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INTRODUCTION
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The background:

I The human longevity phenomenon is accompanied by an
increase of the number of seniors who potentially need
long-term care (LTC).

I How does the change of LTC features impact the longevity
phenomenon and vice versa?

I We answer this question using lifetime data only.
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I A person enters into LTC once he/she becomes unable to
do some Activities of Daily Livings.

I The definition differs across countries, companies,
products, etc.

I This transition is assumed irreversible.
I It is accompanied by a mortality jump.
I We consider only one LTC state.
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Why LTC and mortality should be considered jointly even
without observation of LTC?
The improvement of the aggregated mortality in cohort is a
consequence of two processes:

1. The change of the proportion of people in LTC at each age.
2. The true mortality improvement, for both autonomous and

disabled people.
Failing to correct the effect of (1) causes a bias in the
estimation of the longevity phenomenon (2).
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Why using only lifetime data?
I LTC data are often unavailable or unreliable.
I Most LTC databases are too aggregated, and not

longitudinal or cover a very short period, thus not suited for
prediction purposes.

I For instance, for France, various databases show different
trends (source: OECD).

I On the other hand, there exist good databases for the
lifetime data.

We will show why LTC features can be identified with the
lifetime data, for reasonable specification with longevity.
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Methodologically,
I We propose a joint model based on the intensity of LTC

entry and mortality intensities.
I Longevity is taken into account via a factor common to LTC

and mortality, either deterministic or stochastic.
I The model is applied to the French male population (HMD

data).
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THE MODEL
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The general statistical setting
I A person can either enter first into a non terminal event

(LTC) before death, or die directly.
I In the second case, the LTC does not happen.
I They are sometimes called semicompeting risks, or

multi-state models.
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Reduced form approach: Illness-Death Interpretation

Figure: The potential transitions of an individual during its lifetime.

A: health (autonomous), B: illness (LTC), C: death
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Structural form approach:
Define the following latent duration variables:

I X1 potential time of entry into LTC,
I X2 potential time of dying directly without LTC,
I X3 residual lifetime up to the death upon enrollment of LTC.
I They are latent because X2 and (X1,X3) cannot be

simultaneously observed.
I The model is completed by specifying the joint distribution

of (X1,X2,X3).
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For instance, we assume that (X1,X3) and X2 are independent,
and denote by:

I λ1(x1), λ2(x2) and λ2|1(x3|x1), the hazard functions of the
latent variables.

I Λ1(x1), Λ2(x2) and Λ2|1(x3|x1), the corresponding
cumulative hazard functions.
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Defining potentially observable variables Y1,Y2 in terms of
latent variables X1,X2,X3:

1. Y1 = 1X1<X2X1

2. Y2 = 1X1<X2(X1 + X3) + X21X1>X2 .

The indicator 1X1<X2 denotes the regime:
if X1 > X2 then Y1 = 0, Y2 = X2, death without LTC.
if X1 < X2 then Y1 = X1, Y2 = X1 + X3, death with LTC.
As such (Y1,Y2) is the maximum observable information.
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The marginal density of the lifetime Y2 is:

f2(y2) =

∫ y2

0
λ1(t)λ2|1(y2 − t |t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t |t)dt

+ λ2(y2)e−Λ1(y2)−Λ2(y2).

and its survivor function is:

S2(y2) = P(Y2 > y2)

=

∫ y2

0
λ1(t)e−Λ1(t)−Λ2(t)−Λ2|1(y2−t |t)dt + e−Λ1(y2)−Λ2(y2),
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Illustration: constant intensities
Assume that λ1, λ2 and λ2|1 are constant, then the survivor
function of lifetime Y2 becomes:

S2(y2) =
λ1

λ1 + λ2

[ λ1 + λ2

λ1 + λ2 − λ2|1
e−λ2|1y2 −

λ2|1

λ1 + λ2 − λ2|1
e−(λ1+λ2)y2

]
+

λ2

λ1 + λ2
e−(λ1+λ2)y2 , if λ1 + λ2 6= λ2|1,

and:

S2(y2) =
λ1

λ1 + λ2

[
1 + (λ1 + λ2)y2

]
e−(λ1+λ2)y2 +

λ2

λ1 + λ2
e−(λ1+λ2)y2

if λ1 + λ2 = λ2|1.
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In both cases it is written as a mixture of two survivor functions.

Theorem

i) If λ1 + λ2 − λ2|1 6= 0 and λ2 6= λ2|1,
the three parameters λ1, λ2, λ2|1 can be identified.

ii) If λ2 = λ2|1,
the LTC has no effect on the mortality intensity. We get
S2(y2) = e−λ2|1y . The parameter λ2 = λ2|1 is identifiable,
but not the parameter λ1.

iii) If λ1 + λ2 − λ2|1 = 0,
all three parameters can be identified.

In other words, the possibility of identifying the parameters is
due to the mortality jump upon entry into LTC.
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A more general affine semi-parametric model:

λ1(x1|F , t0) = λ1(x1,Ft0+x1) = a1(x1) + b1(x1)Ft0+x1 ,

λ1(x2|F , t0) = λ2(x2,Ft0+x2) = a2(x2) + b2(x2)Ft0+x2 ,

λ2|1(x3|F , x1, t0) = λ2|1(x3|x1,Ft0+x1+x3)

= a3(x3|x1) + b3(x3|x1)Ft0+x1+x3 .
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Some comments on this specification.
I We expect the factor process (Ft ) goes to 0 when t goes to

infinity.
I a1,a2 and a3 are respectively the limits of the three

intensity functions, when t0 goes to infinity (the far future).
I Such a model is not identifiable yet if we only observe

(Y2, t0). We need further constraints.
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Assumptions for non parametric identification:
I Observation of a large number of cohorts t0.
I a3(x3|x1), b3(x3|x1) can be written in a more constrained

form, such as:

a3(x3|x1) = a3(x3 + x1), b3(x3|x1) = b3(x3 + x1),

that is the Markov model, or

a3(x3|x1) = a4(x3)+a5(x1), b3(x3|x1) = b4(x3)+b5(x1),

that is a semi-Markov model.
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Model with deterministic exponential factor.

Ft = exp(−mt),

Model with a stochastic common factor process.
The aim is to add uncertainty to the previous deterministic time
factor. This is essential for risk management purpose.
We choose an unobserved Cox, Ingersoll, Ross (CIR) process:

dFt = −mFtdt + σ
√

FtdWt ,

where σ > 0, and W is a standard Brownian motion.
It nests the deterministic case (when σ = 0).

21/36



Model with deterministic exponential factor.

Ft = exp(−mt),

Model with a stochastic common factor process.
The aim is to add uncertainty to the previous deterministic time
factor. This is essential for risk management purpose.
We choose an unobserved Cox, Ingersoll, Ross (CIR) process:

dFt = −mFtdt + σ
√

FtdWt ,

where σ > 0, and W is a standard Brownian motion.
It nests the deterministic case (when σ = 0).

21/36



APPLICATION
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We estimate the following three models:
1. Model 1: Markov mortality intensity for disabled people,

and deterministic exponential factor F
2. Model 2: semi-Markov intensity + deterministic factor F
3. Model 3: semi-Markov intensity + dynamic unobserved

factor F
I will focus here on Model 3.
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The model is completed by the specification of the functions
a1,a2,a3, b1,b2,b3.
We choose linear spline. This is a flexible non-parametric
method (although for parsimony we fix the number of knots=3).
The age range we cover is [50,110], and the three knots are
60,70,90. In other words, we only consider the population who
survive up to age 50.
The model is estimated by the maximum likelihood estimator.
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Goodness of fit
Once the model estimated, we can compute the value of the
intensity of Y2:

λ(y2, t0, θ) = f2(y2, t0, θ)/S2(y , t0, θ),

and compare them to the historical values.
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Model 3
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Figure: Hazard function of the lifetime variable. In points: historical
data. In full line: the model (for both the past and the future years).
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Filtering of the longevity factor
Once the parameter estimated, we can infer the path of the
unobserved factor process F (by MCMC).
Below we plot the simulated factor mean conditional on the
observation, E[Ft |θ,Y2], as well as its unconditional mean
E[Ft |θ].
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Figure: Simulated mean values of the unobserved frailty process
conditional on the observation E[Ft |θ,Y2].
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PREDICTION
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The probability of entering into LTC during his or her lifetime, or
(total) cumulative incidence, given survival until age 50 (and
therefore not enrolled in LTC):

P(X1 < X2|X1 > 50,X2 > 50, t0)

We plot the evolution of this probability as a function of the
cohort t0.
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Figure: Evolution of the probability of entering into LTC during its
lifetime as a function of the cohort. Left: Markov model without frailty,
right: semi-Markov model with frailty
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Then we define the residual lifetimes, with and without LTC:

e1(y) = E[Y2 − 50|X1 > 50,X2 > 50, t0] (with LTC)
e2(y) = E[min(X1,X2)− 50|X1 > 50,X2 > 50, t0] (without LTC)
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Figure: The residual life expectancy, with (dashed line) and without
(full line) LTC, at age 50 for each cohort. Left: Markov model without
frailty, right: semi-Markov model with frailty
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Summary
I All three models provide satisfactory fit.
I The model with dynamic frailty factor is preferred since it

measures the uncertainty in terms of prediction.
I It also allows to study the correlation between the two risks.
I It is compatible with the few observable data in LTC.
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CONCLUSION
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We proposed a model to identify LTC from lifetime data only.
I In some sense we get the model-implied LTC state.
I It would be interesting to compare this implied state to

other existing definitions.
Theoretical contribution: identification results (with or without
cohort effect).
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Thanks for your attention. Questions and comments welcome.
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Appendix
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Uncertainty of the future lifetime distribution when the
population is not infinite
Imagine a portfolio of size n and consider the following
quantities:

1
n

n∑
i=1

Y2,i,t0 ,
1
n

n∑
i=1

min(X1,i,t0 ,X2,i,t0),

First term: the average future death age. The second: the
average age of either losing autonomy or dying directly for the
individual i aged 50 in, say, year t0 = 2010.
For instance, the difference of the two terms is the average time
spent in (potential) LTC (≈ the cost of an LTC policy written at
age 50).
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For instance we can calculate the α quantile of these empirical
means.

I This can theoretically be done by simulation (of the
portfolio), but this is very time consuming when the size of
the portfolio is big.

I But it can be approximated by using the granularity theory
[Gagliardini and Gouriéroux (2013)].
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As an application, let us take n = 100,∞, and α = 0.05,0.95.

Mean of Y2 n = 100 n =∞
Markov, without frailty 33.29, 33.44 33.36 ± 0

semi-Markov, with frailty 32.03,33.85 32.18,33.78

Mean of min(X1,X2) n = 100 n =∞
Markov, without frailty 31.15,31.30 31.22 ± 0

semi-Markov, with frailty 30.47, 32.16 30.59, 32.08
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Model 1
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Figure: Fit of the observable mortality rates, for six different cohorts.
In points: historical data. In full line: the model based (+prediction of
the future).
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Figure: Fit of the observable mortality rates, for nine different ages. In
points: historical data. In full line: the model (f+prediction of the
future).
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The baseline hazard functions
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Figure: Fit of mortality intensity by age. In points: historical data. In
full line: the model based intensity.
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Figure: Evolution of the proportion of dependent people at a given
age, for each cohort, calculated using the model.

8/13



9/13



Comparison with a real data set: data description
I An insurance portfolio kindly provided by SCOR, with

15000 male policy holders.
I Most are born between 1925 and 1940, and bought the

contract in their 60s.
I They are still "young" in 2014: very few events observed

beyond age 90, thus unreliable.
I Huge censoring: 20 % died without LTC, 5 % entered into

LTC, others are censored: impossible to do cohort-specific
analysis.
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Figure: Comparison of the intensity of entry into LTC.
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Figure: Comparison between the observed mortality intensity of the
two populations.

12/13



The model predicts a slightly higher intensity of entry than the
real data, especially for lower ages. But the fit is still decent
given:

I endogenous selection of the contracts.
I aggregation bias (cohort effect) of the portfolio data.
I weak adverse selection by customers.
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