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Abstract— New applications of mobile robotics in dynamic
urban areas require more than the single-session geomet-
ric maps that have dominated simultaneous localization and
mapping (SLAM) research to date; maps must be updated
as the environment changes and include a semantic layer
(such as road network information) to aid motion planning in
dynamic environments. We present an algorithm for long-term
localization and mapping in real time using a three-dimensional
(3D) laser scanner. The system infers the static or dynamic
state of each 3D point in the environment based on repeated
observations. The velocity of each dynamic point is estimated
without requiring object models or explicit clustering of the
points. At any time, the system is able to produce a most-likely
representation of underlying static scene geometry. By storing
the time history of velocities, we can infer the dominant motion
patterns within the map. The result is an online mapping and
localization system specifically designed to enable long-term
autonomy within highly dynamic environments. We validate
the approach using data collected around the campus of ETH
Zurich over seven months and several kilometers of navigation.
To the best of our knowledge, this is the first work to unify
long-term map update with tracking of dynamic objects.

Index Terms— Long-term mapping, dynamic obstacles, ICP,
kd-tree, registration, scan matching, robot, SLAM.

I. INTRODUCTION AND RELATED WORK

The success of SLAM has been a major enabler of

robot autonomy. Until recently, the majority of research

focused on increasing the accuracy and robustness of single-

session SLAM. Now that robotic hardware and software are

becoming more widespread, applications such as navigation

in dense crowds [1], or autonomous driving in cities [2] are

demanding new algorithms that can maintain maps over time.

A SLAM system should not only be able to build a map

of the geometry of an environment, but it should also be

capable of updating this map over time and of encoding

useful semantic information for planning. For example, a

map that includes lane and average speed information may

be used to calculate the probable trajectories of cars tracked

by a robot, so planning a collision-free path may be focused

on likely trajectories and thus, can be computed faster. Prior

knowledge of motion patterns within a map may also be

used to detect anomalous behavior of other agents so that

extra attention may be paid to these agents. Furthermore,

it is important that dynamic objects are not included in

static environment maps as they may degrade localization

accuracy and cause motion planning to fail. Motivated by

these applications, we therefore seek to develop a mapping
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Fig. 1. ARTOR, a search and rescue robot specialized for outdoor
applications navigating in a highly dynamic urban environment. Typical
mobile elements include pedestrians, bikers, cars, trucks and trams.

and localization system that is able to build and maintain

these hybrid geometric/semantic maps.

This paper presents an algorithm that performs SLAM,

map updating, classification of map points as dynamic or

static, and estimation of the velocity of dynamic points, all

in real time and using only data from a 3D laser scanner. The

approach is bottom up; it does not rely on prior information,

such as object models. The only prior used is a weak

smoothness assumption on the velocity of dynamic scene

points. By saving the time history of point-wise velocity

estimates, we are able to infer the dominant motion patterns

in the map. The algorithm is validated using data collected

over seven months with the field robot shown in Fig. 1 in

the highly dynamic urban area around the main campus of

ETH Zurich.

The work presented here is related to two research areas:

map updating for lifelong navigation and segmentation of

dynamic obstacles during localization and mapping. As the

techniques used in laser processing and vision processing

have not yet converged on common solutions for either of

these problems, we will restrict our survey of prior work to

papers that use lidar data.

The work of Biber et al. [3] describes a long-term

map updating scheme that shares the same goals as our

framework. They describe a long-term two-dimensional (2D)

SLAM system based on scan matching and odometry. The

mapping system maintains a set of local maps (2D scans

at fixed positions) with multiple hypotheses for the range

values at different timescales. Specifically, they highlight

four requirements for any long-term mapping strategy: (1)

map adaptation should not depend on the wall-clock time,

(2) mapping should be resilient to outliers, (3) multiple



hypotheses should be maintained until there is enough data

for inference, and (4) the map should only contain measured

values (not interpolated or smoothed quantities). Our method

fulfills the same requirements, but we extend the capability to

3D space, remove the dependence on viewpoint and, rather

than maintaining multiple hypotheses, we probabilistically

segment samples into static and dynamic. Our segmentation

strategy is similar to the dynamic mapping technique of

Burgard et al. [4] who use an expectation maximization

scheme to differentiate between dynamic and static cells

in a 2D grid map. They show that removing dynamic

points from the data during mapping increases localization

accuracy. However, they make no attempt to cluster or track

dynamic objects throughout a scene. Theoretically, it should

be possible to extend their method to process 3D laser data by

adopting an efficient 3D grid representation such as Octomap

[5]. However, the processing of data with long sensor beams

in large outdoor areas can become prohibitively slow due to

the requirement to ray-trace through the grid. In contrast,

our method works in real time on raw 3D laser data in

expansive environments. The trade-off is that we do not

explicitly model free space throughout the entire volume of

the mapped area—only in places where our laser has returned

a previous reading. While the explicit modeling of free space

may be required for mobile manipulation or flying robots

navigating in tight spaces, it is not strictly necessary for a

large class of mobile robots with local sensing that is accurate

enough to infer the drivable area directly around the robot.

There have been a number of other algorithms developed

specifically for updating map over several passes through an

environment. Aijazi et al. [6] use highly accurate localization

based on a differential global positioning system to resolve

points from a single pass into a fixed grid. Grids from

multiple passes can then be directly compared to infer the

static parts of the scene. The algorithm produces excellent

segmentation results, but the reliance on highly accurate

localization makes it unsuitable for the general case of a

moving robot. Ryde and Hillier [7] also use a grid-based

representation to detect changes in 3D laser maps. They

sidestep the need for accurate localization by matching the

latest point cloud with an existing voxel grid. A change is

detected after alignment by finding points that do not lie

within an occupied voxel.

Another class of work has ignored map update to focus on

the segmentation and tracking of dynamic objects from laser

data. Several studies have produced notable results using a

static 3D laser [8], [9], [10]. However, it is not immediately

clear how to extend them to a moving sensor. Wang et al.

describe an impressive system for 2D laser-based SLAM

with moving object tracking [11]. The system segments the

incoming laser scan, matches segments with the predicted

locations of tracked objects, and accumulates point-based

models of the dynamic objects and the static scene. Moosman

and Fraichard have developed a very similar system for 3D

laser data [12]. However, both approaches rely on the initial

range-image segmentation step, and neither one addresses

the difficult problem of splitting tracks that can appear when

Fig. 2. Block diagram of the processing pipeline. Boxes represent separate
processes running at different frequencies. Solid arrows represent point
clouds being communicated to each modules and dashed line, odometry.
The gray arrows show the output of each module.

the initial segmentation step clusters objects with similar

positions and speeds. In contrast, our approach is entirely

point-based with a weak smoothness prior on velocities. The

lack of reliance on segmentation allows us to seamlessly

handle clumps of agents that merge and diverge without

relying on specialized detection and handling of these cases.

To the best of our knowledge, this is the first work to

unify map update with tracking of dynamic obstacles, and

we believe it is a significant step toward the unified geometric

and semantic mapping needed for robot navigation in highly

dynamic environments.

II. SYSTEM OVERVIEW

A general overview of the proposed system is presented

in Fig. 2. Point clouds from the sensor are provided to the

Registration module, which corrects the odometry of the

robot and provides the point clouds in global coordinates.

The Global Map Maintenance module evaluates if past

information were dynamic or not, and concatenate the new

registered point cloud in order to keep the global map at a

constant density. The Velocity Estimation module takes the

newly registered point cloud and segments it based on the

information of the global map. What is currently considered

as dynamic at time t is than evaluated against the last

dynamic elements at time t� 1. The module outputs a point

cloud with all the points having a speed larger than zero.

The 3D registration module is based on the already published

libpointmatcher [16], therefore this article will focus

on the two other modules.

III. DYNAMIC ELEMENT IDENTIFICATION

We infer dynamic parts of the scene based on visibility

assumptions; if we observe a laser point behind a point that

was previously observed, that previous point might be dy-

namic. For such process, the standard approach is ray-tracing.

While widely used in 2D, scaling up to 3D is expensive

in memory as it requires a dense representation of both

the occupied and free space. To ensure online computation,

we propose to directly use the same representation as for

the localization: sparse point clouds. First, we transform a

local subset of the point cloud map Q into the reference

frame of the current point cloud P . Then, using spherical

coordinates, we associate the points q of the map to each

single reading point p in the same small conical aperture



of size ✓max. This can be done quickly using an efficient

kd-tree implementation, libnabo [13]. All the points of

the map that are further than the point of the current sensor

reading in each cone are left untouched. However, the points

of the map that are closer than the reading need to be updated

as they should have intercepted the ray. Based on our field

observations, this update should fulfill the following criteria:

1) the greater the angle between the beam producing p

and q, the less we change the knowledge on q,

2) the greater the angle between the beam producing

q and its surface normal n, the less we change the

knowledge on q,

3) if p and q are spatially close, q is more probably static;

otherwise more probably dynamic,

4) a point has more chances to become dynamic knowing

that it is static than the inverse,

5) most of the new points observed are static.

Most of those criteria are easy to motivate, except maybe

criterion 2), which require more explainations. Indeed, the

sensor produces readings of environmental elements that can

be located at up to 80 m from the sensor itself. At that

distance, many points from the ground can be in the cone

of a reading point due to the big incidence angle, but they

should not be considered as dynamic. This problem was also

observed by Wurm et al. [5] but not explicitly addressed in

their updated equations.

In order to give a formal expression to those criteria,

we observe that the problem is to update some knowledge

state based on uncertain information. Therefore, we use a

Bayesian approach to update the knowledge on each map

point q. We consider the following notations for the variables,

while the parameters are defined in Table I:

• p: point from a newly acquired reading expressed from

the center of the sensor,

• q: point of the global map expressed from the center of

the sensor and associated to p,

• Dyn: binary variable indicating whether q is now

dynamic or not,

• Odyn: binary variable indicating whether q was dy-

namic or not,

• U : binary variable indicating whether we need to update

the point or not,

• ✓: angle between p and q defined as acos
⇣

q·p
kqk·kpk

⌘

,

• �: incidence angle on q based on its surface normal n

defined as acos
�

�

�
n · q

kqk

�

�

�
,

• �: distance between q and p defined as kp � qk.

We can write:

P (Dyn|✓,�, �) /
X

U,Odyn

�

�

�

�

P (Odyn)P (U |✓,�)
⇥P (Dyn|Odyn)P (�|Dyn)

(1)

Where:

• P (Odyn): is either a prior (80% chance to be static) or

the result of a previous inference,

• P (U |✓,�) =

(

θ
θmax

⇣

1 � 2φ
π

⌘

if kpk � kqk

0 otherwise

TABLE I

DEFINITION OF THE PARAMETERS AND THEIR VALUES USED FOR OUR

TARGETED SCENARIOS.

Values Descriptions

✓max 1� Angle around which all points in Q are associated
to a point p.

↵ 0.99 Probability of staying static given that the point was
static.

� 0.90 Probability of staying dynamic given that the point
was dynamic.

✏d 0.1 m Fixed noise on depth measurement of a point p.
✏a 0.2 Ratio of noise based on depth measurement of a

point p.
�max 0.9 Probability at which a point is considered perma-

nently dynamic.

is the probability to update based on separation and

incidence angles,

• P (Dyn|Odyn) =



↵ 1 � �

1 � ↵ �

�

is a decay matrix to allow points to change,

• P (�|Dyn) /

8

>

>

<

>

>

:

max(0,min(1, ✏d + kpk✏a � �))
if Dyn is false

1 � P (�|Dyn = false)
if Dyn is true

is the observation probability distribution.

With this model, we are able to compute whether a point

is dynamic or static based on multiple observations. In the

results section, we will demonstrate that this works well for

highly dynamic objects. However, it can have issues with

dynamic objects that are periodic (i.e., object that comes

back at the same location often). This applies particularly to

trams that are constrained to their tracks and to cars parked in

well-defined parking spaces. The definition of a static object

becomes therefore ambiguous, and higher-level models of

objects are needed. Here, we retain a bottom-up approach by

deciding that if an object is sufficiently dynamic—meaning

that it was seen and disappeared—then it cannot go back to

being static if P (Dyn = true) � �max.

IV. VELOCITY ESTIMATION

Building on top of the dynamic object classification, one

can estimate the velocity of moving objects. To be useful for

dynamic obstacle avoidance algorithm, like the one proposed

by Rufli et al. [14], velocity must be extracted at high rate.

Most approaches rely on the clustering of the points into

objects for which the velocity is then estimated looking,

for example, at the change in position of the center of

mass. In this section, we briefly introduce our fast and

generic approach as a complement to the dynamic element

classification.

From a newly acquired point cloud Pt at time t, we

associate all of its points to the global map. A subset

of mobile points Mt is generated from Pt, fulfilling the

requirement of being a dynamic obstacle. This can be based

on the dynamic element identification (as described in the

previous section) of the global map and on the definition of

obstacles for a given platform. Those dynamic obstacles Mt



can then be compared to the last subset Mt�1 to extract

velocity vectors. We based our approach on point-cloud

registration using iterative closest point (ICP), where Mt is

the reading point cloud and Mt�1 is the reference. Having

different transformation parameters for each point is known

as non-rigid ICP [15]. We reuse the underlying principles but

extracted only translation components instead of the full 6

degrees of freedom (DOF) transformation. In essence, we

propose to do dual non-rigid ICP—both from reading to

reference and from reference to reading—and, given that we

have a timestamp per point, divid the alignment error with

the difference of acquisition time to estimate the velocity

vectors. We use neighboring constraints to harmonize the

velocities across close points.

As shown in Fig. 3, the measurements received are sparser

than typical full point clouds used with ICP. Moreover, a high

ratio of noise is possible, especially during exploration of

new areas where not enough information has been acquired

to accurately classify points. To cope with those challenges,

we vary the number of nearest neighbors inversely propor-

tional to the number of iterations. More precisely, for every

pread in Mt, we assign k nearest neighbors pref from the

reference point cloud Mt�1. Then, we compute the average

velocity vector produced by the k matched points and assign

it to pread. This augments the robustness of the association

phase against noisy matches when using a large k, while

keeping the accuracy of a single match at the last iteration.

To ensure locally coherent velocities, we apply a windowed-

mean filter in the Euclidean space for all pread. The iterative

process reuses velocity estimates of the latest iteration to

project points before association with the speed of new

points initialized to zero. In the current instantiation of the

algorithm, five iterations were sufficient for convergence.

Often, objects change rapidly in term of shape and density

between two scans, which lead to an asymmetry between

the velocity estimation from the reading to the reference,

and vice-versa. To cope with this situation, we compute both

directions of matching in parallel. Fig. 3 shows an example

of this process on a pedestrian at different viewing distances

with points projected in both directions. As it can be seen

from the projected points (in green and blue), our process is

able to correctly estimate the velocity of the points by re-

projecting them properly to the other point cloud taken at a

different time. It also shows the importance of the iterative

process; with point clouds 1 m apart, points from one point

cloud would all initially match a few points of the other, like

an extended foot or arm.

Having several iterations that average over matches and

neighbors fosters local consistency in the velocity esti-

mate while allowing deformations. Although multiple nearest

neighbor searches are used, only one kd-tree generation

is required for every new scan, which gives a very fast

computation. As opposed to cluster-based approaches, all

dynamic objects can be treated in parallel as each point

has its own velocity. Timing will be discussed in the results

section.

Fig. 3. Registration example of a pedestrian over different distances from
the robot. Points in black are the current readings and the points in red
are the references, taken roughly 0.5 s before. The points in green are the
projections of the readings to the reference, while the points in blue are the
projections of the reference to the readings.

V. EXPERIMENTAL RESULTS

Although we could evaluated our approach in a simulated

environment, we decided to go for real environments leading

to a richer set of events at the expense of a direct access to

precise ground truth information. We validated our approach

with two scenarios in controlled environments and two

large scale (i.e., kilometer range) experiments with daily

challenges caused by dynamic elements. The robot assigned

to the task was ARTOR (see Fig. 1), a platform based on

the LandShark system by Black-I Robotics (USA), with cus-

tom modifications realized by RUAG Land Systems (Thun,

Switzerland). The robot has a maximum speed of 3.5 m/s

but is typically driven at 1 m/s in crowded environments.

Equipped with a large sensor suite, the final platform is

suitable for applications ranging from Search & Rescue

to surveillance and reconnaissance. The main sensor used

for the experiments is the Velodyne HDL-32E. It produces

roughly 70’000 points per 360� scan at a rate of 11 Hz and

with a maximum range of 80 m. The map representation is

a set of sparse points with information about their surface

normals, timestamps, probability of being dynamic, etc. A

new point is only added to the map if the distance to its

nearest neighbor in the global map is larger than 0.3 m. This

keeps the point density of the global map constant, keeping

the computation time close to real time. All the following

results were obtained by running the input data at the same

rate at which they were recorded.

A. Dynamic Element Segmentation

The goal of this experiment is to evaluate the capability

of the system to identify dynamic elements. We selected the

visitor parking lot of a hospital, which means that cars do

not typically stay overnight. The section of the parking lot

we surveyed has 50 dedicated parking places. Moreover, the

middle of the parking lot is also a busy bike path during the

day. Thus, this environment presents two kinds of dynamic

obstacles: cars that come and go in between experimental

runs, and bikes and pedestrians that move during the runs.

The robot was driven around to survey the area at different

times during three consecutive days. The first survey was

considered as the exploration phase, while the following

missions are built upon the prior map. Points are kept in the

map independently of their categorization and only split at

the end for evaluation with the threshold P (Dyn = true) <

0.5. The environment and the path the robot did is depicted in



Fig. 4. Aerial view of the parking lot used for the segmentation experiment.
In red, the survey path realized by the robot. Source: Bundesamt für
Landestopografie swisstopo (Art. 30 GeoIV): 5704 000 000.

Fig. 5. Result of the segmentation after 9 surveys over the course of 3 days.
Top: Reconstruction with P (Dyn = true) < 0.5. Bottom: Reconstruction
with P (Dyn = true) > 0.5. The flow of pedestrians and bikes can be
seen using a path (1) and splitting to avoid another row of parked cars (2).

Fig. 4. During the experiment, 61 pedestrians, 27 bikes and

10 cars were in motion through the surveyed area, without

considering the multiple punctual changes in parked cars that

appeared of disappeared through the days.

In addition to those surveys, we produced a ground truth

map of the environment with a density that was three times

higher than our regular maps. We recorded this map at night

in order to have neither cars parked nor bikes or pedestrians.

This map constitutes our ground truth for static elements and

is not part of the evaluation set. In the following experiment,

a point in the survey map is considered static if there is a

point in the ground truth map within a radius of 0.15 m;

otherwise, it is considered dynamic.

Fig. 5 shows the resulting segmentation between static

and dynamic points. In the static map (top panel), the trees

and the ground are clearly visible, whereas in the dynamic

map (bottom panel) the cars are well highlighted as well as

many points in the middle belonging to bikes or pedestrians.

Moreover, the comparison of both maps in position (1) shows

a path in the static map and trails from pedestrians and

bikes in the dynamic map. The same comparison in position

(2) shows the flow of pedestrians and bikes splitting around

parked cars.

Using our ground truth map, we can evaluate the error
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added to the map for each surveyed time. The classification is done by
comparison with our ground truth map.

rate of our classification. Fig. 6 presents both the global

classification error, as well as the error for each class. If we

distinguish static points from dynamic points, we can see

two different evolutions. On the one hand, the error on the

dynamic points decreases over time. This is expected because

we need to observe that the point is missing to provide a

classification. On the other hand, we see a steady increase in

the rate of static points. Those points are mainly points that

were close to the ground and were classified as dynamic;

often, they are the lower part of cars. Finally, we observe

an overall decrease of the error, from 20% to around 5%.

This shows that there are more points that are dynamic than

static.

Fig. 7 illustrates the evolution of the number of static and

dynamic points in the map. This graph confirms that the

number of static points is smaller than of dynamic points

and that the difference increases with time. As expected,

the number of new points added into the map at each visit

decreases with each run as the environment gets to be better

known. Moreover, the static information gets added into the

map faster than dynamic elements and at the end of the

first day, most static points are there. The plateaus in the

dynamic points at the end of both day 1 and day 3 show

the decrease in activity in the evening for this parking lot.

Finally, with each successive run, dynamic points are added

into an almost uniform 2 m-thick layer above the ground.

These points represent all the pedestrians and bikes that have

crossed the area during all the runs. The main issue about

those dynamic points, greatly outnumbering static points, is

that they can prevent ICP localization to properly align the



Fig. 8. Experimental setup for the velocity estimation. Top: Aerial view
of the street used for the tests. Source: Bundesamt für Landestopografie
swisstopo (Art. 30 GeoIV): 5704 000 000. Bottom: 3D reconstruction of
the street with the zone reserved for our controlled dynamic elements in
red and the position of the robot in green.

current sensor reading with the map, causing a slow drift in

the localization of the robot. With our approach, we can use

P (Dyn) as a weight in the ICP algorithm in order to not trust

dynamic points for the computation of the transformation

between the point clouds. This way, we were able to solve

the issue of localization drifting due to the dynamic points,

by providing both a more precise and cleaner map of the

environment. This is consistent to what Burgard et al. [4]

have already demonstrated in their 2D experiments.

B. Velocity Estimation

In this experiment, we aim at assessing the capability of

the system to estimate different velocities while minimizing

the noise induced by the dynamic element segmentation

and the localization. The experiment was conducted in a

controlled environment consisting of a remote street without

traffic. This allowed us to add only one moving obstacle at a

time. First, we drove the robot along the street in absence of

any dynamic elements, yielding a 170 m wide 3D map of the

static part of the environment. Fig. 8 shows an aerial view

of the test area, the 3D reconstruction of the street, and the

zone where we moved objects. We parked the robot at the

indicated position (in green), and then let different dynamic

objects pass by in linear motion. We tested two kinds of

dynamic objects: a pedestrian and a minibus. The pedestrian

was asked to cross the scene once by Walking and once by

Jogging. The driver of the minibus was asked to drive at

three different speeds: the lowest speed the vehicle could

go (approximately 2 m/s, Slow), at 5.5 m/s (Medium) and at

11 m/s (Fast).

Fig. 9 shows the resulting velocity estimation of our

system. The median values of the pedestrian’s estimated

speed were 1.7 m/s and 4.1 m/s for Walking and Jogging,

respectively. In the experiments with the minibus, the speed

Fig. 9. Top view of the 3D dynamic trails. The 2 first lines represent the
trails of a pedestrian, and the 3 last lines represent the ones of a minibus.
The color indicates the estimated velocity in m/s.

of the vehicle could be roughly controlled using the car’s

speedometer. The velocities listed above represent the max-

imum values reached in each of the three runs. However,

the acceleration phase was included in the test track, and

is therefore in the estimation. This explains why the es-

timated median values—1.9 m/s (Slow), 4.6 m/s (Medium),

and 8.1 m/s (Fast)—are considerably lower than the targeted

speeds. One can also observe that velocities can be estimated

at up to 22 m from the sensor.

C. Applications

Finally, we conducted two experiments in a dynamic urban

environment. The aim was to demonstrate the performance

of our system in real world scenarios, and to give an idea

of the range of possible applications. In the first experiment,

we drove the robot three times along a 1.3 km long route

in the city of Zurich, spread over seven months (March 12,

May 23 and September 9, 2013). The first pass was used

as the exploration phase, with all subsequent passes building

upon the prior map. Fig. 10 shows the results of the survey;

the bottom graph mapped the count of dynamic elements

that were removed to produce the static map. This graph can

be used to identify zones of interest. Two construction sites,

that partially occupied the streets, are marked with (1) in red.

Marked with (2), is a very large tree (i.e., 1 m diameter trunk)

that has been chopped between March and May. Finally, the

zone marked with (3) is a busy intersection with cars, trucks,

bike paths, trams and many pedestrians (see Fig. 1). The

experiment shows that our system can be employed to extract

zones that are potentially dangerous to navigate (i.e., places

that contain plenty of dynamic objects) or that exhibit large

seasonal changes.

The second experiment was conducted in front of the main

building of ETH Zurich. It took place during the information

day, which meant that many young students gathered in

the streets, with sometimes as many as 15 persons in the

vicinity of the robot. The main street consists of two large

sidewalks, two lines for cars, and two lines for trams. The

robot surveyed the area twice within 20 minutes, each time



Fig. 10. Long range survey over a 1.3 km long path. The environment was
monitored over a period of seven months. Top: Aerial view of surveyed
area. Source: Bundesamt für Landestopografie swisstopo (Art. 30 GeoIV):
5704 000 000. Middle: 3D reconstruction after dynamic elements removal.
Bottom: Occurrence of dynamic elements. The graph highlights the position
of (1) construction sites, (2) a large tree and (3) a busy street intersection.
Color represent to number of dynamic points over a cell size of 10 m.

driving on the sidewalks on both sides of the street. Fig. 11

presents the results of the experiment. The two lower graphs

show the extracted dynamic objects over the course of the

survey, with their estimated speed and direction of motion.

In the speed graph (left), blue corresponds to the range of

typical walking speeds of pedestrians. The sidewalks and

the pedestrian crossings (the latter marked with red arrows)

can be clearly identified by looking at the blue objects.

Furthermore, there are two lines of faster objects (yellow to

red), which designate the car lanes. Note that the velocities

are lower in the vicinity of the pedestrian crossings, which

comes from the fact that drivers stop to let people cross

the street. In the orientation graph (right), the two main

directions of the cars are clearly visible. On the sidewalks

the situation is naturally more chaotic, as pedestrians do not

walk on distinct lanes. Trams were less detected because

their speed can only be detected if the robot sees the front

or the rear of the wagons. Otherwise, they look like large

walls appearing and disappearing from the laser perspective.

The result of this experiment is a first, yet significant,

step towards automatic road graph extraction: our system

can correctly identify regions of low speed (sidewalks and

pedestrian crossings) and road lanes, including the direction

of traffic. Enough data to identify crowd and traffic behaviors

were collected only by surveying the environment twice

and in continuous motion. The velocity extraction is robust

enough to estimate a significant number of measurements,

even when exploring the environment for the first time.

D. Computation Time

All computations were realized on a single laptop with

a four-core Intel Core i7 and 4 GB of RAM. As explained

earlier with Fig. 2, all modules run at different speeds. The

registration module runs between 6 and 11 Hz by down-

sampling the input points and using the wheel odometry

as prior alignment. The map maintenance, including the

concatenation of the new information and identification of

dynamic elements, runs in average at 2 Hz, even with maps as

large as 600’000 for the 1.3 km long survey. The computation

time for the velocity estimation depends on the number

of dynamic elements in the scan. In average, it is 0.03 s

(⇡30 Hz) in the single dynamic object experiment. The laser

sensor produces scans at 11 Hz, which means that we can

follow the sensor rate, with some margin. However, a typical

pedestrian would only move by 15 cm between two scans.

This poses a problem for the speed estimation, as the velocity

vectors become noisy at very small distances. On the other

hand, if the object is too fast, the assumption of the closest

point will fail. As a compromise, we slowed down the data

rate to 8 Hz, which we found to be a good compromise to

handle velocities from 1.5 to 10 m/s.

VI. CONCLUSION AND FUTURE WORK

Our paper presents an online approach for computing both

the probability of a 3D point to be dynamic or static and

the velocities of dynamic points. Based on 3D point clouds

as a sparse representation, we use a Bayesian model for

assessing whether a point is dynamic and static, which leads

to a cleaner map and a better localization. We also use dual

non-rigid ICP to simultaneously compute the velocity of all

dynamic points. This approach is cluster- and model-free,

with only a weak smoothness assumption, and is able to

successfully evaluate the velocity of dynamic objects.

We have shown that identifying dynamic objects produces

an accurate map of the static scene geometry. This is es-

pecially important for difficult path-planning tasks in highly

cluttered 3D environments. In both cases, it is detrimental

for dynamic objects to be wrongly classified as obstacles, as

it could invalidate the only feasible path to a goal.

We have also shown that the integration of the velocity

information in the map reveals the main characteristics of

traffic or pedestrian flow. This could be used to extract

higher-level semantic information, which is necessary for

more advanced path-planning techniques in dynamic envi-

ronments. For example, a lot of advanced collision avoidance

techniques require the ability to predict the trajectory of

all other dynamic objects. This is usually not feasible,

unless those dynamic objects are other robots tracked by

an external localization system [17], restraining the use of

such techniques. Our approach provides velocity estimates

for dynamic obstacles as well as the aggregated knowledge

of past observations, which may be used to predict future

behavior, like the possibility that cars slow down at the

pedestrian crossing. In future work, we would like to use

the time history of dynamic objects to build probabilistic

models of motions within the map, as the 2D camera model

in [18], and then use these models to perform safe real-time

motion planning and navigation in crowded urban settings.

We will also evaluate a larger range of parameters to define

their impact on the robustness of the system and give more



Fig. 11. Extraction of velocity information at a global scale. Top left: Aerial view of the street in front of ETH Zurich. Source: Bundesamt für
Landestopografie swisstopo (Art. 30 GeoIV): 5704 000 000. Top right: 3D reconstruction after dynamic element removal. Bottom left: Average speed of
the moving objects. Bottom right: Average orientation of the moving objects. The red arrows highlight the pedestrian crossings.

insides on how others could tune them given their specific

applications. We believe that with our approach, we have

brought advanced path-planning techniques closer to field

robotics.
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