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Recent research has indicated that increased vulnerability to
oxidative stress may be the major factor involved in CNS
functional declines in aging and age-related neurodegenerative
diseases, and that antioxidants, e.g., vitamin E, may ameliorate
or prevent these declines. Present studies examined whether
long-term feeding of Fischer 344 rats, beginning when the rats
were 6 months of age and continuing for 8 months, with diets
supplemented with a fruit or vegetable extract identified as
being high in antioxidant activity, could prevent the age-related
induction of receptor-mediated signal transduction deficits that
might have a behavioral component. Thus, the following pa-
rameters were examined: (1) oxotremorine-enhanced striatal
dopamine release (OX-K-ERDA), (2) cerebellar B receptor
augmentation of GABA responding, (3) striatal synaptosomal
4%Ca2" clearance, (4) carbachol-stimulated GTPase activity,
and (5) Morris water maze performance. The rats were given

control diets or those supplemented with strawberry extracts
(SE), 9.5 gm/kg dried aqueous extract (DAE), spinach (SPN 6.4
gm/kg DAE), or vitamin E (500 1U/kg). Results indicated that
SPN-fed rats demonstrated the greatest retardation of age-
effects on all parameters except GTPase activity, on which SE
had the greatest effect, whereas SE and vitamin E showed
significant but equal protection against these age-induced def-
icits on the other parameters. For example, OX-K "-ERDA en-
hancement was four times greater in the SPN group than in
controls. Thus, phytochemicals present in antioxidant-rich
foods such as spinach may be beneficial in retarding functional
age-related CNS and cognitive behavioral deficits and, per-
haps, may have some benefit in neurodegenerative disease.
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It is well known that there are numerous declines in central
neuronal functioning that can occur in aging in the absence of
neurodegenerative disease. These alterations may be manifested
as a loss of neurotransmitter receptor sensitivity such as: (1)
muscarinic (Amenta et al., 1989; Araujo et al., 1990; Joseph et al.,
1990; Sherman and Friedman, 1990; Vannucchi, 1991; Viana et
al., 1992; Yufu et al., 1994; Egashira et al., 1996), (2) adrenergic
(Burnett et al.,, 1990; Gelbmann and Muller, 1990; Gould and
Bickford, 1997), (3) dopaminergic (Joseph et al., 1978; Roth and
Joseph, 1994; Gould et al., 1996; Volkow et al., 1996; Araki et al.,
1997; Zhang et al., 1997; Levine and Cepeda, 1998), and (4)
opioid (Dondi et al., 1992; Kornhuber et al., 1996; Nagahara et
al., 1996).

Although a great deal of research has been devoted toward the
delineation of the most critical factors that may account for this
functional neuronal loss in aging and enhanced loss in age-related
neurodegenerative diseases [Alzheimer’s (AD) and Parkinson’s
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(PD) diseases], their specification has been elusive. However,
recent studies have suggested that one of the most important may
be age-related decrements in the ability to mitigate long-term
oxidative stress (OS) effects. For example, OS may be a primary
etiological factor in both AD (Finch and Cohen, 1997) and PD
(Jenner, 1996), and there are increases in OS vulnerability as a
function of age (Joseph et al., 1996). Evidence also indicates that
there are reductions in endogenous antioxidants in aging (e.g.,
glutathione, Ohkuwa et al., 1997; and glutamine synthetase,
Carney et al., 1994), with increases in lipid peroxidation (Migheli
et al., 1994; Yu, 1994).

Given these considerations, we believed that it might be possi-
ble to counter dietarily the decreases in antioxidant protection
that occur in aging by increasing the intake of fruits and vegeta-
bles identified as being high in antioxidant activity (Yamori and
Horie, 1994; Cao et al., 1995, 1996; Meydani et al., 1995; Taylor
and Nowell, 1997; Wang et al., 1996). Such consumption has
already been found to reduce cancer incidence (Doll, 1990;
Willett, 1994a,b) and ischemic heart disease (Hughes, 1995;
Mayne, 1996).

In the brain, the consumption of the flavonoid glycosides of
ginkgo biloba decreased memory impairment (Rai et al., 1991),
difficulties in concentration (Kleijnen and Knipshild, 1992a,b),
Ca"%induced increases in neuronal oxidative metabolism
(Oyama et al., 1993, 1994), and AD progression (Kanowski et al.,
1996). Thus, present research was directed toward determining if
the early appearance of decrements in receptor sensitivity (at 15
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Table 1. Diets fed to rats (for 8 months, from age 6—15 months)

Diet composition (gm/kg)

Ingredient Control +Strawberry +Spinach +Vitamin E

Casein, alcohol-extracted 189.6 189.6 189.6 189.6
L-Cystine 2.8 2.8 2.8 2.8

Corn starch 450.2 440.7 443.8 449.2
Maltodextrin 10 118.5 118.5 118.5 118.5
Sucrose 94.8 94.8 94.8 94.8
Cellulose, BW200 474 474 474 474
Soybean oil 42.7 42.7 42.7 42.7
Salt mix* 9.5 9.5 9.5 9.5
CaPO,, dibasic 12.3 12.3 12.3 12.3
CaCO;, 5.2 5.2 5.2 52
Potassium citrate 15.6 15.6 15.6 15.6
Sodium selenite 0.00009 0.00009 0.00009 0.00009
Vitamin mix (V13401)° 9.5 9.5 9.5 9.5
Choline bitartrate 1.9 1.9 1.9 1.9
Strawberry extract® 9.5 0
Spinach extract® 6.4

Vitamin E acetate, 500 TU 1
Total 1000 1000 1000 1000

¢ Salt mix contains (in gm/kg salt mix): NaCl, 259; MgO, 41.9; MgSO, - 7TH,0, 257.6; CrKSO, - 12H,0, 1.925; CuCO,, 1.05; K1, 0.035; FeCitrate, 21.0; MnCO,, 12.25; ZnCO,,

5.6; sucrose, 399.64.

® Vitamin mix contains (in gm/kg vitamin mix): vitamin A palmatate (500,000 IU/gm), 0.8; vitamin D5 (100,000 1U/g), 1.0; menadione sodium bisulfate (62.5% menadione),
0.08; biotin (1.0%) 2.0; cyancocobalamin (0.1%), 1.0; folic acid, 0.2; nicotinic acid 3.0; calcium pantothenate, 1.6; pyridoxine-HCI, 0.7; riboflavin, 0.6, thiamin-HCI, 0.6; sucrose,

988.42.

¢ Freeze-dried aqueous extract (1 gm fresh weight plus 2 mL H,O) prepared by homogenizing, centrifuging, and then freeze drying.

months of age in Fischer 344 rats), loss of calcium homeostasis
(Landfield and Eldridge, 1994), and cognitive performance could
be prevented by 8 months (6—15 months) of feeding of a control
diet or diets containing vitamin E or extracts of strawberries or
spinach. Strawberries and spinach have been identified previously
(Cao et al., 1995, 1996; Wang et al., 1996) by the oxygen radical
absorbance capacity (ORAC) assay as being high in antioxidant
activity.

MATERIALS AND METHODS
Animals

The subjects consisted of 80 male Fischer 344 rats (Harlan Sprague
Dawley, Indianapolis, IN). The rats were individually housed in stainless
steel mesh suspended cages, provided food and water ad libitum, and
maintained on a 12 hr light/dark cycle. All animals were observed daily
for clinical signs of disease.

After a 12 d acclimatization period to the facility, the 6-month-old rats
were weight-matched, given 2 weeks on the control (modified AIN-93)
diet (Table 1), and randomly assigned to one of four groups: control diet,
or the control diet supplemented with 500 IU vitamin E acetate, 0.95%
(w/v) strawberry extract, or 0.64% spinach extract (Table 1). They were
fed these diets for 8 months before experimental testing. The amounts of
strawberry or spinach extracts added into the control diets were based on
an equivalent ORAC activity so that each diet provided equivalent
antioxidant activity (1.36 mmol Trolox equivalent per kilogram of diet).
Monthly weights and food intakes (over a 48 hr period) were recorded.
These animals were used in compliance with all applicable laws and
regulations as well as principles expressed in the National Institutes of
Health, United States Public Health Service Guide for the Care and Use
of Laboratory Animals. This study was approved by the Animal Care and
Use Committee of our center.

Diet preparation

We added 400 gm of sample to water in the ratio of 2:1 for strawberries
and spinach, then homogenized it in a blender for 2 min. The recovered
homogenate was centrifuged at 13,000 X g for 15 min at 4°C. The
supernatant was then recovered and combined in freezer bags, 500

ml/bag. The extract was frozen and then crushed and placed in the freeze
drier until dry, which usually required ~7 d. The freeze-dried extracts
were shipped to Research Diets Inc. (New Brunswick, NJ) where they
were combined with a control diet (Table 1). The amount of corn starch
in the control diet was adjusted accordingly when vitamin E acetate and
strawberry or spinach extracts were added.

Procedures

Dopamine release. Dopamine (DA) release was conducted as previously
described (Joseph et al., 1988a,b; 1990). Briefly, cross-cut (300 wm,
Mcllwain tissue chopper) striatal slices were obtained from the animals
maintained on the various diets. The slices were placed in small glass
vials containing modified Krebs’solution—Ringer’s solution basal release
medium (BRM) that had been bubbled for 30 min with 95% O, and 5%
CO, and which contained (in mMm) NaHCOj; 21, glucose 3.4, NaH,PO,
1.3, EGTA 1, MgCl, 0.93, NaCl 127, and KCI 2.5 (low KCI), pH 7.4.
They were then placed in the perfusion chambers in which they were
maintained at 37°C and perfused with the BRM for 30 min. After this
equilibration period, the medium was then switched to one containing (in
mm) KCI 30, CaCl, -2 H,O 1.26 (in place of EGTA), and NaCl 57 and
0 or 500 uM oxotremorine, and the enhancement of K*-evoked striatal
dopamine release (K *-ERDA) was assessed. DA release was then quan-
titated by HPLC coupled to electrochemical detection. Data were ex-
pressed as picomoles per milligram of protein as determined by the
Lowry procedure (Lowry et al., 1951).

Electrophysiology. Rats from the various diet groups were anesthetized
with urethane (0.75-1.25 gm/kg), intubated, and allowed to breath spon-
taneously. Corneal reflex and toe pinch was used to monitor anesthetic
level to establish equal planes of anesthesia. A heating pad was used to
maintain body temperature at 37°C. Animals were placed in a stereotaxic
frame, and the skin and muscle over the posterior vermis was removed.
The cistern was drained, and the skull and dura over the vermis were
removed. A solution of 2% agar in saline covered the brain. Recordings
were made in lobules VI and VII of cerebellar vermis from Purkinje cells
as identified by anatomical location and the characteristic complex spik-
ing of Purkinje cells.

Neuronal signals were amplified and filtered (—3 dB at 0.3 and 5 kHz)
and displayed on a storage oscilloscope. Action potentials were isolated
using a window discriminator, and the output was displayed using a strip
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chart recorder. Single units had to have a signal-to-noise ratio of at least
2:1. Multibarrel glass micropipettes were used for single-cell recording
and local drug application via microiontophoresis (resistance of the
recording electrodes 1.5-3.3 ). In the multibarrel glass micropipettes,
two barrels were filled with 3 m NaCl, and the other two barrels were
filled with GABA (0.25 M, pH 4.0-4.5) and with the B-adrenergic
agonist, isoproterenol (ISO) (0.25 M, pH 4.0-4.5), respectively. A con-
stant current source provided ejection and retaining currents for the drug
barrels and passed an equal current of opposite polarity through the
balance barrel to neutralize the tip potential. Uniform pulses of drug
were applied at regular intervals.

GABA was locally applied by microiontophoresis to produce a 10—
30% inhibition of spontaneous firing rates. Isoproterenol was then ap-
plied concurrently until either a change in the response to GABA was
observed or a change in baseline spontaneous rate was observed. Four
applications of GABA were given before ISO was coadministered.

After ISO was turned off, GABA was given until it could be deter-
mined if the pre-ISO level of GABAergic inhibition would return. Only
cells in which the post-ISO level of GABAergic inhibition matched the
pre-ISO level of GABAergic inhibition were analyzed. Drug-induced
responses were quantified by computer. The rate meter data were digi-
tized, and the percent inhibitions of firing rate resulting from drug
applications were calculated.

#Ca recovery. Striatal synaptosomes were isolated from the individual
Fischer 344 rats as described previously (Yeh et al., 1993). The final
pellets of Ficoll-purified synaptosomes were washed twice and resus-
pended in the basal medium (B-cond, in mm: 136 NaCl; 5 KCI; 1.2
CaCl,; 1.3 MgCl,; 10 glucose; and 20 Tris, pH 7.65) at the protein
concentration 1-1.3 mg/ml. Aliquots of synaptosomes (50 ul) were pre-
incubated for 5 min at 37°C with constant shaking. OS in synaptosomes
was induced by adding H,O, (final concentration 300 um) for 15 min.
“Ca uptake studies were performed as described (Leslie et al., 1980).
The *Ca uptake was started by transferring oxidized and control syn-
aptosomes to basal medium or depolarizing medium (D-cond, in mMm: 60
KCI; 1.2 CaCl,; 1.3 MgCl,; 10 glucose; and 20 Tris, pH 7.65). Both
media had previously been supplemented with “*CaCl, (2 uCi). The
reaction was stopped after 2 min by rapid filtration of samples through
Whatman GF/B (Maidstone, UK) filters, followed by washing three times
with ice-cold stop medium (in mm: 136 NaCl; 5 KCl; 3 EGTA; 1.3
MgCl,; 10 glucose; and 20 Tris, pH 7.65) by using vacuum filtration
(BRANDEL, model ML-48). The radioactivity retained in the filters
was measured by a liquid scintillation counter (WALLAC 1409;
WALLAC Oy, Turku, Finland) programmed for automatic quenching
correction. Results were expressed as nanomoles of Ca?* per milligram
of protein. Percent of increase in “*Ca uptake (Increase) and recovery at
30 sec after depolarization (Recovery) were calculated as follows:

43Ca uptake (D-cond) — **Ca uptake (B-cond)
45Ca uptake (B-cond)

Increase =

X 100%

45Ca uptake (D-cond) — **Ca uptake (D-cond at 30 sec)
45Ca uptake (D-cond) — **Ca uptake (B-cond)

Recovery =

X 100%

Cognitive testing. The working memory version of the Morris water maze
(MWM), with a 10 min intertrial interval, was performed to test spatial
learning and memory (Morris, 1984; Brandeis et al., 1989). Performance
on the maze, including the working memory paradigm, has been shown
to deteriorate with aging (Gage et al., 1984; Rapp et al., 1987; Gallagher
and Pelleymounter, 1988; Brandeis et al., 1989; Van der Staay and de
Jonge, 1993; Ingram et al., 1994) because of a specific deficit in the ability
of aged rats to use spatial information (Rapp et al., 1987).

For these experiments, the maze consisted of a circular black fiberglass
pool (134 cm in diameter X 50 cm in height), filled to a depth of 30 cm
with water maintained at 23°C. The pool was divided into four equal-size
quadrants. The circular escape platform (10 cm in diameter) was colored
black and, therefore, hidden from sight. The platform was submerged 2
cm below the surface of the water in the center of one of the quadrants;
its location was changed to a different quadrant for each session of
testing. The maze was placed in a room with the lights dimmed, and
there were numerous extramaze cues on the walls.

MWM testing was performed daily for 4 consecutive d, with a morning
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and an afternoon session, two trials each session, with a 10 min intertrial
interval between the two trials. At the beginning of each trial, the rat was
gently immersed in the water at one of four randomized start locations
(located 90° apart on the perimeter of the pool). Each rat was allowed
120 sec to escape onto the platform; if the rat failed to escape within this
time, it was guided to the platform. Once the rat reached the platform, it
remained there for 15 sec (trial 1, reference memory or acquisition trial).
The rat was returned to its home cage between trials (10 min). Trial 2
(the working memory or retrieval trial) used the same platform location
and start position as trial 1. Performance (latency to find platform in
seconds, distance swam in centimeters, and swim speed in centimeters
per second) on each trial was videotaped and analyzed with image
tracking software (HVS Image, Hampton, England).

Analyses of oxidative stress. The effects of oxidative stress on the
production of reactive oxygen species (ROS) in the brain tissue obtain-
ed from the various diet groups were assessed using 2',7'-
dichlorofluorescein diacetate (DCFH-DA; Molecular Probes, Eugene,
OR) analysis (Ueda et al., 1997). It has been shown that DCFH-DA is
nonpolar, nonionic, crosses cell membranes, and is enzymatically hydro-
lyzed by intracellular esterases to nonfluorescent DCFH-DA. In the
presence of ROS, DCFH-DA is rapidly oxidized to highly fluorescent
2'7'-dichlorofluorescein (DCF) (Lebel et al., 1992). For these experi-
ments, striatum and cerebellum were quickly removed from the brain.
Pellets of membranes (synaptosomes, myelin, and mitochondria) were
obtained as described previously (Denisova et al., 1998). Each pellet was
then resuspended in incubation media (IM: in mMm: 136 NaCl; 5 KCI; 1.2
CaCl,; 1.3 MgCl,; 10 glucose; and 20 Tris, pH 7.65) at the protein
concentration 1-1.3 mg/ml. Aliquots (100 ug of protein) were preincu-
bated for 5 min at 37°C with constant shaking. DCF was added to each
sample (final concentration 50 uM) for 30 min. Samples were washed,
resuspended in IM, and placed on a 96-well plate. Fluorescence was
monitored for 15 min on CytoFluor multi-well plate reader (PerSeptive
Biosystem, Framingham, MA). The dye was excited at 485 nm, and
emission was filtered using 530 nm filter (slit 20 and 25 for excitation and
emission, respectively). The results were expressed as DCF fluorescence.

GTPase activity Striatal membranes were prepared, and low Ky,
GTPase analysis was performed according to the method of Cassel and
Selinger (1976) as modified by Joseph et al. (1998). Briefly, membranes
were prepared by homogenizing the striatal tissue in 10 ml of Tris buffer,
50 mm, pH 7.4, EDTA, 10 mM, and phenylmethylsulfonyl fluoride, 0.1
mM in a Tekmar Company (Cincinnati, OH) Tissuemizer (setting 5, 5
sec). Membranes were then centrifuged at 20,000 X g for 10 min, and the
pellet was resuspended and washed at the same speed and time and
resuspended in 1 ml Tris-EDTA. Membranes (10 ug membrane protein)
were then incubated in a reaction mixture containing (in mm): 100 NaCl;
20 Tris-HCI, pH 7.4,; 5 MgCl,; 1 ATP; 2 AppNHp; 10 phosphocreatine;
2 dithiothreitol; 0.1 EDTA; 0.1 EGTA; 60 U/ml creatine phosphokinase;
0.3 uM [y->*P]GTP (NEN, 30 Ci/mmol) for 10 min at 37°C, and carba-
chol (0, 1073 — 1073 ™). After stopping the reaction with 900 wul of
ice-cold 5% activated charcoal in 20 mMm phosphoric acid, an aliquot was
taken, and radioactivity was determined by liquid scintillation counting.
Low K,; GTPase activity was calculated by subtracting the activity
measured in the presence of 100 uM unlabeled GTP from total activity.
Activity was expressed in picomoles of [y->*P] hydrolyzed per milligram
of protein, per minute. Values were expressed as mean = SEM of the
differences between basal and carbachol-stimulated low K,; GTPase
activity (AG) in picomoles per milligram of protein per minute. Proteins
were determined by the Lowry et al. (1951) method.

RESULTS

Weights and food intakes

The rats gained weight from 6 to 15 months [F;, 55, = 215.44;p <
0.001] from an average of 356.3 = 0.4 precontrol diet to 473.4 =
3.4 at age 15 months. However, there were no differences in
weight between the diet groups over time (p > 0.05) or at age 15
months (p > 0.05). There were also no differences in food intakes
between the diet groups over the course of the study (p > 0.05).

DA release

As can be seen from Figure 1, all striatal slices obtained from the
animals in the various diet groups (eight animals per group)
showed significantly greater oxo-enhanced K*-ERDA than that
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Figure 1. Oxotremorine enhancement of dopamine release from striatal

slices obtained and prepared from animals maintained on the control or
the various antioxidant diets. For this figure, a differs from the strawberry,
spinach, and high vitamin E groups ( p < 0.034; p < 0.0001; and p < 0.014,
respectively). ¢ differs from the strawberry (p < 0.002) and high vitamin
E (p < 0.006) groups, whereas bs do not differ from each other ( p > 0.05).

seen in those obtained from animals maintained on the control
diet [F 5 55) = 10.6, p < 0.0001; Fisher’s least significant difference
test: control vs strawberry, p < 0.03; control vs spinach, p <
0.0001; and control vs vitamin E, p < 0.014]. Additional post hoc
comparisons indicated that oxo-enhanced K* ERDA in the
spinach-fed group was greater than the strawberry-fed (p <
0.002) or vitamin E (p < 0.006) groups.

Electrophysiology

Electrophysiological recordings from cerebellar Purkinje neurons
indicated that the ability of isoproterenol to modulate GABA
inhibitions decreased in the rats maintained on the control diet.
When the effect of ISO was tested in aged control rats, as had
been seen previously (Gould and Bickford, 1997), only 32% of the
neurons tested demonstrated an ISO augmentation of the
GABAergic responses. Aged rats that had been on the vitamin E,
strawberry, or spinach diet had significantly more cells that re-
sponded to ISO (p < 0.05 Fisher’s exact test). Examples of
ratemeter records for the control and strawberry-supplemented
rats are shown in Figure 2, whereas the mean responses for all
groups are shown in Figure 3.

“5Ca recovery

When differences in **Ca recovery were examined in the striatal
synaptosomes obtained from the controls and various groups, the
results indicated that there were significant differences as a func-
tion of diet and H,O, treatment [F; 55, = 7.79; p < 0.001], with
all of the diet groups showing greater **Ca recovery, i.e., a greater
ability to extrude or sequester calcium after depolarization than
the control group. As shown in Figure 4, **Ca recovery was
significantly decreased in the H,O,-exposed diet control group as
compared with nonexposed controls (p < 0.001, post hoc t tests).
These tests also revealed that no deficits were seen in **Ca
recovery after exposure to H,O, in any of the diet-fed groups (All
p values > 0.05 in comparisons between non-H,O,-exposed and
H,O,-treated groups for the spinach, vitamin E, and strawberry
groups, Fig. 4). Additionally, the spinach-fed, H,O,-exposed
group showed greater recovery than either the vitamin E- or
strawberry-H,O,-treated groups (p < 0.01 for both comparisons).
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Cognitive testing

For the MWM, latency to find the platform, distance swam, and
speed were calculated separately for trials 1 and 2. Subsequently,
to analyze the effect of the diets on cognitive performance,
ANOVAs were run only on data for days 3 and 4, because no
difference was expected between the diet groups before this time,
and because the rats were still learning the task (as seen by a
significant effect of time). For trial 1, ANOVA showed a signifi-
cant effect of diet group for latency [F; ,;, = 3.39; p < 0.05] and
distance [F (5, = 5.18; p < 0.01] (Fig. 5). The group fed the
spinach diet had a shorter latency to find the platform in the
reference memory trial of the MWM compared with the control
group (p < 0.05) (Fig. 54). Additionally, both the spinach and
vitamin E groups showed a shorter distance to the platform on
trial 1 compared with the control group (p < 0.05) (Fig. 5B).
These differences were not caused by swim speed, because there
was no significant effect of diet group on this measure. There were
also no differences between any of the diet groups on working
memory (trial 2) performance.

Oxidative stress

As can be seen in Figure 64, there were significant differences in
DCEF fluorescence among the various groups [F; 55y = 87.61;p <
0.0001] in the striatum. In this regard, the striata obtained from
the strawberry-supplemented group did not exhibit any increased
level of OS protection relative to the control group (p > 0.05
control vs strawberry group). Only the spinach and vitamin E
groups showed greater native OS protection than controls (p <
0.0001 for both spinach vs control and vitamin E vs control),
whereas the vitamin E group showed less native OS protection
than the spinach group (p < 0.007).

In the cerebellum (Fig. 6B), there were also significant differ-
ences in DCF fluorescence among the various groups [F(3 4, =
156.62; p < 0.0001], indicating increased native protection against
oxidative stress in these groups. All of the supplemented groups
differed from control (p < 0.0001), whereas the animals main-
tained on the high vitamin E-supplemented diet showed the
highest protection (p < 0.0001 as compared with the strawberry-
and spinach-supplemented groups). The cerebellar tissue ob-
tained from animals maintained on the strawberry-supplemented
diet also showed less fluorescence (more antioxidant protection)
than the spinach-supplemented group (p < 0.0001).

GTPase activity

The results with respect to age-induced decrements in carbachol-
stimulated GTPase activity differed from those of the other
parameters in that the strawberry and the vitamin E supplemen-
tation prevented the decrements, whereas spinach did not [control
vs spinach, p > 0.05; control vs strawberry, p < 0.0001; control vs
vitamin E, p < 0.05; F 5 59y = 12.6; p < 0.0001 overall]. The results
expressed as A between basal and carbachol-stimulated GTPase
activity are shown in Figure 7.

DISCUSSION

As indicated in the introductory remarks, there is an abundance
of literature to suggest that diets high in fruits and vegetables are
important in preventing or moderating such major disorders as
cancer and heart disease. Even extracts of single foods such as
garlic (Pinto et al., 1997) and tomato (lycopene; Sharoni et al.,
1997) can have some antitumor properties. In the brain, evidence
was also cited that indicated that it might be possible to reduce the
deleterious effects of aging and AD through dietary supplemen-
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suggested that fruit and vegetable extracts high in both flavonoid receptor sensitivity (Chadman et al., 1997). These oxygen-
levels (e.g., spinach and strawberries) as well as total antioxidant induced decreases in neuronal function have been investigated in
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Figure 5. Morris water maze performance in the various diet groups.
Performance was assessed over 4 d (2 sessions per day, 2 trials per
session). Results are given as latencies (A) and distances (B) to find the
hidden platform from the first and second trials for each session on days
3 and 4. For this figure, as differ from the control group at p < 0.05
(trial 1).

numerous experiments and have also been shown to be sensitive
to aging and have been associated with behavioral deficits.

However, there is a paucity of research concerned with the
positive effects of fruit and/or vegetable supplementation in re-
tarding age-related neuronal and behavioral dysfunctions using
age-valid tests. The results of these experiments have provided
such evidence and have suggested, for the first time, that dietary
supplementation with foods identified as being high in antioxi-
dant activity (via ORAC) can retard the effects of aging on four
rather diverse indices of neuronal and behavioral functions that
are sensitive to both oxidative stress and aging.

Thus, each of these diets was effective in retarding the age-
associated deficits in muscarinic receptor sensitivity, as assessed
via oxotremorine enhancement of striatal DA release; isoprot-
eronal facilitation of GABAergic inhibition of cerebellar Purkinje
neurons; calcium regulation; and Morris water maze perfor-
mance. Spinach supplementation consistently produced the
greatest retardation of the aging effects in calcium regulation,
oxotremorine-enhanced K"-ERDA, and the onset of cognitive
deficits; all three diets were similarly effective in preventing the
loss of NE sensitivity in the Purkinje cells. In contrast to the other
parameters, when decrements in carbachol-stimulated GTPase
activity were assessed, the results indicated that the vitamin E and
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Figure 6. Interaction of diets and oxidative stress in striatum (A) and

cerebellum (B). Oxidative stress in brain tissue was evaluated by using
DCFH-DA, as described in Material and Methods. Data for the forma-
tion of reactive oxygen species were obtained from 6-13 individual
animals per group, performed with 6-10 replicates, and expressed as
mean * SEM. For this figure, means not sharing a common letter are
significantly different (p < 0.01).

strawberry-supplemented diets showed the greatest efficacy in
preventing their onset.

We are presently attempting to delineate the sites of actions of
the phytochemicals present in these foods and particular classes
that are the most effective in preventing these age-related deficits.
One important class may be the flavonoids. Flavonoids are rec-
ognized as one group of phytochemicals which include, among
others: allium compounds (diallyl sulfide and allyl methyl trisul-
fide) and carotenoids (a-carotene, B-carotene, lutein, and lyco-
pene). Because flavonoids are present to a considerable degree in
vegetables and fruits, they make up an important part of the
human diet (Kuhnau, 1976). Their daily intake has been esti-
mated to be as high as 1 gm per day, with the primary dietary
source being vegetables. However, although some flavonoids may
have higher antioxidant activity than others (Cao et al., 1997), it
may be that ultimately it is the “Gestalt” of the myriad of
interactions among various classes of phytochemicals present in
foods with high ORAC activity that may confer this potent
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Figure 7. Differences (expressed as AG from baseline) in carbachol-
stimulated low K, GTPase activity from striatal slices obtained from the
various diet groups (see Materials and Methods). For this figure, b differs
from the control, spinach, and vitamin E groups (p < 0.0001; p < 0.0001;
and p < 0.003, respectively), whereas ¢ differs from the control and
spinach groups (p < 0.05).

antioxidant protection. In other words, “the whole is more than
the sum of its parts™.

One point that can be made in this regard is that preliminary
analyses of the regional differences in vitamin C among cortical,
hippocampal, cerebellar, and striatal tissues obtained from the
diet groups in this study indicate that there are no differences as
a function of diet. These findings indicate that the prevention of
the age changes among the various diets are probably not the
result of vitamin C contained in the strawberry or spinach ex-
tracts. Moreover, in a preliminary analysis of the brain levels of
vitamin E among the various diets, only the high vitamin E diet
increased regional brain levels of vitamin E relative to controls.
However, the striata obtained from the animals maintained on
the high vitamin E diet showed the lowest levels of vitamin E of
any brain region examined, whereas the hippocampus showed the
highest. Because the high vitamin E diet group showed signifi-
cantly less protection against loss of oxotremorine enhancement
of DA, Morris water maze performance, and striatal synaptoso-
mal Ca?* recovery relative to the spinach-supplemented group,
these findings indicate that other phytochemicals (e.g., fla-
vonoids) contained in the diets of the supplemented groups may
be more effective in protecting against the deleterious effects of
aging on these parameters.

However, given the findings with respect to the DCF analyses,
it may be that factors other than those having to do with protec-
tion against oxidative stress may be involved. For example, in the
cerebellum, whereas the supplemented diets were effective in
increasing the level of OS protection (reduced DCF fluores-
cence), in all of the groups as compared with control the spinach-
supplemented group had the lowest level of protection of any of
the groups, although this supplementation significantly retarded
the onset of loss of NE inhibition as a function of aging. In the
striatum, the strawberry-supplemented group showed the lowest
level of OS protection (highest fluorescence) but had the best
protection against the loss of carbachol-stimulated GTPase activ-
ity of any group, whereas vitamin E did not necessarily provide
the greatest long-term protection in any of the parameters exam-
ined but showed the greatest efficacy in reducing fluorescence in
the DCF assessments in both the striatum and cerebellum. Thus,
it may be that there are other effects of the phytochemicals
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contained in spinach and strawberries in addition to antioxidant
protection. One of these may be alterations in membrane rigidity.
It is known, for example, that flavonoids increase membrane
fluidity (Ramassamy et al., 1993; Stoll et al., 1996; Halder and
Bhaduri, 1998), and we have shown previously (Joseph et al.,
1995) that by incubating striatal slices in S-adenosyl-L-
methionine, a potent membrane-fluidizing agent, we were able to
reverse the age-related deficits in oxotremorine-enhanced K-
ERDA. We are currently investigating whether the flavonoids
contained in the strawberry- and spinach-supplemented diets,
especially the anthocyanins, can have similar effects in these
assessments.

In addition, attempts are being undertaken to determine
whether these diets will also be effective in reversing the delete-
rious effects of aging on the above parameters as well as motor
behavior. However, present findings, thus far, suggest that nutri-
tional intervention with fruits and vegetables may play an impor-
tant role in preventing or perhaps even reversing the effects of
oxidative stress in aging on brain function.
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