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Abstract

Long Short-Term Memory (LSTM) is a specific recurrent neu-

ral network (RNN) architecture that was designed to model tem-

poral sequences and their long-range dependencies more accu-

rately than conventional RNNs. In this paper, we explore LSTM

RNN architectures for large scale acoustic modeling in speech

recognition. We recently showed that LSTM RNNs are more

effective than DNNs and conventional RNNs for acoustic mod-

eling, considering moderately-sized models trained on a single

machine. Here, we introduce the first distributed training of

LSTM RNNs using asynchronous stochastic gradient descent

optimization on a large cluster of machines. We show that a

two-layer deep LSTM RNN where each LSTM layer has a lin-

ear recurrent projection layer can exceed state-of-the-art speech

recognition performance. This architecture makes more effec-

tive use of model parameters than the others considered, con-

verges quickly, and outperforms a deep feed forward neural net-

work having an order of magnitude more parameters.

Index Terms: Long Short-Term Memory, LSTM, recurrent

neural network, RNN, speech recognition, acoustic modeling.

1. Introduction

Speech is a complex time-varying signal with complex cor-

relations at a range of different timescales. Recurrent neural

networks (RNNs) contain cyclic connections that make them

a more powerful tool to model such sequence data than feed-

forward neural networks. RNNs have demonstrated great suc-

cess in sequence labeling and prediction tasks such as handwrit-

ing recognition and language modeling. In acoustic modeling

for speech recognition, however, where deep neural networks

(DNNs) are the established state-of-the-art, recently RNNs have

received little attention beyond small scale phone recognition

tasks, notable exceptions being the work of Robinson [1],

Graves [2], and Sak [3].

DNNs can provide only limited temporal modeling by op-

erating on a fixed-size sliding window of acoustic frames. They

can only model the data within the window and are unsuited to

handle different speaking rates and longer term dependencies.

By contrast, recurrent neural networks contain cycles that feed

the network activations from a previous time step as inputs to

the network to influence predictions at the current time step.

These activations are stored in the internal states of the network

which can in principle hold long-term temporal contextual in-

formation. This mechanism allows RNNs to exploit a dynami-

cally changing contextual window over the input sequence his-

tory rather than a static one as in the fixed-sized window used

with feed-forward networks. In particular, the Long Short-Term

Memory (LSTM) architecture [4], which overcomes some mod-

eling weaknesses of RNNs [5], is conceptually attractive for the

task of acoustic modeling.

LSTM and conventional RNNs have been successfully ap-

plied to various sequence prediction and sequence labeling

tasks. In language modeling, a conventional RNN has ob-

tained significant reduction in perplexity over standard n-gram

models [6] and an LSTM RNN model has shown improve-

ments over conventional RNN LMs [7]. LSTM models have

been shown to perform better than RNNs on learning context-

free and context-sensitive languages [8]. Bidirectional LSTM

(BLSTM) networks that operate on the input sequence in both

directions to make a decision for the current input have been

proposed for phonetic labeling of acoustic frames on the TIMIT

speech database [9]. For online and offline handwriting recog-

nition, BLSTM networks used together with a Connectionist

Temporal Classification (CTC) layer and trained from unseg-

mented sequence data, have been shown to outperform a state-

of-the-art Hidden-Markov-Model (HMM) based system [10].

Similar techniques with a deep BLSTM network have been

proposed to perform grapheme-based speech recognition [11].

BLSTM networks have also been proposed for phoneme predic-

tion in a multi-stream framework for continuous conversational

speech recognition [12]. In terms of architectures, following

the success of DNNs for acoustic modeling [13, 14, 15, 16], a

deep BLSTM RNN combined with a CTC output layer and an

RNN transducer predicting phone sequences has been shown to

reach state-of-the-art phone recognition accuracy on the TIMIT

database [17].

Deep BLSTM RNNs have recently been shown to per-

form better than DNNs in the hybrid speech recognition ap-

proach [2]. Using the hybrid approach, we have recently shown

that an LSTM architecture with a recurrent projection layer

outperforms DNNs and conventional RNNs for large vocabu-

lary speech recognition, considering moderately-sized models

trained on a single machine [3]. In this paper, we explore LSTM

RNN architectures for large-scale acoustic modeling using dis-

tributed training. We show that a two-layer deep LSTM RNN

where each LSTM layer has a linear recurrent projection layer

outperforms a strong baseline system using a deep feed-forward

neural network having an order of magnitude more parameters.

2. LSTM Network Architectures

2.1. Conventional LSTM

The LSTM contains special units called memory blocks in the

recurrent hidden layer. The memory blocks contain memory

cells with self-connections storing the temporal state of the net-

work in addition to special multiplicative units called gates to

control the flow of information. Each memory block in the orig-

inal architecture contained an input gate and an output gate.

The input gate controls the flow of input activations into the
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Figure 1: LSTMP RNN architecture. A single memory block is

shown for clarity.

memory cell. The output gate controls the output flow of cell

activations into the rest of the network. Later, the forget gate

was added to the memory block [18]. This addressed a weak-

ness of LSTM models preventing them from processing contin-

uous input streams that are not segmented into subsequences.

The forget gate scales the internal state of the cell before adding

it as input to the cell through the self-recurrent connection of

the cell, therefore adaptively forgetting or resetting the cell’s

memory. In addition, the modern LSTM architecture contains

peephole connections from its internal cells to the gates in the

same cell to learn precise timing of the outputs [19].

An LSTM network computes a mapping from an input

sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using

the following equations iteratively from t = 1 to T :

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (1)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (2)

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1 + bc) (3)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (4)

mt = ot ⊙ h(ct) (5)

yt = φ(Wymmt + by) (6)

where the W terms denote weight matrices (e.g. Wix is the ma-

trix of weights from the input gate to the input), Wic,Wfc,Woc

are diagonal weight matrices for peephole connections, the b

terms denote bias vectors (bi is the input gate bias vector), σ is

the logistic sigmoid function, and i, f , o and c are respectively

the input gate, forget gate, output gate and cell activation vec-

tors, all of which are the same size as the cell output activation

vector m, ⊙ is the element-wise product of the vectors, g and h

are the cell input and cell output activation functions, generally

and in this paper tanh, and φ is the network output activation

function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs

have been successfully used for speech recognition [11, 17, 2].

Deep LSTM RNNs are built by stacking multiple LSTM lay-

ers. Note that LSTM RNNs are already deep architectures in

the sense that they can be considered as a feed-forward neu-

ral network unrolled in time where each layer shares the same

model parameters. One can see that the inputs to the model

go through multiple non-linear layers as in DNNs, however the

features from a given time instant are only processed by a sin-

gle nonlinear layer before contributing the output for that time
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Figure 2: LSTM RNN architectures.

instant. Therefore, the depth in deep LSTM RNNs has an ad-

ditional meaning. The input to the network at a given time step

goes through multiple LSTM layers in addition to propagation

through time and LSTM layers. It has been argued that deep

layers in RNNs allow the network to learn at different time

scales over the input [20]. Deep LSTM RNNs offer another

benefit over standard LSTM RNNs: They can make better use

of parameters by distributing them over the space through mul-

tiple layers. For instance, rather than increasing the memory

size of a standard model by a factor of 2, one can have 4 lay-

ers with approximately the same number of parameters. This

results in inputs going through more non-linear operations per

time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-

current LSTM layer and an output layer. The input layer is con-

nected to the LSTM layer. The recurrent connections in the

LSTM layer are directly from the cell output units to the cell

input units, input gates, output gates and forget gates. The cell

output units are also connected to the output layer of the net-

work. The total number of parameters N in a standard LSTM

network with one cell in each memory block, ignoring the bi-

ases, can be calculated as N = nc × nc × 4 + ni × nc × 4 +
nc × no + nc × 3, where nc is the number of memory cells

(and number of memory blocks in this case), ni is the number

of input units, and no is the number of output units. The com-

putational complexity of learning LSTM models per weight and

time step with the stochastic gradient descent (SGD) optimiza-

tion technique is O(1). Therefore, the learning computational

complexity per time step is O(N). The learning time for a net-

work with a moderate number of inputs is dominated by the

nc × (4 × nc + no) factor. For the tasks requiring a large

number of output units and a large number of memory cells to

store temporal contextual information, learning LSTM models

become computationally expensive.

As an alternative to the standard architecture, we proposed

the Long Short-Term Memory Projected (LSTMP) architec-

ture to address the computational complexity of learning LSTM

models [3]. This architecture, shown in Figure 1 has a separate

linear projection layer after the LSTM layer. The recurrent con-

nections now connect from this recurrent projection layer to the

input of the LSTM layer. The network output units are con-

nected to this recurrent layer. The number of parameters in this

model is nc×nr×4+ni×nc×4+nr×no+nc×nr+nc×3,



Table 1: Experiments with LSTM and LSTMP RNN architec-

tures showing test set WERs and frame accuracies on devel-

opment and training sets. L indicates the number of layers,

for shallow (1L) and deep (2,4,5,7L) networks. C indicates the

number of memory cells, P the number of recurrent projection

units, and N the total number of parameters.

C P Depth N Dev Train WER

(%) (%) (%)

840 - 5L 37M 67.7 70.7 10.9

440 - 5L 13M 67.6 70.1 10.8

600 - 2L 13M 66.4 68.5 11.3

385 - 7L 13M 66.2 68.5 11.2

750 - 1L 13M 63.3 65.5 12.4

6000 800 1L 36M 67.3 74.9 11.8

2048 512 2L 22M 68.8 72.0 10.8

1024 512 3L 20M 69.3 72.5 10.7

1024 512 2L 15M 69.0 74.0 10.7

800 512 2L 13M 69.0 72.7 10.7

2048 512 1L 13M 67.3 71.8 11.3

where nr is the number of units in the recurrent projection layer.

In this case, the model size and the learning computational com-

plexity are dominated by the nr × (4×nc +no) factor. Hence,

this allows us to reduce the number of parameters by the ratio
nr

nc

. By setting nr < nc we can increase the model memory

(nc) and still be able to control the number of parameters in the

recurrent connections and output layer.

With the proposed LSTMP architecture, the equations for

the activations of network units change slightly, the mt−1 acti-

vation vector is replaced with rt−1 and the following is added:

rt = Wrmmt (7)

yt = φ(Wyrrt + by) (8)

where the r denote the recurrent unit activations.

2.4. Deep LSTMP

Similar to deep LSTM, we propose deep LSTMP where multi-

ple LSTM layers each with a separate recurrent projection layer

are stacked. LSTMP allows the memory of the model to be in-

creased independently from the output layer and recurrent con-

nections. However, we noticed that increasing the memory size

makes the model more prone to overfitting by memorizing the

input sequence data. We know that DNNs generalize better to

unseen examples with increasing depth. The depth makes the

models harder to overfit to the training data since the inputs

to the network need to go through many non-linear functions.

With this motivation, we have experimented with deep LSTMP

architectures, where the aim is increasing the memory size and

generalization power of the model.

3. Distributed Training: Scaling up to
Large Models with Parallelization

We chose to implement the LSTM RNN architectures on multi-

core CPU rather than on GPU. The decision was based on

CPU’s relatively simpler implementation complexity, ease of

debugging and the ability to use clusters made from commod-

ity hardware. For matrix operations, we used the Eigen matrix

library [21]. This templated C++ library provides efficient im-

plementations for matrix operations on CPU using vectorized

instructions. We implemented activation functions and gradi-

ent calculations on matrices using SIMD instructions to benefit

from parallelization.

We use the truncated backpropagation through time (BPTT)

learning algorithm [22] to compute parameter gradients on short

subsequences of the training utterances. Activations are for-

ward propagated for a fixed step time Tbptt (e.g. 20). Cross

entropy gradients are computed for this subsequence and back-

propagated to its start. For computational efficiency each thread

operates on subsequences of four utterances at a time, so matrix

multiplies can operate in parallel on four frames at a time. We

use asynchronous stochastic gradient descent (ASGD) [23] to

optimize the network parameters, updating the parameters asyn-

chronously from multiple threads on a multi-core machine. This

effectively increases the batch size and reduces the correlation

of the frames in a given batch. After a thread has updated the

parameters, it continues with the next subsequence in each utter-

ance, preserving the LSTM state, or starts new utterances with

reset state when one finishes. Note that the last subsequence

of each utterance can be shorter than Tbptt but is padded to the

full length, though no gradient is generated for these padding

frames.

This highly parallel single machine ASGD framework de-

scribed in [3] proved slow for training models of the scale we

have used for large scale ASR with DNNs (many millions of

parameters). To scale further, we replicate the single-machine

workers on many (e.g. 500) separate machines, each with three,

synchronized, computation threads. Each worker communi-

cates with a shared, distributed parameter server [23] which

stores the LSTM parameters. When a worker has computed the

parameter gradient on a minibatch (of 3×4×Tbptt frames), the

gradient vector is partitioned and sent to the parameter server

shards which each add the gradients to their parameters and re-

spond with the new parameters. The parameter server shards

aggregate parameter updates completely asynchronously. For

instance, gradient updates from workers may arrive in different

orders at different shards of the parameter server. Despite the

asynchrony, we observe stable convergence, though the learn-

ing rate must be reduced, as would be expected because of the

increase in the effective batch size from the greater parallelism.

4. Experiments

We evaluate and compare the performance of LSTM RNN ar-

chitectures on a large vocabulary speech recognition task – the

Google Voice Search task. We use a hybrid approach [24]

for acoustic modeling with LSTM RNNs, wherein the neural

networks estimate hidden Markov model (HMM) state posteri-

ors. We scale the state posteriors by the state priors estimated

as the relative state frequency from the training data to obtain

the acoustic frame likelihoods. We deweight the silence state

counts by a factor of 2.7 when estimating the state frequencies.

4.1. Systems & Evaluation

All the networks are trained on a 3 million utterance (about

1900 hours) dataset consisting of anonymized and hand-

transcribed utterances. The dataset is represented with 25ms

frames of 40-dimensional log-filterbank energy features com-

puted every 10ms. The utterances are aligned with a 85 million

parameter DNN with 14247 CD states. The weights in all the

networks are initialized to the range (-0.02, 0.02) with a uni-

form distribution. We try to set the learning rate specific to a

network architecture and its configuration to the largest value
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Figure 3: Frame accuracy vs training time.

that results in a stable convergence. As a result, the learning

rates for stable convergence of different networks range from

5e-06 to 1e-05. The learning rates are exponentially decayed

during training. With the correct learning rate, the training of

LSTM RNNs results in a stable convergence. Apart from clip-

ping the activations of memory cells to range [-50, 50], we do

not limit the activations of other units, the weights or the esti-

mated gradients.

During training, we evaluate frame accuracies (i.e. phone

state labeling accuracy of acoustic frames) on a held-out devel-

opment set of 200,000 frames. The trained models are eval-

uated in a speech recognition system on a test set of 22,500

hand-transcribed, anonymized utterances. For all the decoding

experiments, we use a wide beam to avoid search errors. After a

first pass of decoding using the LSTM RNNs with a 5-gram lan-

guage model heavily pruned to 23 million n-grams, lattices are

rescored using a 5-gram language model with 1 billion n-grams.

The input to the LSTM RNNs is log-filterbank energy fea-

tures, with no frame stacking. Since the information from

the future frames helps making better decisions for the current

frame, we delay the output HMM state label by 5 frames. We

do not calculate the errors for the first 5 frames of each utter-

ance during backpropagation and we repeat the last frame of

each utterance for 5 more time steps.

4.2. Results

In Table 1, we summarize the results for various LSTM and

LSTMP RNN architectures. We observe that the conventional

LSTM RNNs with a single layer do not perform very well for

this large scale acoustic modeling task. With two layers of

LSTM RNNs, the performance improves but still it is not very

good. The LSTM RNN with five layers approaches the perfor-

mance of the best model. We see that training an LSTM RNN

with seven layers is hard, the model starts converging after a

day of training. From the table, one can see that the LSTMP

RNN models with a single layer and a large number of memory

cells tends to overfit the training data. Increasing the number of

LSTMP RNN layers seems to alleviate this problem of mem-

orization and to result in better generalization to held-out data.

The LSTMP RNN models give slightly better results than the

LSTM RNN model with 5 layers. We see that increasing the

number of parameters in the LSTMP RNN models more than

13M by having more layers or more memory cells does not give

performance improvements.

Figure 3 compares the frame accuracies on training and

held-out sets for various LSTM and LSTMP architectures. The

overfitting problem with LSTMP RNN architecture with large

number of memory cells (2048) can be seen clearly. We observe

that LSTMP RNN architectures converges faster than LSTM

RNN architectures. It is clear that having more layers helps gen-

eralization but makes training harder and convergence slower.

Table 2 shows how the performance of networks with deep

LSTMP RNN architecture changes with the depth and number

of model parameters. We see that increasing the number of pa-

rameters over 13M does not improve performance. We can also

decrease the number of parameters substantially without hurt-

ing performance much. The deep LSTMP RNN architecture

with two layers each with 800 cells and 512 recurrent projec-

tion units converges mostly in 48 hours and gives 10.9% WER

on the independent test set. Training this model for 100 hours

improves the WER to 10.7% and for 200 hours to 10.5%. In

comparison, our best DNN models with 85M parameters gives

11.3% at the same beam and training takes a few weeks.

Table 2: Experiments with LSTMP RNN architectures.

C P Depth N WER (%)

1024 512 3L 20M 10.7

1024 512 2L 15M 10.7

800 512 2L 13M 10.7

700 400 2L 10M 10.8

600 350 2L 8M 10.9

5. Conclusions

We showed that deep LSTM RNN architectures achieve state-

of-the-art performance for large scale acoustic modeling. The

proposed deep LSTMP RNN architecture outperforms standard

LSTM networks and DNNs and makes more effective use of the

model parameters by addressing the computational efficiency

needed for training large networks. We also show for the first

time that LSTM RNN models can be quickly trained using

ASGD distributed training.
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