/�� to reduce the computational

complexity. When 3 ∗ �� > 4 ∗ ��, LSTMP can speed up the
training model. Moreover, with the projection layer, LSTMP
can converge faster to ensure the convergence of the model.
�e mathematical formulae of LSTMP are as follows:

�� = � (����� +��	��−1 + 	�)

�� = � (����� +��	��−1 + 	�)

�� = 1 − ��
�� = � (����� +��	��−1 + 	�)

�� = �� ⊙ ��−1 + �� ⊙ ��
�� = �� ⊙ ℎ��
�� = �	���

�� = � (��	�� + 	�) .

(13)

In these formulae, �� represents the ��������� layer, and
the other equations are the same as LSTM.

Figure 2 is the structure of LSTMP, and the part marked
with red dashed lines is the projection. By comparing Figure 1
with Figure 2, we can see that LSTMP is LSTM with a
projection layer.

Algorithm 1 is the pseudocode of LSTMP. � is the input
weight matrix, and  is the weight matrix of the last result. 	
is bias and � is the projection matrix. We put the extracted
musical notes features into the neural network and the
algorithm executes until we get an acceptable recognition
rate.

4. CTC

�eoutput layer of our LSTM and LSTMP is called CTC [20].
We use CTC because it does not need presegmented training
data or external postprocessing to extract label sequences
from the network outputs.

To be the same as many latest neural networks, CTC
has forward and backward algorithms. When it comes to
the forward algorithm, the key point is to estimate the
distribution through probabilities. Given the length !, the
input sequence �, and the training set " at time , the
activation ��
 of the output unit # at time  is interpreted as
the probability of observing label # (�� 	���# �� # = |$| + 1):

� (% | �, ") =
�
∏
�=1

����. (14)

We refer to the elements % ∈ $� as paths, where $�
is the set of the length ! sequences over the alphabet $ =
$ ∪ 	���#. �en we de	ne a many-to-one map � to remove
	rst the repeated labels and then the blanks from the paths.
With glance at the paths, will 	nd they aremutually exclusive.
According to the characteristic, the conditional probability of

some labelling � ∈ $⩽� can be calculated by summing the
probabilities of all the paths mapped onto it by �:

� (� | �) = ∑
�∈�−1(�)

� (% | �) .
(15)
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Figure 2: �e LSTMP structure.

Require: ���  2�� ����� 5������� �  	 �
Ensure: 5���

V���� 2�� �
while�ℎ�� ℎ�V��� ���  do
�������� = ̇(2�� ����� ∗  �����) + ̇(���  ∗ ������) + 	
��������� = ̇(2�� ����� ∗  ������) + ̇(���  ∗ �������) + 	
������� = ̇(2�� ����� ∗  ����) + ̇(���  ∗ �����) + 	
��� ���� = ������7(��������)
� � ���� = ������7(���������)
��������� = 1 − ��� ����
5���

V���� = ���V��(�������) ∗ ��� ���� + 5������� ∗ ���������
2�� � = � � ���� ∗ ���V��(����

V����)
5���

V���� = ̇(2�� �, �)
end while

Algorithm 1: LSTM-projection.

Aer all these procedures, CTCwill complete its classi	cation
task.

5. Experiments

We conduct all our experiments on a server with 4 Intel
Xeon E5-2620 CPUs and 512GB memories. A NVIDIA Tesla
M2070-Q graphics card is used to train all the models. �e
programming language we use is python 3.5.

We choose the piano as our instrument. We record 445
note sequences as our dataset and the length of each sequence
is around 8 seconds.

In the extraction of features, we carry out Hamming
window processing and then take Fast Fourier Transform
(FFT) for the real part and the imaginary part of eachwindow.
�en we let the FFT result to be orthogonal by adding the
square of the real part and that of the imaginary part together.

Apart from that, we gain the log of the quadratic sum. Finally,
the normalization of the input data is performed.

In the experiments, the number of kinds of notes is 8, and
the number of input nodes is 9. We try di
erent numbers of
cell units in our models, from 20 to 320. �e initial value of
the neural network is set as a random value within [−0.2, 0.2],
and the learning rate is 0.001. In terms of the structures, all the
neural networks are connected to a single layer CTC. As for
the dataset, we choose 80% of the samples as the development
set and 20% as the test set.

5.1. Experimental Results. Table 1 shows the recognition rates
and how many times LSTM, DLSTM, and LSTMP with
di
erent parameters need to iterate until their recognition
rates are stable, and the best results are in bold.

In Table 1, “LSTMP-80 to 20” means the LSTMP model
projecting 80 cell states to 20 cell states. From Table 1, we see
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Table 1: �e number of iterations and the recognition rates of di
erent models.

Model Number of iterations Recognition rate

LSTM-20 300 77.2%

LSTM-40 300 87.1%

LSTM-80 300 90.7%

LSTM-160 400 82.5%

DLSTM-two layers 61 85.7%

DLSTM-three layers 71 99.5%

DLSTM-four layers 109 100.0%

DLSTM-	ve layers 76 97.5%

DLSTM-six layers 103 100.0%

LSTMP-10 to 20 43 56%

LSTMP-30 to 20 35 94.2%

LSTMP-40 to 20 45 96.0%

LSTMP-40 to 30 30 94.0%

LSTMP-60 to 30 22 98.0%

LSTMP-80 to 20 58 99.8%

LSTMP-80 to 30 27 97.3%

LSTMP-80 to 40 29 97.3%

LSTMP-160 to 40 39 99.0%

LSTMP-160 to 80 50 95.0%

LSTMP-320 to 160 93 93.4%

LSTMP with di�erent parameters
DLSTM with di�erent layers

LSTMP (30 to 20)

LSTMP (40 to 20)

LSTMP (60 to 30)

LSTMP (80 to 20)

LSTMP (160 to 40)
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Figure 3: �e recognition rates of LSTMP with di
erent parameters and DLSTM with di
erent layers.

that DLSTM and LSTMP perform much better than LSTM,
and their best recognition rates are almost the same, which
are 100% and 99.8%, respectively. As for the numbers of
iterations, LSTMP needs much less iterations than LSTM
and DLSTM, which makes LSTMP more suitable for piano’s
continuous note recognition for robotics considering the
e�ciency.

5.2. LSTMP and DLSTM with Di�erent Parameters. Figure 3
illustrates LSTMP with di
erent parameters and DLSTM
with di
erent layers. �e � axis means the number of

iterations and the � axis means the recognition rate. We see
that for LSTMP the model projecting 80 cell states to 20 cell
states has the best result, but all LSTMP results are very close.
As for DLSTM, we see clearly that Deep LSTM is much better
than LSTM with only one layer.

5.3. Comparisons of LSTM, LSTMP, and DLSTM. We com-
pare LSTM, LSTMP, and DLSTM in Figure 4. Given the same
parameters, LSTMP performs much better than LSTM. As
for LSTMP and DLSTM, we 	nd that when the number of
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Figure 4: Comparisons of LSTM, LSTMP, and DLSTM.

iterations is small, LSTMP has great advantages, but as the
number of iterations increases, DLSTM becomes better.

6. Conclusions and Future Work

In this paper, we have used neural network structures called
LSTM with CTC to recognize continuous musical notes. On
the basis of LSTM, we have also tried LSTMP and DLSTM.
Among them, LSTMP worked best when projecting 80 cell
states to 20 cell states, which needed much less iterations
than LSTM and DLSTM, making it most suitable for piano’s
continuous note recognition.

In the future, we will use LSTM, LSTMP, and DLSTM
to recognize more complex continuous chord music, such
as piano music, violin pieces, or even symphony, which will
greatly improve the development of music robots.
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