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Long-term corrosion monitoring of carbon steels and
environmental correlation analysis via the random forest
method
Qing Li1, Xiaojian Xia2, Zibo Pei1, Xuequn Cheng 1✉, Dawei Zhang 1, Kui Xiao1, Jun Wu1,3 and Xiaogang Li1

In this work, the atmospheric corrosion of carbon steels was monitored at six different sites (and hence, atmospheric conditions)
using Fe/Cu-type atmospheric corrosion monitoring technology over a period of 12 months. After analyzing over 3 million data
points, the sensor data were interpretable as the instantaneous corrosion rate, and the atmospheric “corrosivity” for each exposure
environment showed highly dynamic changes from the C1 to CX level (according to the ISO 9223 standard). A random forest model
was developed to predict the corrosion rate and investigate the impacts of ten “corrosive factors” in dynamic atmospheres. The
results reveal rust layer, wind speed, rainfall rate, RH, and chloride concentration, played a significant role in the corrosion process.
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INTRODUCTION
Carbon steel remains the most commonly used material in
infrastructure, transportation, energy and other industries due to
its low cost and good mechanical strength1–3. The durability of
exposed steel structures is mainly impacted by atmospheric
corrosion. Thus, the exposed atmospheric corrosion of carbon
steel has been a critical topic for decades4–6. Field in situ testing
and data collection is of great significance7–9. Nevertheless, the
corrosion performance of steel structure in exposed environment
is mostly studied by using corrosion coupons that usually
generate data once a year and it is hard to make accurate
assessments based on the discontinuous data collected this way.
A rapid and accurate evaluation of the corrosion performance of
carbon steel in exposed outdoor environments is essential in
guiding the material selection and engineering design for better
corrosion protection.
Various atmospheric corrosion monitoring (ACM) technologies

have been exerted to characterize the corrosion performance of
metallic materials. Electrical resistance (ER) technique could be
used to monitor corrosion rate, which measures the resistance of
the metallic sensor then converts it to the thickness loss10,11.
However, the sensitivity of ER to detect nm-scale thickness cannot
be guaranteed, and the resistance affected by ambient tempera-
ture fluctuates further degrades the accuracy of the monitoring
result12. Electrochemical impedance spectroscopy (EIS) monitoring
technique measures the impedance of the comb-like electrodes of
steel. By employing EIS and comb-like sensors, Thee et al. found
that the rust promotes corrosion in the first five wet–dry cycles
and inhibits in the next 15 cycles13. Nishikata et al. applied this
technology on a bridge and established an exponential relation-
ship between the impedance at 10 mHz and corrosion rate.
However, the data used in their study were all over 0.5 year apart,
making the conversion calculation during the initial stage of
corrosion doubtful14. Quartz crystal microbalance (QCM) technol-
ogy is in favor for monitoring corrosion behavior on the initial
stage of corrosion due to its ability to detect ng-scale mass

change15. For example, Kleber et al. found that SO2 has an obvious
influence on the growth rate of the corrosion products on
weathered silver surface in an ambient environment16. But QCM
requires testing metals to be plated on the crystals, which limit the
steel sample to be used for long-term monitoring.
Unlike the ACM technologies, Galvanic-cell-based ACM technol-

ogy directly monitors the galvanic current of galvanic couple of
the sensor, which consists of two electrodes with different
electrochemical activities17. By monitoring the magnitude and
variation tendency of the galvanic current, the corrosion behavior
of anode metal or the corrosivity of atmosphere can be observed.
Due to its higher sensitivity and better tolerance to temperature
variation than ER, longer monitoring period than QCM, less
requirements for the external polarization disturbance current
than EIS, galvanic-cell-based ACM technology has great applic-
ability in exposed atmospheric environments18–20. Mizuno et al.
proved that Fe/Cu-type ACM sensor is very sensitive to the change
of atmospheric corrosivity19. Shi et al. highlighted the impact of air
quality index on the environmental corrosivity based on a Zn/Cu-
type ACM sensor20. Our earlier analyses of Fe/Cu-type ACM data
found that stronger corrosion occurred at night time or during
rainfalls21. Nevertheless, few exposure tests in above studies lasted
longer than 3 months. The acceleration effect of the galvanic
corrosion and the conversion between the ACM current and
natural corrosion rate in exposed atmospheric environments are
still unknown, especially for long-period testing. Investigating
these unknowns has great significance for better monitoring the
characterization of corrosion properties of steel.
ACM technologies collect vast amounts of data that carry rich

information about the interactions between the dynamic corro-
sion process and corrosive factors. The combination of multi-
dimensional data and other environmental data brings challenges
to analyze the relationship between single environmental factor
and corrosion process22. In this case, machine learning may offer
opportunities to better understand and predict atmospheric
corrosion influenced by the complex environmental factors due
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to its powerful automated pattern search capability17,23–25.
Random forest (RF) model, which has deeper layers than general
machine learning models and may possess a better processing
capacity for the data with high variability, could be a good
candidate for the dynamic atmospheric corrosion processes26,27.
After 16 years study by applying a RF model to rank the influences
of multiple environmental factors, Zhi et al. found that the pH
value of rainwater persisted as the most significant environmental
factors28.
In this paper, the atmospheric corrosion of carbon steels was

monitored using Fe/Cu-type ACM technology in the six different
exposed atmospheric environments in China. After ~12 months
testing, over three million ACM and mass loss data was collected.
The galvanic acceleration effect was discussed and the conversion
method between the instantaneous ACM current and actual real-
time corrosion rate was defined. Finally, based on a multi-
dimensional corrosion dataset (including corrosion rate, mass loss,
temperature, relative humidity (RH), rainfall rate, wind speed, the
deposition of chloride, particulates smaller than or equal to 2.5
microns (PM2.5) and 10 microns (PM10), SO2, and NO2), a RF model
was built to predict the atmospheric corrosion of carbon steel
under dynamic atmospheres and was employed to investigate the
impacts of the corrosive factors.

RESULTS AND DISCUSSION
Corrosion monitoring by ACM sensors
Supplementary Fig. 1a–f shows the complete data sets of the
instantaneous galvanic current output by the ACM sensors (IACM)
after 1-year test. A notable phenomenon is that the values of IACM
fluctuated a lot in every day at all six stations, indicating that a
typical characteristic of atmospheric corrosion is that it is highly
unstable compared to laboratory experiments. The alternative
fluctuations from day to night correlate with the process of the
formation and evaporation of thin liquid film.
By integrating IACM, ACM current collected in each minute, over

the entire testing period according to Eq. (1), the corrosivity
differences of the six atmospheres could be obtained by

comparing the output power (QACM):21

QACM ¼
X

IACM ´ 1 min (1)

The calculation results of QACM are shown in Fig. 1a. The missing
data in the blank areas in Supplementary Fig. 1a–f, which were
caused due to the power outage or ACM equipment failure,
caused the calculation error of QACM, thus QACM needed to be
adjusted by the average method based on Eq. (2):

QACM�adjust ¼ QACM ´
ttest

tmonitor
(2)

where QACM-adjust represents the electric quantity output of ACM
sensors after adjusting; ttest is the total testing time; and tmonitor is
the total working time of the ACM sensor. The calculated
QACM-adjust is shown in Fig. 1b, from which it can be seen that
the corrosivity at six sites are not consistent, especially at Qingdao
and Sanya. Since Qingdao and Sanya have marine atmosphere,
chloride might bring about the stronger corrosion during the later
period. The corrosivity after 1-year exposure is in the order of
Qingdao > Sanya > Hangzhou >Wuhan > Beijing > Tulufan.

The influence of galvanic effect
The mechanism of using ACM sensors to detect atmospheric
corrosion is based on the principle of galvanic corrosion, which
accelerates the corrosion process of anodes. This acceleration
makes it doubtful to use ACM sensors as a replacement for long-
term standard steel coupons.
The surface morphologies of the ACM sensors and standard

coupons were shown in Supplementary Fig. 2. The color of the
rust layers on ACM sensors and steel coupons were consistent at
each site, and uniform corrosion morphologies could be observed.
The acceleration effect did not alter the corrosion morphology
from the macroscopic observation.
To further investigate the acceleration effect, it is necessary to

use electrochemical process to determine whether ACM current
supports both Fe to Fe2+ and Fe2+ to Fe3+ reactions. Supple-
mentary Fig. 3 shows polarization curves of the galvanized system
in deionized water with pH 5.4, which simulates the pollution-free
atmosphere29. The results demonstrate that the corrosion
potential in galvanized system was −0.30 V initially, and then
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Fig. 1 Real-time electric quantity output by ACM sensors during ~12-month exposure test at 6 sites. a Collected while ACM technology
was working, b adjusted by average method.
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decreased below −0.49 V as rust layer grew. The study of the
conventional potential-pH diagram for Fe-H2O in previous study30

affirmed that the potential for the transformation of Fe2+ to Fe3+

is far above −0.3 V when the temperature is below 60 °C and pH
value stays at 5.4, and the presence of chloride would not alter the
thermodynamic parameters much. Therefore, it could conclude
that in exposed environments, the corrosion potential is not
conducive to the conversion of Fe2+ to Fe3+ directly on the ACM
sensor, and the ACM current is generated by the Fe to Fe2+

reaction.
The acceleration effect was calculated based on Supplementary

Fig. 3. The mass loss of galvanic-induced corrosion, mg(A) (g m−1),
after 1-year testing was calculated using Eq. (3):

mgðAÞ ¼ QACM�adjust ´AFe

2e ´ 1NA ´A
(3)

where AFe is the atomic weight of iron (55.845); 2e is the charge of
2 electrons (2 × 1.602 × 10−19 C) generated by a Fe atom to a Fe2+

ion; NA is Avogadro’s number (6.02 × 1023); and A is the total
exposure area (21 × 1 × 7mm2) of the carbon steel electrode on
the sensor surface.
Meanwhile, in a galvanic corrosion system, the relationship

amongst the natural corrosion mass loss of ungalvanized coupon
(m), the natural corrosion mass loss of the galvanized steel on
ACM sensor (m(A)) and mg(A) follow the rule in Eq. (4):

mðAÞ<m<mðAÞ þmgðAÞ (4)

Thus, the ratio of the acceleration effect on ACM sensor (ratiog)
can be calculated based on Eq. (5):

ratiog ¼
mðAÞ þmgðAÞ �m

m
<
mgðAÞ
m

(5)

Supplementary Table 1 shows the values of m measured in the
test, mg(A) and ratiog obtained from Eqs. (3) and (5). The values of
ratiog revealed that all the acceleration effect was less than 14.4%.
Stronger corrosion cause more obvious acceleration effect. It can
be concluded from these results that the galvanic effect did not
change the corrosion status of carbon steel on ACM sensors
greatly during the testing, while the strong galvanic effect of ACM
sensor under a highly corrosive environment could cause the
result not truly reflect the real corrosion situation in a yearly
experiment.

ACM data interpretation
After discussing the influence of galvanic effect, Fig. 2 presents the
correlation between m (g m−2) and the corresponding QACM-adjust

(C). m was the mass loss of the standard corrosion coupons that
were collected from the six sites after 1 month, 6 months and
12 months. The QACM-adjust was calculated based on the IACM, Eqs.
(1) and (2). Despite the differences of the site environments and
exposure periods, the mass loss correlated well with the electric
quantity except for the data point circled in red that has the
largest error in Fig. 2. The correlation equation could be fitted
using Eq. (6):

m ¼ 36:19 ´Q0:73
ACM�adjust (6)

The R2 value of 0.996 confirms a very good fitting. According to
Eq. (6), when an ACM sensor is in a stable environment, the
correlation will not be proportional for long-term testing. Based on
the data from recent literatures18,19, a lot of efforts had been put
in to make the correlation of ACM sensor more meaningful and
there was no better replacement for it so far.
Taking the derivative with respect to time based on Eq. (6), the

correlation between the instantaneous natural corrosion rate of
carbon steel r (g m−2 a−1) and the instantaneous ACM current IACM

(nA) can be described as:

r ¼ 0:83 ´Q�0:27
ACM�adjust ´ IACM (7)

According to Eq. (7) and assuming r as a constant, the increase
of QACM-adjust will lead to the increase of IACM, which is due to the
growth of rust layer that increases the electric conductivity of thin
liquid film. Before the rust layer stops growing, QACM-adjust

increases with the growth of the thickness of the rust layer, and
the hygroscopicity will also be enhanced due to the porous
structure of the rust layer. Higher hygroscopicity is conducive to
the resistance reduction of the thin liquid film and facilitates the
transmission of ions electrons produced by galvanic corrosion.
Hence, the increased electric quantity of the ACM sensors would
enhance the instantaneous ACM current. Thus, Eq. (7) has great
significance, which gives the relationship between corrosion rate
and instantaneous ACM current. Based on Eqs. (6) and (7), the
ACM current data and electric quantity data in Supplementary Fig.
1 and Fig. 1 were analyzed. The instantaneous corrosion rate and
mass loss calculated are shown in Fig. 3.
According to the classification in ISO 922331, the environmental

corrosivity of six monitored sites was shown in Supplementary Fig.
4 based on the natural corrosion rate data from Fig. 2. By the
visual observation in Supplementary Fig. 4, accurately evaluate the
damage of carbon steel was difficult through simply classifying
the environmental corrosivity. The corrosion rate in Hangzhou was
10 times larger than Tulufan, whereas they all belonged to
C2 level.
In order to precisely characterize the environmental corrosivity,

the minutely time distributions of corrosivity classification at six
sites were counted based on the data in Fig. 3a, and the statistical
results were shown in Fig. 4. Compare Supplementary Fig. 4 with
Fig. 4, the macroscopic classification level of the environmental
corrosivity in all sites was higher than the level with the longest
distribution in microscopic time except Hangzhou (e.g., the
macroscopic classification level in Sanya was C3 in Supplementary
Fig. 4, meanwhile the level with the longest distribution in
microscopic time was C2 in Fig. 4). In addition, each monitored
environment covered C1 to CX level in the microscopic time
during the monitoring period. Even Tulufan own 0.1% ratio of
monitoring time in CX level. This phenomenon led to a new
understanding of atmospheric corrosivity in exposed outdoor
environments.

Fig. 2 The relationship between the mass loss of the corrosion
coupons and the electric quantity output by the ACM sensors.
Error bars are the experimental results of three sets of coupons
during the same period.
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For exploring the method which could precisely characterize
the damage degree of carbon steel in atmospheric environments,
the relationship between the natural corrosion rate and the time
ratio of different corrosivity level was counted based on the data
in Figs. 2 and 4. The results were shown in Supplementary Fig. 5.
From Supplementary Fig. 5a–d, the data performed irregular.
However, a positive correlation trend was observed in Supple-
mentary Fig. 5e, and this law was more obvious in Supplementary
Fig. 5f. Therefore, the time proportion of CX level was able to
effectively represent the macroscopic corrosivity, and it should be
more accurate than the traditional corrosion classification method.
This method of characterizing environmental corrosivity by
counting the time ratio in CX level provides the possibility in
shortening the evaluation period of environmental corrosivity.

Prediction of atmospheric corrosion by RF
Traditional methods to predict the corrosion rate of carbon steel
generally follow ISO 9223-2012, which is based on annual
corrosion data and is incapable to reflect the details of corrosion
in dynamic atmospheres32,33. Machine learning models have
powerful automated patterns searching capability, may accurately
predict the atmospheric corrosion in dynamic environments.
In order to predict the atmospheric corrosion of carbon steels,

multiple environmental factors were collected. Due to its typical
atmosphere environment, Qingdao was selected for this purpose.
The deposition of chloride ions was measured monthly using the
dry plate method at Qingdao site and the results are shown in

Fig. 5. In Supplementary Fig. 6, the complete environmental data
that were involved in this study refers to corrosive factors,
including the meteorological data (i.e., daily average temperature,
RH, rainfall rate and wind speed) and the environmental pollutants
data (i.e., SO2, NO2, PM2.5, PM10 and the cumulative deposition of
chloride). In the modeling, the growth of rust layers were also
considered as a corrosive factor, which were indirectly character-
ized by the mass loss in Fig. 3b. It is difficult to directly visualize
the influences of all these corrosive factors on the atmospheric
corrosion behavior of carbon steels by comparing the r variations
in Fig. 3a.
In this study, a RF model was built to predict the instantaneous

corrosion rate of carbon steels based on the corrosive factors
mentioned above. To validate the performance of the models, the
corrosion data samples were divided into the training part and
testing part. In total, 90% of the entire dataset was randomly
selected as the training part, and the rest 10% was used as the
testing part to evaluate the predicting performance.
Figure 6 presents the fittings of both training and prediction

results. The abscissa of each figure is the actual r value analyzed by
ACM technology, while the ordinate represents the r value
predicted based on the RF model. The red diagonal line represents
the true-prediction line on which the predicted values equal to the
corresponding actual values. The closer a point is to the red
diagonal line, the smaller prediction error it has. Root mean square
error (RMSE) and R2 were adopted to evaluate the performance of
the established model28. Comparing the fitting results of training
and prediction, there is not much difference between the values
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of RMSE. Both have high R2 values (å 0.9), and all the points are
basically located close to the red line. So far, no fittings reported
overperform this at any range for RF. Therefore, the new RF model
established in the study can successfully predict the atmospheric
corrosion of carbon steels in dynamic atmosphere with ten
corrosive factors.
From the analysis in algorithm principle, the prediction process

for RF model is based on the principles of statistics and averaging.
The cover degree of data and the data size directly determine the
accuracy of the RF model. Thus the RF model is incapable to
extrapolate and predict in untrained data ranges, whereas the
prediction results show high accuracy within the range of the
trained data ranges. As for the atmospheric monitoring corrosion
data, the minutely monitoring technique solves the problem of
week cover degree of data and small data size. Therefore, the
model performed well in this study.

The impacts of corrosive factors
The importance indexes of the corrosive factors were calculated by
the RF model, and the results are shown in Fig. 7. The weight factors
that affect r (corrosion rate) more than 5% are wind speed, mass
loss, chloride, rainfall rate and RH. Unexpectedly, wind speed has
significant influence on the corrosion rate in dynamic atmosphere.
Kleber et al. reported that in static atmospheres, the thicknesses of

thin liquid film on metallic surfaces were 3.7 and 4 nm when the RH
reaches at 80% and 90%, respectively16. The maximum atmospheric
corrosion of carbon steel requires a thin liquid film of 17-um
thickness13. It can be inferred that thin liquid films in exposed
atmospheres were influenced greatly by the variation of wind speed,
thus wind speed has a significant effect on corrosion. As mentioned
above, the RH of the atmospheres measured by the humidity
sensors actually was the RH on the sensor surface. The variation
tendency of wind speed and surface RH on the humidity sensor was
shown in Fig. 8. This phenomenon confirmed that high wind speed
accelerated the evaporation of the thin liquid film that was
generated by the high RH and rainfall in exposed environment,
thus slowed down the corrosion process. The rust layer also had an
important impact. As the atmospheric corrosion progressed, the rust
layer enhanced the roughness of metallic surface, and increased the
hygroscopicity and decreased the critical RH of atmospheric
corrosion34. An interesting phenomenon is that the effect of rainfall
was almost the same as RH in the 1-year exposure test. Unlike dew
or the nm-scale thin liquid film formed in high RH16, rainwater can
provide required dynamic electrolyte environment for corrosion
electrochemical reactions. Therefore, rainfall has a significant
influence on corrosion. We have observed that rainfall had more
influence on atmospheric corrosion than RH at the initial stage
before21, and Zelinka et al. reported that rainfall was the climatic
parameter that had the most significant impact on fasteners
embedded in wood35. As the rust layer grows, the effect of rainfall is
gradually diminished. The importance of the chloride is expected.
That effect of chloride for promoting corrosion is well-known:
hygroscopicity, penetrability, electroconductibility, and the forma-
tion of porous corrosion products with nearly no shielding
effectiveness of corrosive factors36–40. Other parameters, i.e., daily
average temperature, SO2, NO2, PM2.5, and PM10 were not very
important. In exposed environment, the effect of temperature was
always considered to be less important than RH40–42, because
electrolytes are the necessary condition for corrosion. The pollutants
are far less important than chloride, which may be explained by the
low concentrations of pollutants at the Qingdao test site. The yearly
average concentrations of SO2, NO2, PM2.5 and PM10 were only
6.8 µgm−3, 33.5 µgm−3, 42.7 µgm−3, and 76.8 µgm−3, respectively.
In order to study the role of the influential corrosive factors in

corrosion process, the daily variation of weight indices of the

Fig. 4 The results of minutely time distributions of corrosivity classification at six sites. a Tulufan, b Beijing, cWuhan, d Hangzhou, e Sanya,
and f Qingdao.

Fig. 5 Monthly chloride deposition rate in Qingdao site during
the exposure test. The cumulated deposition of chloride ions was
integrated from the deposition rate.
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corrosive factors with value greater than 5% (i.e., wind speed,
mass loss, Cl-, rainfall rate and RH) was determined by the RF
model and shown in Fig. 9. Notably, the initial importance of wind
speed was much higher than others, and then diminished with the
increase of exposure time. Contrariety to wind speed, the
importance of mass loss was enhanced. As corrosion progresses,
the substrate of carbon steel was slowly covered by rust layer,
which decreased the direct impact of wind speed on electro-
chemical corrosion interface. Thus, the importance of rust layer
and wind speed is almost negatively correlated as shown in
Fig. 9. The effects of RH and rainfall on atmospheric corrosion are
not consistent in different corrosion stages. At the initial stage of
corrosion, rainfall had a greater influence, because the rust layer
didn’t have the shielding effect on rainfall and the rust layer didn’t
have strong hygroscopicity to moisture21. However, it can be seen
from Fig. 3b that the atmospheric corrosion increased sharply
after June 2019 due to the arrival of summer. Compared with
Fig. 9, the influence of RH increased and that of rainfall decreased
during this period. The accumulated effect of the rainfall and HR in
rust layers on the corrosion process is similar during one year of
exposure. As the corrosion progressed, the importance of RH was
enhanced further. The importance of chloride had a similar trend
as mass loss, which increased as the time extended. The rust layer
is the carrier of chloride. Chloride accumulated in the rust layers
and promoted corrosion, which played an more important role
especially in long-term exposure43–46.
The atmospheric corrosion of carbon steel was monitored over

12 months at six different locations, each with different atmo-
spheres, via Fe/Cu-type galvanic ACM technology. The ACM
current was collected continuously in every minute. The data
analysis yields the following conclusion.

Fig. 7 Importance index of corrosive factors to atmospheric
corrosion of carbon steel after 1-year exposure. Including mass
loss, wind speed, rainfall rate, RH, chloride deposition, temperature,
the concentrations of SO2, NO2, PM2.5 and PM10.

Fig. 8 The variation tendency of wind speed and surface relative
humidity on the humidity sensor. High RH data obviously clustered
in the area with low wind speed.

Fig. 9 Daily variation of the importance index to atmospheric
corrosion of carbon steel. Including RH, mass loss, chloride
deposition, the wind speed and rainfall rate.

Fig. 6 The fitting results of atmospheric corrosion by the RF models in Qingdao. a Training part, b prediction part.
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(1) Due to the effect of the seasonal climate and other
environmental factors, the ranks of the corrosivity in six
exposed atmospheric environments were different in the 1st
month, 6th month, and 12th month. When evaluating the
exposed environmental corrosivity, it is necessary to take a
whole year as the evaluating period.

(2) The galvanic acceleration effect on ACM sensors was less
than 14.4% in the most corrosive atmosphere during the
test. The stronger the corrosion was, more obvious accel-
eration effect would be observed. The electric quantity
output by ACM sensors correlated well with the corrosion
mass loss obtained via standard steel coupons. The relation-
ship amongst the corrosion rate (r, g m−2 a−1), ACM current
(IACM, nA) and electric quantity (Q, C) can be described as:

r ¼ 0:83 ´Q�0:27 ´ IACM (8)

(3) The exposed atmospheric environmental corrosivity was
highly dynamic, and each monitored environment covered
the C1 to CX level, in finite time periods, within the overall
monitoring duration. The macroscopic classification level of
the environmental corrosivity in most monitoring sites was
higher than the level with the longest distribution in
microscopic time. Meanwhile, the time proportion of CX
level was able to effectively represent the macroscopic
corrosivity, and it should be more accurate than the
traditional corrosion classification method.

(4) A RF model was built to predict the atmospheric corrosion of
carbon steel in a dynamic atmosphere under the influence of
multiple meteorological factors, environmental pollutants
and rust layer. Based on the analysis of algorithm principle,
RF should be suitable for mining and modeling continuous
corrosion monitoring data. As a result, the model
performed well.

(5) The corrosive factors of principal importance were rust layer,
wind speed, rainfall rate, RH and chloride concentration. The
effect of temperature was weak, and the effect of pollutants
such as SO2, NO2, PM2.5 and PM10 were not the principal
factors to the atmospheric corrosion because of their low
concentrations at the Qingdao test site. The influence of
wind speed on corrosion decreased and the effect of rust
layer and chloride became more and more obvious as the
exposure time extended. The effect of rainfall was similar to
RH, and rainfall is an essential factor in predicting dynamic
atmospheric corrosion.

METHODS
ACM technology
As shown in Supplementary Fig. 7a, a typical Fe/Cu ACM sensor was
assembled by seven pairs of galvanic couples. Each couple consists an
anode made of carbon steels (0.47 wt% C, 0.18 wt% Si, 0.59 wt% Mn, 0.01
wt% S, 0.01 wt% P, 0.01 wt% Ni, 0.02 wt% Cr, 0.01 wt% Cu) and a cathode

made of copper (>99.5% pure). Glass fiber-reinforced epoxy (FR4) boards
with the thickness of 0.1 mm were inserted between every metal sheet to
ensure no contact between the cathodes and anodes. The exposed area of
the anodes is the same as that of cathodes (21 × 1mm2). Then the
assembly was filled with epoxy, and the surface was abraded using 1200#
sandpaper. When a thin liquid film formed across the FR4 to connect the
anodes and cathodes, a galvanic current would be provoked by the
galvanic effect. The physical display of the ACM sensor was shown in
Supplementary Fig. 7b. The galvanic current of the ACM sensor was
detected by a micro-galvanometer with the model of Qianlang CM-200.
The data collection frequency is once per minute. The resolution of the
micro-galvanometer is 0.1 nA and the current value is in the range of
0.1 nA to 50mA.

Field exposure test
The atmospheric corrosion tests were carried out at six standard exposure
test sites of National Environmental Corrosion Platform, China (Supple-
mentary Table 2)47. The ACM sensors together with the humidity and
temperature sensors and five parallel standard corrosion coupons (100 ×
50 × 5mm3) of the same carbon steels were installed at each site. All the
samples were at least 1 m above the ground and 45° to the south. It should
be mentioned that the working principle of humidity sensors on the
market is to directly measure the surface resistance of the humidity sensor,
and then calibrate the relationship between the resistance and the actual
atmospheric RH in the static environment of the manufacturing site, so
that the measured resistance can reflect the atmospheric RH. Thus, the RH
measured by the humidity sensors actually was the surface RH of the
sensors.
The exposure tests started in August 2018 and ended in September

2019, lasting for ~12 months. The parallel standard coupons were collected
after 1, 6, and 12 months, respectively. The average mass loss was
calculated by the difference in the weight of the coupons after removing
the corrosion products by scrubbing with a wire brush in 18 wt%
hydrochloric acid solution, as specified in ISO 8407C.3.548.
In order to further investigate the impact of multiple environmental

factors on atmospheric corrosion, chloride depositions were measured
monthly using the dry plate method at Qingdao site according to ISO
922549. Meanwhile, the hourly rainfall rate, wind speed, the concentrations
of SO2, NO2, PM2.5 and PM10 at the Qingdao and Wuhan sites were
obtained from China Meteorological Administration.

Electrochemical testing
Potentiodynamic polarization tests were carried out in a traditional three-
electrode system, where a platinum plate was used as auxiliary, a saturated
calomel electrode (SCE) as the reference and the ACM sensor as the
working electrode. All the electrochemical experiments were conducted in
deionized water (pH 5.4), which is a simulation of pollution-free
atmosphere31. After the open circuit potential was stabilized, the
potentiodynamic polarization tests were performed on a CS350 electro-
chemical workstation from −1.0 to 0.1 V SCE with a scanning rate of
0.5 mV s−1.

Random forest model
The RF model used in this study was implemented with the machine learning
library, Scikit-learn50. A suitable model was build using RF as an integrated
learning method that combines several classification and regression tree
(CART) models. Each CART is like a black box. It could auto split the input

Fig. 10 An example of different model prediction process. a CART model, b RF model.
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space to individual subspaces. The subspaces are adjacent but not
intersecting. An example of a trained CART model is shown in Fig. 10a.
Take a three-dimensional dataset as an example, temperature and RH are the
inputs, and the galvanic current of the ACM sensor is as the output. The input
space of the training samples is divided into several subspaces which are
represented by different colors according to the CART learning. The average
ACM current value of Area I is 1.78 nA. For a test sample with RH of 75% and
temperature of 20 °C (red dot in Fig. 10a), the position is located in Area I and
the ACM current value would be assigned to 1.78 nA. The training processes
of different CART models adopted the same principle. The principle has been
described in other literatures in detail28,51, it will not be provided here. The
minimum number of samples in each leaf node for each CART was set as 2.
Figure 10b illustrates the prediction process of the RF method which contains
100 CART trees. Daily average temperature, RH, rainfall rate, wind speed, the
deposition of chloride, SO2, NO2, PM2.5 and PM10 and mass loss were taken as
independent variables to make the prediction of instantaneous corrosion rate
of ith CART model, ri (i= 1, 2,…, 100). The final prediction result of r is the
integration of all the prediction values ri.
After finalizing the RF model, the out-of-bag (OOB) samples that were not

used for training in each CART model can be used to rank the importance
of all input variables28. For the ith CART model, the importance is mainly
calculated by adding a disturbance to each independent variable of the
OOB data and then calculating its variation amplitude from the predicted
results. Then the importance of all CART models were averaged to quantify
the importance of different independent variables in one RF model.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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