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Abstract

In this paper, we address the problem of long-term vi-

sual tracking where the target objects undergo significant

appearance variation due to deformation, abrupt motion,

heavy occlusion and out-of-view. In this setting, we de-

compose the task of tracking into translation and scale es-

timation of objects. We show that the correlation between

temporal context considerably improves the accuracy and

reliability for translation estimation, and it is effective to

learn discriminative correlation filters from the most confi-

dent frames to estimate the scale change. In addition, we

train an online random fern classifier to re-detect objects

in case of tracking failure. Extensive experimental results

on large-scale benchmark datasets show that the proposed

algorithm performs favorably against state-of-the-art meth-

ods in terms of efficiency, accuracy, and robustness.

1. Introduction

Object tracking is one of the most fundamental problems

in computer vision with numerous applications. A typical

scenario of visual tracking is to track an unknown object

initialized by a bounding box in subsequent image frames.

In this paper, we focus on the problem of long-term visual

tracking, where target objects undergo significant appear-

ance change due to deformation, abrupt motion, heavy oc-

clusion and out-of-view.

Our approach builds on two major observations based

on prior work. First, there is little change between two con-

secutive frames as the time interval is small (less than 0.04
second)1 and the context around the target remains possibly

unchanged even if the object is heavily occluded. Hence,

it is important to model the temporal relationship of ap-

pearance consisting of a target object and its context. We

develop a kernel ridge regression method based on correla-

tion filters to encode the appearance template consisting of a

target object and its surrounding context. The adaptive tem-

plates constructed by the proposed features are resistant to

1Most videos have more than 25 frames per second.
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Figure 1. Comparisons of our approach with state-of-the-art track-

ers in challenging situations of fast motion, significant deforma-

tion and long-term occlusion on the Lemming sequence [24]. Our

tracker takes temporal context into account for translation estima-

tion, and performs robustly to abrupt motion and significant de-

formation in the 230th frame than the Struck [9] and TLD [14]

methods. Our tracker is more effective in re-detecting the target in

the 380th frame after long-term occlusion than the KCF [11] and

STC [28] methods with the use of an online detector.

heavy occlusion, fast motion, and large deformation. This

method differs significantly from existing correlation filters

based tracking algorithms, which are prone to drifting in

long-term tracking. Figure 1 shows one example where the

proposed algorithm performs well against the KCF [11] and

STC [28] methods. Our main contribution is an algorithm

that efficiently models the temporal context information us-

ing correlation filters for long-term visual tracking.

Second, it is critical to enhance the detection module of a

long-term tracker to (i) estimate the scale change and (ii) re-

detect the object in case of tracking failure when long-term

occlusion or out-of-view occurs. For scale estimation, we

train another correlation filter for a target from the most re-

liable frames. We use the histogram of orientation gradients

(HOG) [4] as features to construct a multi-scale target pyra-

mid and search for the optimal scale exhaustively. For ob-

ject re-detection, we do not apply the target correlation filter



to scan across the entire frame due to computational effi-

ciency as this filter is trained in the high-dimensional HOG

feature space. We instead train an online detector by using

a random fern [18] classifier and scan through the window

when it is activated.

We further address two issues of tracking-by-detection

approaches where tracking is usually formulated as an on-

line learning problem with the goal of learning an ap-

pearance classifier discriminating the target from the back-

ground. The first issue is the well-known stability-plasticity

dilemma [16, 20]. If the classifier is trained with more sta-

ble samples, e.g., only the target in the first frame, it is more

robust to occlusions and less prone to drifting caused by

model update with noisy samples. However, such an ap-

proach does not take appearance change into account and

is unlikely to perform well for long-term tracking. On the

other hand, highly adaptive online classifiers easily result

in drifting in the case of noisy updates [16]. Our algorithm

effectively alleviates this dilemma by modelling the tempo-

ral context correlation and the target appearance using two

regression models based on correlation filters with different

adaptive rates. The temporal context regressor is designed

to aggressively adapt to translation estimation against sig-

nificant deformation and heavy occlusion. The target re-

gressor is conservatively adapted and applied on an appear-

ance pyramid for scale estimation. Therefore, our approach

effectively adapts to appearance change and alleviates the

risk of drifting. Another issue with online classifiers is the

sampling ambiguity, where hard negative samples are nec-

essary to train a robust classifier and the binary labels are

less effective for representing the spatial relationship be-

tween samples. By transferring the correlation procedure

into an element-product in the Fourier domain, our regres-

sion models consider all the circular shifts [10, 11] of input

features as training samples with Gaussian-weighted labels

and thus alleviates the sampling problem.

One main contribution of this work is to address the

problem of long-term visual tracking by effectively decom-

posing the tracking task into translation and scale estima-

tion of target objects in conjunction with a complementary

re-detection scheme. The translation estimation relies on

a temporal context regression model robust against signif-

icant deformation, illumination variation, background clut-

ter, and abrupt motion. Equipped with the estimated trans-

lation, a target pyramid is constructed to determine the scale

change by using a target regression model. Our approach ef-

fectively alleviates the model update problems which often

leads to drifting, and performs robustly in complex image

sequences with large scale variations. In addition, we pro-

pose a novel scheme to activate target re-detection in case of

tracking failure and make a decision whether to adopt the re-

detected results by using the target regressor. We evaluate

the proposed tracking algorithm on a large-scale benchmark

with 50 challenging image sequences [24]. Extensive exper-

imental results show that the proposed long-term correlation

tracking algorithm performs favorably against state-of-the-

art methods in terms of accuracy, efficiency, and robustness.

2. Related work and Problem Context

Visual tracking has been studied extensively with numer-

ous applications [25, 21]. In this section, we discuss the

methods closely related to this work: (i) correlation track-

ing and (ii) tracking-by-detection.

Correlation tracking. Correlation filters have been widely

used in numerous applications such as object detection and

recognition [15]. Since the operator is readily transfered

into the Fourier domain as element-wise multiplication, cor-

relation filters have attracted considerable attention recently

to visual tracking due to its computational efficiency. Bolme

et al. propose to learn a minimum output sum of squared

error (MOSSE) [3] filter for visual tracking on gray-scale

images, where the learned filter encodes target appearance

with update on every frame. With the use of correla-

tion filters, the MOSSE tracker is computationally efficient

with a speed reaching several hundreds frames per second.

Heriques et al. propose to use correlation filters in a kernel

space with the CSK method [10] which achieves the highest

speed in a recent benchmark [24]. The CSK method builds

on illumination intensity features and is further improved

by using HOG features in the KCF tracking algorithm [11].

In [6], Danelljan et al. exploit the color attributes of a tar-

get object and learn an adaptive correlation filter by map-

ping multi-channel features into a Gaussian kernel space.

Recently, Zhang et al. [28] incorporate context information

into filter learning and model the scale change based on con-

secutive correlation responses. The DSST tracker [5] learns

adaptive multi-scale correlation filters using HOG features

to handle the scale change of target objects. However, these

methods do not address the critical issues regarding online

model update. Therefore, these correlation trackers are sus-

ceptible to drifting and less effective for handling long-term

occlusion and out-of-view problems. Figure 1 shows one

example where the KCF method is more effective in han-

dling the fast motion and deformation than the Struck and

TLD methods in the 230th frame of the Lemming sequence,

but fails to track the target object after long-term occlusion

in the 380th frame due to the stability-plasticity problem

(where the model is updated adequately in the 230th frame

but incorrectly in the 380th frame).

Tracking-by-detection. To alleviate the stability-plasticity

dilemma regarding online model update in visual tracking,

Kalal et al. decompose the tracking task into tracking, learn-

ing and detection (TLD) [14] where tracking and detection

facilitates each other, i.e., the results from the tracker pro-

vide training data to update the detector, and the detector



re-initializes the tracker when it fails. This mechanism is

shown to perform well for long-term tracking [19, 22, 12].

Zhang et al. combine multiple classifiers with different

adaptive rates and design an entropy measure to fuse all

the tracking outputs [27]. Our algorithm bears some resem-

blance to these two methods with significant differences in

that the tracking components in [14, 22, 12] are based on

the Lucas-Kanade method [2] without fully exploiting tem-

poral context information. In this work, we use a ridge re-

gression model to learn the temporal correlation of context

rather than a binary classifier (e.g., the online SVM classi-

fier used in [27]). To alleviate the problem of noisy samples

for online model update, Hare et al. [9] consider the spatial

distribution of samples within a search space and propose

to learn a joint structured output (Struck) to predict the ob-

ject location, which has been shown to perform well [24].

Since the correlation operator is computed in the Fourier do-

main and takes all the circular shifts of input features into

account, the regression model effectively handles the sam-

pling ambiguity problem prevalent in online tracking with

an online binary classifier.

3. Tracking Components

As we aim to develop an online tracking algorithm that

is adaptive to significant appearance change without being

prone to drifting, we decompose the task into translation

and scale estimation of objects, where the translation is es-

timated by using the correlation of the temporal context and

the scale estimation is carried out by learning a discrimina-

tive correlation filter. In addition, we train a complementary

detector using online random ferns [18] to re-detect target

objects in case of tracking failure.

3.1. Correlation Tracking

A typical tracker [3, 10, 6, 28, 5] based on correlation

filters models the appearance of a target object using a filter

w trained on an image patch x of M ×N pixels, where all

the circular shifts of xm,n, (m,n) ∈ {0, 1, . . . ,M − 1} ×
{0, 1, . . . , N − 1}, are generated as training samples with

Gaussian function label y(m,n), i.e.,

w = argmin
w

∑

m,n

|φ(xm,n) ·w − y(m,n)|2 + λ|w|2, (1)

where φ denotes the mapping to a kernel space and λ is a

regularization parameter (λ ≥ 0). Since the label y(m,n)
is not binary, the learned filter w contains the coefficients of

a Gaussian ridge regression [17] rather than a binary clas-

sifier. Using the fast Fourier transformation (FFT) to com-

pute the correlation, this objective function is minimized as

w =
∑

m,n a(m,n)φ(xm,n), and the coefficient a is de-
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Figure 2. Two regression models learned from a single frame.

The model Rc exploits the temporal correlation of target and sur-

rounding context while Rt only models target appearance. To train

the model Rc, a layer of spatial weights are added on the feature

space. Here F denotes the discrete Fourier operator and ⊙ is the

Hadamard product.

fined by

A = F(a) =
F
(

y)

F(φ(x) · φ(x)
)

+ λ
. (2)

In (2), F denotes the discrete Fourier operator and y =
{

y(m,n)|(m,n) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . , N −

1}
}

. The tracking task is carried out on an image patch z

in the new frame with the search window size M × N by

computing the response map as

ŷ = F−1
(

A⊙F(φ(z) · φ(x̂))
)

, (3)

where x̂ denotes the learned target appearance model and

⊙ is the Hadamard product. Therefore, the new position of

target is detected by searching for the location of the maxi-

mal value of ŷ.

Differently from prior work, we train two regression

models based on correlation filters from one single frame.

As shown in Figure 2, the temporal context model Rc takes

both the target and surrounding context into account, since

this information remains temporally stable and useful to dis-

criminate the target from the background in the case of oc-

clusion [28]. To remove the boundary discontinuities of the

response map, the extracted feature channels of the target

and context are weighted by a cosine window [3]. It is im-

portant for the regression model Rc to be adaptive to esti-

mate the translation when the target undergoes occlusion,

deformation, and abrupt motion. The Rc model is thus up-

dated with a learning rate α frame by frame as

x̂
t = (1− α)x̂t−1 + αxt, (4a)

Ât = (1− α)Ât−1 + αAt, (4b)

where t is the index of the current frame.

In contrast to existing tracking methods [20, 30] where

the target in the first frame is used to measure confidence

of tracking results in following frames, we learn another

discriminative regression model Rt from the most reliable

tracked targets. Specifically, we use the maximal value of ŷ

to determine the confidence of tracking results. To maintain

the model stability, we use a pre-defined threshold Ta and



only update Rt using (4) if max(ŷ) ≥ Ta. Note that there

are no cosine spatial weights for model Rt in the feature

space (See Figure 2). During tracking, we construct a target

pyramid around the estimated translation location for scale

estimation (See Figure 3). Let P × Q be the target size

in a test frame and N indicate the number of scales S =
{an|n = ⌊−N−1

2
⌋, ⌊−N−3

2
⌋, . . . , ⌊N−1

2
⌋}. For each s ∈

S, we extract an image patch Js of size sP × sQ centered

around the estimated location. Unlike [5], we propose to

uniformly resize all patches with size P ×Q again and use

HOG features to construct the scale feature pyramid. Let ŷs

denote the correlation response map of the target regressor

Rt to Js, the optimal scale ŝ of target is

ŝ = argmax
s

(

max(ŷ1),max(ŷ2), . . . ,max(ŷS)
)

. (5)

Accordingly, the regression model Rt is updated by (4) if

max(ŷŝ) ≥ Ta.

3.2. Online Detector

It is clear that a robust long-term tracking algorithm re-

quires a re-detection module in the case of tracking fail-

ure, e.g., long-term occlusion and re-entering the field of

view. Different from previous trackers [19, 22, 12], where

re-detection is carried out on each frame, we use a threshold

Tr to activate the detector if max(ŷŝ) < Tr. For computa-

tional efficiency, we do not use the regression model Rt as

a detector and instead use the online random fern classi-

fier [14]. As the detector is applied to the entire frame with

sliding windows when max(ŷŝ) < Tr, we train an online

random ferns detector with a conservative update scheme.

Let ci, i ∈ {0, 1} be the indicator of class labels and let fj ,

j ∈ {1, 2, . . . , N} be the set of binary features, which are

grouped into small sets as ferns. The joint distribution for

features in each fern is

P (f1, f2, . . . , fN |C = ci) =

M
∏

k=1

P (Fk|C = ci), (6)

where Fk = {fσ(k, 0), fσ(k, 2), . . . , fσ(k,N)} represents

the k-th fern, and σ(k, n) is a random permutation function

with range from 1 to N . For each fern Fk, its conditional

probability can be written as P (Fk|C = ci) =
Nk,ci

Nk
, where

Nk,ci is the number of training samples of class ci that be-

longs to the k-th fern and Nk is the total number of training

samples that fell into the leaf-node corresponding to the k-

th fern. From the Bayesian perspective, the optimal class ĉi
is detected as ĉi = argmaxci

∏M

k=1
P (Fk|C = ci) [18].

4. Implementation

We present an outline of our method in Algorithm 1 and

show the flowchart of our method in Figure 3. More imple-

mentation details are discussed as follows.

Algorithm 1: Proposed tracking algorithm.

Input : Initial target bounding box x0,

Output: Estimated object state xt = (x̂t, ŷt, ŝt),
temporal context regression model Rc, target

appearance regression model Rt, and random

fern detector Drf .

repeat
Crop out the searching window in frame t

according to (x̂t−1, ŷt−1) and extract the features;

// Translation estimation

Compute the correlation map yt using Rc and (3)

to estimate the new position (xt, yt);

// Scale estimation

Build the target pyramid around (xt, yt) and

compute the correlation map ys using Rt and (3);

Estimate the optimal scale ŝ using (5);

xt = (xt, yt, ŝ);
// Target re-detection

if max(yŝ) < Tr then
Use detector Drf to perform re-detection and

find the possible candidate states X;

foreach state x
′
i in X do computing

confidence score y
′
i using Rt and (3);

if max (y′
i) > Tt then xt = x

′
i, where

i = argmaxi y
′
i;

end

// Model update

Update Rc using (4);

if max(yŝ) > Ta then
Update Rt using Jŝ and (4);

end

Update Drf ;

until End of video sequences;

Features. In this work, each feature vector x is represented

by a concatenation of multiple channels [7]. In addition to

HOG features with 31 bins, we use another histogram fea-

ture of intensity in a 6×6 local window with 8 bins. To pro-

vide robustness to drastic illumination variations, we com-

pute the histogram of local intensity on brightness channel

and we also add a transformed channel by applying a non-

parametric local rank transformation [26] on the brightness

channel. Therefore, we use feature vectors with 47 channels

to train the temporal context regressor Rc. For the target

model Rt, we only use HOG features to construct the target

pyramid. For the random fern detector, each tracked result

with high confidence is resized to 15× 15 to form a feature

vector of intensity values.

Kernel selection. We use a Gaussian kernel k(x,x′) =

exp(− |x−x
′|2

σ2 ), which defines a mapping φ as k(x,x′) =
φ(x) · φ(x′), in both regression models Rc and Rt. We
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Figure 3. Flowchart of the proposed tracking algorithm. The tracking task is decomposed into translation and scale estimation: translation

is estimated by the temporal context regression model Rc, and scale is estimated by the target appearance model Rt. The KNN classifier

selects the most confident tracked results to train an detector using random ferns for re-detecting the target in the case of tracking failure.

compute the full kernel correlation in (2) and (3) efficiently

in the Fourer domain.

Random ferns. In our implementation, the detector trained

by a random fern classifier uses pixel comparison as binary

features in a way similar to [18]. Each fern performs a num-

ber of pixel comparisons on the patch with two feature vec-

tors that point to the leaf-node with the posterior probabil-

ity. The posteriors from all ferns are averaged as target re-

sponse. Similarly to [23], detection is based on the scanning

window strategy. Unlike [14], where the P-N ferns are up-

dated online, we use a k-nearest neighbor (KNN) classifier

to select the most confident tracked results as positive train-

ing samples, e.g., a new patch is predicted as the target if

k nearest feature vectors in the training set all have positive

labels (e.g., k = 5 in this work).

5. Experimental Results

We evaluate the proposed method on a large benchmark

dataset [24] that contains 50 videos with comparisons to

state-of-the-art methods. All the tracking methods are eval-

uated by three metrics, (i) distance precision, which shows

the percentage of frames whose estimated location is within

the given threshold distance of the ground truth; (ii) overlap

success rate, which is defined as the percentage of frames

where the bounding box overlap surpasses a threshold; and

(iii) center location error, which indicates the average Eu-

clidean distance between the ground-truth and the estimated

center location. More results can be found in the supple-

mentary material.

Setups. The regularization parameter of (1) is set to λ =
10−4. The size of the search window for translation esti-

mation is set to 1.8 times of the target size. The Gaussian

kernel width σ is set to 0.1. The learning rate α in (4) is

set to 0.01. The number of scale space is |S| = 21 and the

scale factor a is set to 1.08. There are several thresholds for

correlation tracking. We set a lower threshold Tr = 0.25 to

activate the trained random fern detector, and set a higher

threshold Tt = 0.5 to adopt the re-detection result. The

threshold settings indicate that we rely on correlation track-

ing results. We set Ta = 0.5 to update the target regressor

Rt. We use the same parameter values for all the sequences.

The proposed tracking algorithm is implemented in Matlab

on an Intel I7-4770 3.40 GHz CPU with 32 GB RAM, and

the source code and more experimental results are available

at http://faculty.ucmerced.edu/mhyang/.

Component analysis. We implement three more algo-

rithms based on correlation filters to demonstrate the ef-

fectiveness of the proposed long-term correlation tracking

(LCT) algorithm. First, we implement a tracker (CTHOG)

by learning a single correlation filter using HOG features as

our baseline algorithm. We also implement a tracker (CT-

NRE) without an online detector by learning a single cor-

relation filter with the proposed 47 channel features used

in the regressor Rc. In addition, a tracker similar to the

proposed LCT method without scale estimation is referred

to as CTFSC. We report the results on the 50 benchmark

sequences using the distance precision and overlap suc-

cess rate by the area-under-the-curve (AUC). As shown in

Figure 4, the compared CTNRE tracker outperforms the

CTHOG method due to the use of histogram of intensity.

The CTFSC tracker significantly outperforms the CTNRE

method due to the effectiveness of the target re-detection

scheme in case of tracking failure. The proposed LCT al-

gorithm (equipped with all the components) performs fa-

vorably against the other three alternative implementations.

Although the CTFSC tracker performs well in distance pre-

cision, it is not effective in dealing with scale change.

Overall performance. We evaluate the proposed algo-

rithm on the benchmark with comparisons to 11 state-of-

the-art trackers from three typical categories of tracking al-

gorithms, (i) correlation trackers (CSK [10], STC [28], and

KCF [11]); (ii) tracking by single online classifier (MIL [1],

http://faculty.ucmerced.edu/mhyang/


Table 1. Comparisons with state-of-the-art trackers on the 50 benchmark sequences. Our approach performs favorably against existing

methods in distance precision (DP) at a threshold of 20 pixels, overlap success (OS) rate at an overlap threshold 0.5 and center location

error (CLE). The first and second highest values are highlighted by bold and underline.

LCT
CSK

[10]

STC

[28]

KCF

[11]

MIL

[1]

Struck

[9]

CT

[29]

ASLA

[13]

TLD

[14]

SCM

[30]

MEEM

[27]

TGPR

[8]

DP (%) 85.4 54.5 54.7 74.1 47.5 65.6 40.6 53.2 60.8 64.9 74.4 70.5

OS (%) 76.9 44.3 36.5 62.2 37.3 55.9 34.1 51.1 52.1 61.6 64.9 62.8

CLE (pixel) 25.8 88.8 80.5 35.5 62.3 50.6 78.9 73.1 48.1 54.1 41.6 51.3

Speed (FPS) 27.4 269 232 39.1 28.1 10.0 38.8 7.5 21.7 0.4 19.4 0.7
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Figure 4. Comparisons of component effectiveness. The CTHOG

and CTNRE implementations are based on a single correlation fil-

ter with different features (e.g., HOG and the proposed features

with 47 channels used in regressor Rc respectively). The CTFSC

tracker is similar to the proposed LCT method while incapable of

scale estimation. The proposed LCT algorithm performs favorably

against the other three alternative implementations and is able to

deal with scale change.

Struck [9], CT [29], and ASLA [13]); and (iii) track-

ing by multiple online classifiers (TLD [14], SCM [30],

MEEM [27], and TGPR [8]). For fair evaluations, we com-

pare all the methods on gray scale images following the pro-

tocol of the benchmark study [24]. We report the results

in one-pass evaluation (OPE), temporal robustness evalua-

tion (TRE) and spatial robustness evaluation (SRE) using

the distance precision and overlap success rate in Figure 5.

In addition, we present the quantitative comparisons of dis-

tance precision at 20 pixels, overlap success rate at 0.5, cen-

ter location errors, and tracking speed in Table 1.

Table 1 shows that our algorithm performs favorably

against state-of-the-art methods in distance precision (DP),

overlap success (OS) and center location error (CLE).

Among the trackers in the literature, the MEEM method

achieves the best results with an average DP of 74.4% and

OS of 64.9%. Our algorithm performs well with DP of

85.4% and OS of 76.9%. The KCF tracker performs well

with CLE of 35.5 pixels and our method achieves lower

CLE of 25.8 pixels. While the CSK, STC and KCF meth-

ods achieves higher frame rate than the LCT method, our

algorithm performs well at 27.4 frames per second. The

main computational load of our tracker is the feature pyra-

mid construction for scale estimation.

Figure 5 shows that our approach performs well against

the existing methods (KCF, MEEM) in OPE, TRE and SRE

validation schemes. Note that although the TRE and SRE
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Figure 5. Distance precision and overlap success plots over 50

benchmark sequences using one-pass evaluation (OPE), tempo-

ral robustness evaluation (TRE) and spatial robustness evalua-

tion (SRE). The legend contains the area-under-the-curve score

for each tracker. The proposed LCT method performs favorably

against the state-of-the-art trackers.

evaluation schemes do not fully reflect the merits of our ap-

proach (e.g., TRE splits a video into several fragments and

the importance of target re-detection in long term tracking

is less accounted for, and SRE spatially shifts the bounding

boxes and thus the importance of temporal context corre-

lation is considered less), the proposed algorithm still per-

forms well against state-of-the-art methods.

Attribute-based evaluation. The videos in the bench-

mark dataset [24] are annotated with 11 attributes to de-

scribe the different challenges in the tracking problem,

e.g., occlusions or out-of-view. These attributes are use-

ful for analyzing the performance of trackers in different
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Figure 6. Overlap success plots over eight tracking challenges of fast motion, background clutter, scale variation, deformation, illumination

variation, occlusion, out-of-view, and out-of-plane rotation. The legend contains the AUC score for each tracker. The proposed LCT

method performs favorably against the state-of-the-art trackers when evaluating with eight challenging factors.

aspects. We report results for eight main challenging at-

tributes in Figure 6. Among existing methods, the KCF

method performs well with overall success in background

clutter (53.3%), deformation(53.3%), illumination(49.4%),

occlusion(51.3%) and out-of-view (55.0%) while the LCT

algorithm achieves success rate of 58.0%, 61.5%, 57.7%,

61.5%, and 59.6% respectively. The MEEM method per-

forms well in fast motion (50.5%) and out-of-plane rotation

(49.8%), while the LCT algorithm achieves the success rate

of 54.0% and 60.6%. In terms of scale variation, the SCM

method achieves the success rate of 51.8% while the LCT

algorithm performs well with success rate of 55.8%.

Qualitative evaluation. We compare our algorithm with

other four state-of-the-art trackers (KCF [11], STC [28],

Struck [9], and TLD [14]) on twelve challenging sequences

in Figure 7. The KCF tracker is based on a correlation

filter learned from HOG features and thus similar to our

baseline implementation CTHOG (See also Figure 4). The

KCF tracker performs well in handling significant deforma-

tion and fast motion (Fleetface, David, and Singer2) due

to the robust representation of HOG features and effective-

ness of the temporal context correlation model. However, it

drifts when target objects undergo heavy occlusions (Coke)

and does not re-detect targets in the case of tracking failure

(Tiger2 and Jogging-2). In addition, the KCF tracker fails

to handle background clutter (Shaking), where only HOG

features are less effective to discriminate targets from the

cluttered background. The STC tracker is also based on

a correlation filter and able to estimate scale changes, but

does not perform well when both significant scale and ro-

tation occur (Trellis) or in the presence of abrupt motion

(Jumping) as it only learns the filter from brightness channel

and estimates the scale change based on a temporal context

model rather than a target appearance model. The Struck

tracker does not perform well in rotation (David), back-

ground clutter (Singer2), heavy occlusion or out-of-view

(Tiger2 and Jogging-2) since it is less effective in handling

appearance change caused by multiple factors with one sin-

gle classifier. The TLD tracker is able to re-detect target

objects in the case of tracking failure. However, the TLD

method does not fully exploit the temporal motion cues as

our approach and therefore does not follow targets undergo-

ing significant deformation and fast motion (Tiger2, Shak-

ing, and Singer2) well. Moreover, the TLD method updates

its detector frame-by-frame leading to drifting (Trellis and

Skating1) and false target re-detection (Jogging-2). Over-

all, the proposed LCT tracker performs well in estimating

both the scales and positions of target objects on these chal-

lenging sequences, which can be attributed to three rea-

sons. First, our temporal context regressor Rc is learned

from more robust features rather than only HOG features or

simple brightness intensity and it is effective in estimating

the translation of target objects. The proposed features are

less sensitive to illumination and background clutter (Shak-

ing and Singer2), rotation (David), and partial occlusion

(Coke and Tiger2). Second, the target regressor Rt is con-

servatively updated and the errors of the scale estimation

are not accumulated to affect following frames. Therefore,

our method effectively alleviates the scale drifting problem

(Trellis and Jumping). Third, the trained detector effectively

re-detects target objects in the case of tracking failure, e.g.,

with the heavy occlusion (Coke and Jogging-2) and out-of-

view (Tiger2).

In addition, we compare the center location error frame-

by-frame on the twelve sequences in Figure 8, which shows

that our method performs well against existing trackers.
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Figure 7. Tracking results of our LCT algorithm, KCF [11], STC [28], Struck [9] and TLD [14] methods on twelve challenging sequences

(from left to right and top to down are Coke, Tiger2, Shaking, Skating1, Trellis, David, Car4, Fleetface, Jumping, Jogging-2, Dog1, and

Singer2, respectively).
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Figure 8. Fame-by-frame comparison of center location errors (in pixels) on twelve challenging sequences in Figure 7. Generally, our

method is able to track targets accurately and stably. In particular on the Coke, Jumping and Jogging-2 sequences, our tracker drifts in the

40th, 42ed and 60th frames respectively due to heavy occlusion or out-of-view, but manages to re-detect the targets subsequently in a short

period.

6. Conclusions

In this paper, we propose an effective algorithm for long-

term visual tracking. Our method learns discriminative cor-

relation filters for estimating the translation and scale varia-

tions of target objects effectively and efficiently. The trans-

lation is estimated by modeling the temporal context cor-

relation and the scale is estimated by searching the target

appearance pyramid exhaustively. We further develop a

robust online detector using random ferns to re-detect tar-

gets in case of tracking failure. Extensive experimental re-

sults show that the proposed algorithm performs favorably

against the state-of-the-art methods in terms of efficiency,

accuracy, and robustness.
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