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IMPORTANCE Accurate long-term breast cancer risk assessment for women attending routine
screening could help reduce the disease burden and intervention-associated harms by
personalizing screening recommendations and preventive interventions.

OBJECTIVE To report the accuracy of risk assessment for breast cancer during a period of 19
years.

DESIGN, SETTING, AND PARTICIPANTS This cohort study of the Kaiser Permanente Washington
breast imaging registry included women without previous breast cancer, aged 40 to 73 years,
who attended screening from January 1, 1996, through December 31, 2013. Follow-up was
completed on December 31, 2014, and data were analyzed from March 2, 2016, through
November 13, 2017.

EXPOSURES Risk factors from a questionnaire and breast density from the Breast Imaging
and Reporting Data System at entry; primary risk was assessed using the Tyrer-Cuzick model.

MAIN OUTCOMES AND MEASURES Incidence of invasive breast cancer was estimated with and
without breast density. Follow-up began 6 months after the entry mammogram and
extended to the earliest diagnosis of invasive breast cancer, censoring at 75 years of age,
2014, diagnosis of ductal carcinoma in situ, death, or health plan disenrollment. Observed
divided by expected (O/E) numbers of cancer cases were compared using exact Poisson 95%
CIs. Hazard ratios for the top decile of 10-year risk relative to the middle 80% of the study
population were estimated. Constancy of relative risk calibration during follow-up was tested
using a time-dependent proportional hazards effect.

RESULTS In this cohort study of 132 139 women (median age at entry, 50 years; interquartile
range, 44-58 years), 2699 invasive breast cancers were subsequently diagnosed after a
median 5.2 years of follow-up (interquartile range, 2.4-11.1 years; maximum follow-up, 19
years; annual incidence rate [IR] per 1000 women, 2.9). Observed number of cancer
diagnoses was close to the expected number (O/E for the Tyrer-Cuzick model, 1.02 [95% CI,
0.98-1.06]; O/E for the Tyrer-Cuzick model with density, 0.98 [95% CI, 0.94-1.02]). The
Tyrer-Cuzick model estimated 2554 women (1.9%) to be at high risk (10-year risk of �8%), of
whom 147 subsequently developed invasive breast cancer (O/E, 0.79; 95% CI, 0.67-0.93; IR
per 1000 women, 8.7). The Tyrer-Cuzick model with density estimated more women to be at
high risk (4645 [3.5%]; 273 cancers [10.1%]; O/E, 0.78; 95% CI, 0.69-0.88; IR per 1000
women, 9.2). The hazard ratio for the highest risk decile compared with the middle 80% was
2.22 (95% CI, 2.02-2.45) for the Tyrer-Cuzick model and 2.55 (95% CI, 2.33-2.80) for the
Tyrer-Cuzick model with density. Little evidence was found for a decrease in relative risk
calibration throughout follow-up for the Tyrer-Cuzick model (age-adjusted slope, −0.003;
95% CI, −0.018 to 0.012) or the Tyrer-Cuzick model with density (age-adjusted slope,
−0.008; 95% CI, −0.020 to 0.004).

CONCLUSIONS AND RELEVANCE Breast cancer risk assessment combining classic risk factors
with mammographic density may provide useful data for 10 years or more and could be used
to guide long-term, systematic, risk-adapted screening and prevention strategies.
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B reast cancer is the most common cancer in women, with
at least 1.7 million cases diagnosed and 0.5 million
deaths per annum worldwide.1 Early diagnosis from

mammography screening reduces breast cancer mortality by
20% to 40% in the general population.2,3 In women at an el-
evated risk of breast cancer, selective estrogen receptor modu-
lator therapy for 5 years reduces the risk of breast cancer by
about 40%, and the effect persists for at least 20 years.4 Risk-
based breast cancer screening is not commonly adopted in the
United States or elsewhere, but it has the potential to in-
crease the benefits and decrease the harms of screening and
increase the number of women eligible for preventive therapy.
A prerequisite for the implementation of risk-adapted screen-
ing intervals and use of preventive therapies in precision medi-
cine is accurate risk assessment.

Breast cancer risk models have been used to guide entry
criteria in prevention trials and to determine the eligibility of
women for preventive therapy and supplemental screening by
magnetic resonance imaging.5-9 The Tyrer-Cuzick model in-
corporates classic breast cancer risk factors, including infor-
mation on affected second- and third-degree relatives, body
mass index, menopause, and hormone therapy. However, the
model identifies few women in the general population to be
at high risk (taken to be an absolute 10-year risk of ≥8%).10,11

Accumulating evidence suggests that risk assessment may
identify more high- and low-risk women when mammo-
graphic density is also taken into account,11-15 but the perfor-
mance of the Tyrer-Cuzick model has not been directly
assessed in any cohort study from a screening population in
the United States.16,17

An important question for risk assessment is the fol-
low-up time over which a model is accurate. Short-term pre-
dictions are useful for decisions such as additional screening
modalities at the time of mammography, whereas longer-term
risk predictions are important for deciding a risk-adapted screen-
ing regimen and eligibility for preventive therapy. Although sev-
eral risk models provide the residual lifetime risk for a woman
by year, studies to validate their performance have mostly con-
sidered cases within 5 years of risk assessment.18

The main aim of this study was to evaluate the Tyrer-
Cuzick model to 19 years after risk assessment or 75 years of
age in a screening cohort. We assessed the performance at dif-
ferent follow-up times and determined how much the accu-
racy of the model improves by adding a Breast Imaging and Re-
porting Data System (BI-RADS) measure of breast density.19

Methods
Study Population
The study included women in the Kaiser Permanente Washing-
ton Breast Cancer Surveillance Consortium (BCSC) registry
who attended mammography screening from January 1, 1996,
through December 31, 2013, with follow-up to December 31,
2014.20-22 This registry was used because of the more detailed
family history of breast and ovarian cancer collected than for
other BCSC registries.23 All procedures are compliant with the
Health Insurance Portability and Accountability Act, and the

registry has received a Federal Certificate of Confidentiality and
other protection for the identities of women, physicians, and
facilities who are the subjects of this research. The Kaiser
Permanente Washington breast imaging registry has received
approval from the institutional review board for active or pas-
sive consenting processes or a waiver of consent to enroll par-
ticipants, link data, and perform analytic studies.

Women entered the cohort 6 months after completing their
first risk factor questionnaire in the registry. To restrict to a co-
hort with negative screening findings, we excluded women di-
agnosed with in situ or invasive breast cancer within 6 months
of their initial screening mammogram. All women aged 40 to
73 years at entry who attended at least 1 screening visit (base-
line) with BI-RADS density recorded and did not have a prior
diagnosis of invasive breast cancer or ductal carcinoma in situ
were included; women with a lobular carcinoma in situ diag-
nosis before or at baseline were excluded. Some data from this
cohort contributed to the BCSC model.13,14

End Points
The primary outcome was the time from 6 months after the
entry questionnaire to diagnosis of invasive breast cancer or
censoring. Women were censored at the earliest of death,
health plan disenrollment, diagnosis of ductal carcinoma in
situ, 75 years of age (the recommended end of screening), or
the end of calendar time follow-up. Outcomes were obtained
through linkage with the regional population-based Surveil-
lance, Epidemiology, and End Results tumor registry24 and
pathology databases. All benign and malignant breast patho-
logic findings at Kaiser Permanente Washington were col-
lected from electronic medical records, given manual, stan-
dardized codes,25,26 and used to supplement tumor registry
data.

Exposure Variables
Risk factors used in the Tyrer-Cuzick model (version 7.02) were
investigated, and mammographic density risk was integrated
using risk estimates from a different case-control study (A.R.B.,
Wendy F. Cohn, PhD, William A. Knaus, PhD, Martin J. Yaffe,
PhD, J.C., and Jennifer A. Harvey, MD; unpublished data; De-
cember 2017) (eMethods in the Supplement). Risk factors were
collected prospectively using a self-report form taken at the

Key Points
Question How accurate is breast cancer risk assessment during
more than 10 years of follow-up?

Findings In a cohort study of 132 139 women attending screening
from 1996 to 2014, the Tyrer-Cuzick model with mammographic
density was well calibrated (2699 cases observed; 2757 cases
expected), with no significant loss in calibration to 19 years after
assessment. A high-risk group suitable for preventive therapy
included 4645 women (3.5%) and 273 cancers (10.1%).

Meaning Accurate risk assessment for breast cancer is needed for
risk-adapted screening and prevention strategies; risk assessment
combining classic risk factors and mammographic density may be
valid for many years after evaluation.
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same time as the mammogram. Only screening mammo-
grams using the radiologist’s indication for the examination
were used. Risk factors included (1) first- and second-degree
family history of breast cancer, including male relatives, and
age affected (<50 or ≥50 years or unknown); (2) first-degree
family history of ovarian cancer and age affected (<45 or ≥45
years or unknown); (3) age; (4) weight; (5) height; (6) parity,
age at first child, or unknown; (7) premenopausal, perimeno-
pausal, or postmenopausal status, age at menopause (<30, 30-
39, 40-49 [or 40-44 or 45-49, with age categories collected
changing over time], 50-54 or ≥55 years or unknown); (8) age
at menarche (<11, 12, 13, 14, or ≥15 years or unknown); (9) be-
nign breast disease, including number of biopsies, prior hy-
perplasia of the usual type (yes/no), or atypical hyperplasia
(yes/no); (10) ovarian cancer, age at diagnosis (<45, 45-49, 50-
54, or ≥55 years or unknown); and (11) BI-RADS breast density
(almost entirely fat, scattered fibroglandular, heteroge-
neously dense, or extremely dense) reported by the interpret-
ing radiologist. Body mass index was calculated using self-
reported weight in kilograms divided the height in meters
squared. Age categories were converted to single year for in-
put into the Tyrer-Cuzick model by taking the midpoint or using
the rules in eTable 1 in the Supplement for affected relatives.
Questionnaire data were briefly reviewed by the mammo-
gram technologist at the time of the examination and were
checked for invalid values when they were scanned for re-
search. Approximately 5% of women undergoing screening
opted out of having their questionnaire data used for
research.25 Demographic factors included urban environ-
ment (metropolitan, micropolitan, small town, rural, or un-
known) and a geocoded measure of median income deter-
mined by linking a woman’s address at the time of each
questionnaire to income and urban environmental data from
her 2010 US census tract.27

Statistical Methods
Data were analyzed from March 2, 2016, through November
13, 2017. Categories for demographic and risk factor catego-
ries were chosen based on questionnaire fields or established
cut points, and their hazard ratios (HRs) were estimated with
95% Wald CIs. Breast cancer incidence was predicted to the
end of each woman’s follow-up, converted to a cumulative haz-
ard using a natural logarithm, and summated to provide the
expected number of breast cancer diagnoses. Exact 95% CIs
for the observed divided by the expected (O/E) numbers of can-
cer diagnoses assumed that the observed number was gener-
ated by a Poisson distribution, with a rate equal to the ex-
pected number if well calibrated. Population risks were shown
using annual incidence rates (IRs) per 1000 women for the
complete cohort and across 10-year risk subgroups using
categories defined at baseline to be below average (<2%),
average (2% to <3%), above average (3% to <5%), moder-
ately increased (5% to <8%) and high (≥8%), following clini-
cal guidelines in the United Kingdom.11 The top and bottom
deciles of 10-year risk, relative to the middle 80%, were
compared using Kaplan-Meier estimation and HRs and in a
sensitivity analysis of the high-risk quantile. A proportional
hazards model with a time-dependent covariate equal to the

yearly predicted hazard rate with adjustment by 5-year age
group was used to determine the calibration of relative risks
overall and for each year of follow-up and visualized by a
spline fitted to weighted Schoenfeld residuals.28,29 To quan-
tify information conferred by risk models beyond age, we
calculated the difference in likelihood ratio (LR) statistics
between a proportional hazards model that included only
age and one that additionally incorporated the yearly pre-
dicted hazard. All analysis was undertaken using statistical
software R (version 3.4.1) and the survival, survminer, amd
mgcv packages.29-32

Results
Cohort
We included 132 139 women with a median follow-up of 5.2
years (interquartile range [IQR], 2.4-11.1 years). Follow-up was
greater for younger women who entered the cohort earlier (eg,
median of 10.8 years [IQR, 3.8-17.2 years] for 46 436 women
younger than 60 years with entry before 2000). Most of the
women were white (80.4%) and lived in a metropolitan area
(95.4%) (Table 1). Median body mass index at baseline was 26.6
(IQR, 23.1-31.5).

Median age at entry was 50 years (IQR, 44-58 years). Two
peaks in the entry distribution occurred at 40 and 50 years
of age. These peaks reflect the cohort’s risk-based screening
program21 in which high-risk women were recommended to
start annual breast imaging at 40 years of age and low-risk
women were recommended to start at 50 years of age (eFig-
ure 1 in the Supplement). Most women had a second screen
within 2 years of entry (82 172 [62.2%]) (Table 1), and 29 254
(22.1%) had a single baseline screening examination.

In total, 2699 invasive breast cancers were diagnosed.
Women were censored owing to disenrollment (62 331 [47.2%]),
end of follow-up (48 317 [36.6%]), being 75 years of age (15 827
[12.0%]), death (2328 [1.8%]), or a diagnosis of ductal carci-
noma in situ (637 [0.5%]). Of the 2699 invasive cancers, 412
were larger than 2 cm and had lymph node involvement (178
were of unknown size and/or nodal status). Invasive cancer
rates increased from approximately 1.3 per 1000 women/y at
42 years of age to 5.1 per 1000 women/y at 70 years of age and
were similar to recent rates in Washington State but departed
from the marginal rate assumption in the Tyrer-Cuzick model
(eFigure 2 in the Supplement).

Risk factor HRs were in the expected direction (Table 2).
Breast density was the strongest factor after age and had an
approximate 4-fold difference between the most and least
dense BI-RADS categories after adjustment for age and body
mass index (2.21 [95% CI, 1.95-2.50] vs 0.55 [95% CI, 0.45-
0.68]). In a multivariable analysis using risk factors
included in the Gail model,5 most information was in age
(LR-χ 2

1 = 308.5; HR per 5 years, 1.24; 95% CI, 1.21-1.27),
affected first-degree relatives (LR-χ 2

2 = 125.3; HR for 1 vs
none, 1.68; 95% CI, 1.53-1.85; HR for 2 vs none, 2.04; 95%
CI, 1.54-2.61), and previous atypical hyperplasia diagnosis
(LR-χ 2

1 = 78.4; HR, 3.14; 95% CI, 2.34-4.23) (eTable 2 in the
Supplement).
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Evaluation of Risk Models
We found good calibration of absolute risk during the entire
follow-up period (O/E for the Tyrer-Cuzick model, 1.02 [95%
CI, 0.98-1.06]; O/E for Tyrer-Cuzick model with density, 0.98
[95% CI, 0.94-1.02]) (Table 3). Absolute risk calibration var-
ied by age at entry (eTable 3 in the Supplement), by which the
general tendency was to predict relatively more cancers than
observed in younger women but fewer in older women (O/E
for Tyrer-Cuzick model in women aged 40-49 years, 0.81 [95%
CI, 0.76-0.86]; in women aged 60-73 years, 1.18 [95% CI, 1.09-
1.27]).

Figure 1 shows continued separation for baseline risk
groups in estimated cumulative risk curves through 19 years
after risk assessment, where the end of the curves represent
proportionally more younger women at entry owing to cen-
soring at 75 years of age. The Tyrer-Cuzick model identified
10-year risk in 2554 women (1.9%) to be 8% or greater, in whom

147 cancers (5.4%; IR per 1000 women, 8.7) were subse-
quently diagnosed as invasive breast cancer. The Tyrer-
Cuzick model with density identified more women (4645
[3.5%]; 273 cancers [10.1%]; IR per 1000 women, 9.2). How-
ever, risk was overestimated in this group (O/E for the Tyrer-
Cuzick model, 0.78 [95% CI, 0.69-0.88]; O/E for the Tyrer-
Cuzick model with density, 0.79 [95% CI, 0.67-0.93]), and risk
was underestimated in the group with a 10-year risk of less than
2% (O/E for the Tyrer-Cuzick model, 1.22 [95% CI, 1.12-1.31];
O/E for the Tyrer-Cuzick model with density, 1.17 [95% CI, 1.08-
1.26]).

Overestimation of the highest decile relative to the middle
80% was also apparent (Figure 2). The hazard ratio for the top
decile was 2.22 (95% CI, 2.02-2.45) for the Tyrer-Cuzick model
compared with 2.55 (95% CI, 2.33-2.80) for the Tyrer-Cuzick
model with density, and the results were robust to choice of
upper quantile (eFigure 4 in the Supplement). The hazard

Table 1. Invasive Breast Cancer Rate by Demographic and Other Factors

Characteristic No. (%) of Womena
Follow-up, 1000
Women-years

No. of
Invasive
Cancer
Cases

IR per 1000
Women/y Age-Adjusted HR (95% CI)

LR-χ2

Test P Value
Overall 132 139 (100) 939 2699 2.9

Race

White 106 191 (80.4) 778 2340 3.0 1 [Reference]

9.2b .06

Asian 11 690 (8.8) 70 152 2.2 0.80 (0.68-0.94)

Black 5133 (3.9) 34 81 2.4 0.87 (0.70-1.08)

>1 Race 3622 (2.7) 24 67 2.8 1.03 (0.81-1.32)

Other 3470 (2.6) 22 59 2.7 1.01 (0.78-1.31)

Unknown 2033 (1.5) 12 0 NA NA

Ethnicity

Non-Hispanic 123 750 (93.7) 882 2544 2.9 1 [Reference]

5.2c .02Hispanic 6546 (5.0) 46 153 3.4 1.22 (1.03-1.43)

Unknown Hispanic 1843 (1.4) 11 2 0.2 NA

Urban environment

Metropolitan 126 121 (95.4) 902 2632 2.9 1 [Reference]

18.9d <.001

Micropolitan 4073 (3.1) 27 48 1.8 0.58 (0.44-0.77)

Small town 771 (0.6) 5 10 2.1 0.67 (0.36-1.25)

Rural 519 (0.4) 3 5 1.5 0.46 (0.19-1.12)

Unknown 655 (0.5) 2 4 1.8 0.79 (0.30-2.11)

Income quartile (upper limit, $)e

1 ($68 005) 29 977 (22.7) 202 521 2.6 1 [Reference]

4.7d .03

2 ($79 932) 34 527 (26.1) 239 692 2.9 1.14 (1.02-1.28)

3 ($100 313) 32 667 (24.7) 234 657 2.8 1.11 (0.99-1.24)

4 (>$100 313) 32 571 (24.6) 248 771 3.1 1.18 (1.06-1.32)

Unknown 2397 (1.8) 16 58 3.7 1.50 (1.14-1.97)

Time to next screen (range), y

>0.5 to 1.5 27 361 (20.7) 192 833 4.3 1.61 (1.48-1.75)

137.7d <.001

>1.5 to 2.5 54 811 (41.5) 498 1437 2.9 1 [Reference]

>2.5 to 3.5 10 283 (7.8) 89 218 2.4 0.93 (0.81-1.07)

>3.5 10 430 (7.9) 91 179 2.0 0.76 (0.65-0.89)

Baseline only 29 254 (22.1) 69 32 0.5 0.24 (0.17-0.35)

Abbreviations: HR, hazard ratio; IR, incidence rate; LR-χ2, age-adjusted
likelihood ratio χ2 statistics, excluding unknown groups.
a Percentages have been rounded and may not total 100.
b Calculated as test of heterogeneity (df, 4).

c Calculated as test of heterogeneity (df, 1).
d Calculated as test for trend (df, 1).
e Indicates the upper limit median family income from census data.
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Table 2. Invasive Breast Cancer Rate and HRs by Risk Factor at Baseline

Risk Factor No. (%) of Womena
Follow-up, 1000
Women-years

No. of
Invasive
Cancer
Cases

IR per
1000
Women/y Age-Adjusted HR (95% CI)

Trend
Test
LR-χ 2

1 P Value
Age at birth of first child, y

Nulliparous 26 334 (19.9) 193 534 2.8 1 [Reference]

12.4 <.001

<20 20 014 (15.3) 134 362 2.7 0.83 (0.72-0.95)

20-24 37 718 (28.5) 265 811 3.1 0.93 (0.83-1.04)

25-29 24 336 (18.4) 177 514 2.9 0.97 (0.86-1.09)

30-34 12 846 (9.7) 98 278 2.8 1.07 (0.92-1.23)

35-39 5156 (3.9) 37 102 2.7 1.08 (0.88-1.34)

≥40 967 (0.7) 7 23 3.4 1.27 (0.83-1.92)

Unknown 4768 (3.6) 27 75 2.7 0.89 (0.70-1.13)

Age at menarche, y

<11 3090 (2.3) 14 23 1.6 0.70 (0.45-1.09)

3.7 .055

11 7560 (5.7) 34 76 2.2 0.96 (0.73-1.27)

12 14 936 (11.3) 69 156 2.3 1 [Reference]

13 14 948 (11.3) 69 141 2.1 0.90 (0.71-1.13)

14 7146 (5.4) 32 55 1.7 0.75 (0.55-1.02)

≥15 7349 (5.8) 32 50 1.6 0.68 (0.49-0.93)

Not asked 72 115 (54.6) 663 2154 3.3 1.09 (0.93-1.29)

Asked but unknown 4995 (3.8) 25 44 1.8 0.73 (0.52-1.02)

No. of affected first-degree
relatives

0 113 685 (86.0) 810 2104 2.6 1 [Reference]

128.2 <.0011 16 761 (12.7) 118 532 4.5 1.71 (1.55-1.88)

≥2 1693 (1.3) 11 63 5.8 2.04 (1.58-2.62)

Age at menopause, y

<30 3274 (2.5) 22 36 1.7 0.59 (0.42-0.83)

30.5 <.001

30-39 10 791 (8.2) 76 177 2.3 0.77 (0.65-0.91)

40-49 26 110 (19.8) 181 583 3.2 1 [Reference]

50-54 19 640 (14.9) 128 508 4.0 1.12 (0.99-1.26)

≥55 4776 (3.6) 28 134 4.8 1.24 (1.02-1.50)

Premenopausal 51 891 (39.3) 389 905 2.3 1.03 (0.91-1.18)

Unknown 15 657 (11.8) 115 356 3.1 1.05 (0.92-1.21)

No. of previous breast biopsiesb

0 123 370 (93.4) 856 2337 2.7 1 [Reference]

48.8 <.001
1 7213 (5.5) 67 284 4.3 1.56 (1.38-1.76)

2 1250 (0.9) 12 66 5.4 1.97 (1.54-2.52)

≥3 306 (0.2) 3 12 3.7 1.37 (0.78-2.41)

Benign disease (highest grade)

No biopsy 123 370 (93.4) 856 2337 2.7 1 [Reference]

104.5 <.001
Biopsy 6093 (4.6) 58 204 3.5 1.32 (1.14-1.52)

Hyperplasia of usual type 2189 (1.7) 20 101 5.0 1.77 (1.45-2.17)

Atypical hyperplasia 487 (0.4) 4 57 13.1 4.50 (3.46-5.85)

Premenopausal BMI

<20 2992 (5.8) 22 60 2.7 1.20 (0.92-1.58)

6.5 .01

20 to <25 19 756 (38.1) 153 355 2.3 1 [Reference]

25 to <30 13 487 (26.0) 100 254 2.5 1.08 (0.92-1.27)

30 to <35 7187 (13.9) 53 112 2.1 0.90 (0.73-1.11)

≥35 6728 (13.0) 48 89 1.9 0.81 (0.64-1.02)

Unknown 1741 (3.4) 13 35 2.6 1.06 (0.75-1.50)

(continued)
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ratio for the bottom decile was 0.50 (95% CI, 0.42-0.61) for the
Tyrer-Cuzick model but 0.36 (95% CI, 0.29-0.45) for the Tyrer-
Cuzick model with density. Incorporating density in the model
provided a greater range of observed risk between the top and
bottom deciles (Figure 2). The Tyrer-Cuzick model also over-
estimated relative risks after allowing for age (0.67; 95% CI,
0.60-0.75) (eTable 4 in the Supplement) but showed little evi-
dence of a change in relative risk calibration during follow-up
for the Tyrer-Cuzick model (age-adjusted intercept, 0.69 [95%

CI, 0.58-0.81]; age-adjusted slope, −0.003 [95% CI, −0.018 to
0.012]) and the Tyrer-Cuzick model with density (age-
adjusted intercept, 0.78 [95% CI, 0.68-0.88]; age-adjusted
slope, −0.008 [95% CI, −0.020 to 0.004]) (eTable 4 and eFig-
ure 5 in the Supplement).

Other analyses showed more predictive information than
age in the models (Tyrer-Cuzick model, ΔLR-χ2 = 290.5; Tyrer-
Cuzick model with density, ΔLR-χ2 = 541.4); density added ap-
proximately 86% to all factors in the Tyrer-Cuzick model other

Table 3. Absolute Risk Calibration by Model and 10-Year Risk Subgroup

Model by 10-y
Risk No. (%) of Womena

Follow-up, 1000
Women-years

No. of Invasive Breast
Cancer Cases

O/E (95% CI)

IR per 1000 Women/y

IRR (95% CI)Observed Expected Observed Expected
Tyrer-Cuzick

All 132 139 (100) 939 2699 2645 1.02 (0.98-1.06) 2.9 2.8 NA

<2% 47 975 (36.3) 347 648 533 1.22 (1.12-1.31) 1.9 1.5 0.73 (0.66-0.81)

2% to <3% 42 700 (32.3) 311 792 782 1.01 (0.94-1.09) 2.5 2.5 1 [Reference]

3% to <5% 29 523 (22.3) 202 779 763 1.02 (0.95-1.10) 3.9 3.8 1.52 (1.37-1.67)

5% to <8% 9387 (7.1) 62 333 382 0.87 (0.78-0.97) 5.4 6.2 2.12 (1.86-2.40)

≥8% 2554 (1.9) 17 147 185 0.79 (0.67-0.93) 8.7 11.0 3.43 (2.87-4.08)

Tyrer-Cuzick
with density

All 132 139 (100) 939 2699 2757 0.98 (0.94-1.02) 2.9 2.9 NA

<2% 53 436 (40.4) 390 641 548 1.17 (1.08-1.26) 1.6 1.4 0.63 (0.56-0.70)

2% to <3% 33 269 (25.2) 240 627 603 1.04 (0.96-1.12) 2.6 2.5 1 [Reference]

3% to <5% 29 477 (22.3) 203 779 784 0.99 (0.93-1.07) 3.8 3.9 1.47 (1.32-1.63)

5% to <8% 11 312 (8.6) 767 379 473 0.80 (0.72-0.89) 5.0 6.2 1.92 (1.69-2.18)

≥8% 4645 (3.5) 30 273 349 0.78 (0.69-0.88) 9.2 11.7 3.52 (3.05-4.05)

Abbreviations: IR, incidence rate; IRR, IR ratio; NA, not applicable; O/E, observed divided by expected cases.
a Percentages have been rounded and may not total 100.

Table 2. Invasive Breast Cancer Rate and HRs by Risk Factor at Baseline (continued)

Risk Factor No. (%) of Womena
Follow-up, 1000
Women-years

No. of
Invasive
Cancer
Cases

IR per
1000
Women/y Age-Adjusted HR (95% CI)

Trend
Test
LR-χ 2

1 P Value
Postmenopausal BMI

<20 2688 (4.2) 18 42 2.3 0.79 (0.58-1.09)

6.0 .01

20 to <25 19 559 (30.3) 133 400 3.0 1 [Reference]

25 to <30 19 245 (29.8) 129 476 3.7 1.22 (1.07-1.39)

30 to <35 11 217 (17.4) 75 254 3.4 1.14 (0.98-1.34)

≥35 9457 (14.6) 64 214 3.3 1.19 (1.00-1.40)

Unknown 2425 (3.8) 15 52 3.5 1.11 (0.83-1.49)

Height, m

<1.57 17 807 (13.5) 119 337 2.8 1.02 (0.91-1.15)

17.4 <.001
1.57-1.67 67 033 (50.7) 477 1305 2.7 1 [Reference]

≥1.67 43 685 (33.1) 321 989 3.1 1.18 (1.09-1.29)

Unknown 3614 (2.7) 22 68 3.0 1.07 (0.84-1.37)

BI-RADS densityc

Fatty 10 138 (7.7) 65 100 1.5 0.55 (0.45-0.68)

191.4 <.001
Scattered 47 125 (35.7) 339 814 2.4 1 [Reference]

Heterogeneous 55 943 (42.3) 396 1295 3.3 1.69 (1.54-1.85)

Dense 18 933 (14.3) 139 490 3.5 2.21 (1.95-2.50)

Abbreviations: BI-RADS, Breast Imaging and Reporting Data System; BMI, body
mass index (calculated as weight in kilograms divided by the height in meters
squared); heterogeneity test; HR, hazard ratio; IR, incidence rate; LR-χ2,
age-adjusted likelihood ratio χ2 statistics, excluding unknown groups.

a Percentages have been rounded and may not total 100.
b No unknown category was used; if none reported, number is 0.
c Also adjusted for BMI owing to strong negative association.
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than age. A reclassification matrix demonstrated that this in-
formation translated into improved risk stratification for indi-
vidual women (eTable 5 in the Supplement).

Discussion
In this article, we evaluated the accuracy of long-term breast
cancer risk assessment in a US screening cohort and found that

breast cancer risk models based on classic risk factors and mam-
mographic density remain accurate during a longer period than
considered to date. We found continued differences in ob-
served risk during a 19-year period between predicted risk strata
formed at baseline (Figure 1).

The long-term calibration of breast cancer risk models has
important clinical implications. Arguably the main role of breast
cancer risk assessment to date has been to triage women for
genetic counseling and thereby guide their eligibility for

Figure 2. Observed and Expected Cumulative Invasive Breast Cancer Risk by Quantile
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expected risk. At 10 years the observed risk for the Tyrer-Cuzick model and the

Tyrer-Cuzick model with density was 1.4% and 1.0%, respectively, for the
bottom decile of risk; 2.7% and 2.6%, respectively, for the middle 80% of risk;
and 5.9% and 7.0%, respectively, for the top decile of risk.

Figure 1. Observed Cumulative Invasive Breast Cancer Risk by 10-Year Risk Group
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represents a pointwise 95% CI. At 10 years the observed risk for the
Tyrer-Cuzick model and the Tyrer-Cuzick model with density was 1.8% and
1.6%, respectively, for the group with predicted risk of less than 2%; 2.6% and

2.6%, respectively, for predicted risk of 2% to less than 3%; 4.1% and 3.8%,
respectively, for predicted risk of 3% to less than 5%; 5.5% and 5.4%,
respectively, for predicted risk of 5% to less than 8%; and 8.2% and 9.0%,
respectively, for predicted risk of 8% or greater.
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genetic testing, preventive therapy, and screening modalities
in addition to mammography. Our results lend support to ex-
tending such triage to more general high-risk clinics based on
risk to 19 years using a combined risk assessment, not just fa-
milial risk associated with BRCA1/2 mutations or other inher-
ited genetic factors. Combining mammographic density with
classic risk factors appears to be particularly important for this
aim because the strategy almost doubled the number identi-
fied in a high-risk group. Genetic or high-risk clinics may only
have a moderate effect on breast cancer in the general popu-
lation because most breast cancers are attributable to nonge-
netic factors. Most of these reproductive, hormonal, life-
style, or other factors are common but relatively weak factors
for individual women (Table 2), and few women at a very high
long-term risk are identified by them. However, accurate risk
assessment can also play a role for women not included in a
high-risk group by helping to personalize risk-adapted screen-
ing strategies.

Implementing risk assessment and prevention strategies
that are effective during a longer period could be easier than
more frequent risk assessment, but updated risk assessments
are likely to also play a role because they will be more precise
for individual women. For example, risk would increase after
a first diagnosis of proliferative benign disease, and taking into
account a sequence of mammographic density measure-
ments will be more precise than only using the most recent
measurement.33

The overall rates predicted by the models were broadly con-
sistent with the observed rates, but some evidence suggested
overestimation for the women at highest risk, and the mod-
els also predicted relatively more cancers than observed in
younger women and fewer in older women. Although chang-
ing risk thresholds or applying a recalibration of the absolute
risks may be considered, this is unnecessary because the aim
is to use the risk model to form broad risk strata. For ex-
ample, the observed risks in the chosen groups were consis-
tent with the predicted 10-year risk (Figure 1). Another issue
is that although assessment of absolute risk calibration is im-
portant, it is not straightforward to evaluate absolute risk in
screening cohorts, in part because the evaluation is affected
by the process of screening. Risk models are calibrated to breast
cancer rates in the population, not just participants who at-
tend screening or who have had a negative finding. Thus, one
might expect observed rates to be higher than predicted by the
risk models. However, the analytic approach of removing can-
cers detected at the first screening initially makes incidence
lower than that in the population owing to the removal of a
pool of cancers and the time taken for new cancers to de-
velop. This aspect is reflected in the age-specific rates for
women aged 41 years in eFigure 2 in the Supplement. In line
with both these points, absolute risk calibration varied by age
group, with relatively more cancers predicted than observed
for women in their 40s. Half of the cohort entered when in the

40-year age group, and a reduction in the rates relative to the
general population conferred by a negative finding on initial
screening would lead to fewer than expected cancers. Women
in their 70s had relatively fewer cancers predicted than ob-
served, which is likely owing to screening being recom-
mended to 75 years of age in this cohort. The Tyrer-Cuzick
model background rates are based on a UK sample in which
population screening ended at 70 years of age (eFigure 2B in
the Supplement).

Validated and freely available models for invasive breast
cancer have merit for guiding personalized breast cancer
screening and prevention strategies,34-36 but models for sub-
types could also play a role in decision making. For instance,
it has long been considered likely that mammographic screen-
ing in women younger than 50 years should be more frequent
than in older women despite their lower risk because on av-
erage tumor progression is more rapid in the younger group
and the breast tissue is denser; one might seek to use models
that assess risk of aggressive or lethal types of cancer and a
false-negative mammography screening result.

Limitations
This study has several limitations. Results are derived from a
single registry in 1 area of the United States with one of the high-
est IRs for breast cancer in the nation37 and an active risk-
based screening program, which will provide information on
younger women who are at higher risk. All women had health
insurance, the median census family income was relatively
high, and the cohort mainly consisted of women who regu-
larly attend screening, which might represent more healthy in-
dividuals. The relative homogeneity of the sample has the po-
tential to limit the factors that influence the model and mask
the influence of socioeconomic or other risk factors. Some data
were missing (Table 2), for which the Tyrer-Cuzick model in
general assumes the population risk (relative risk of 1.00). Miss-
ing risk factor data could reduce the predictive ability but were
uncommon (Table 2). Finally, follow-up was only during en-
rollment in the health plan. Although specific information
about reasons for health plan disenrollment were not col-
lected, in general they were owing to an employer no longer
offering the health plan, choosing a different option during an-
nual open enrollment, or a new job.

Conclusions
Risk models combining classic risk factors with mammo-
graphic density were informative to 19 years after risk assess-
ment. Mammographic density helped to identify a greater
number of women at the extremes of the risk distribution
where preventive measures or different screening intervals
might be considered to minimize intervention-associated
harms and the public health burden of breast cancer.
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