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Abstract

Background: Human exposure to silica dust is very common in both working and living environments. However, the
potential long-term health effects have not been well established across different exposure situations.

Methods and Findings: We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or
more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y).
We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix.
We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates.
Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards
model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and
HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the
population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of
follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers
(993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE
(measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica
exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–
1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated
standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease
(1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed to respirable silica concentrations equal
to or lower than 0.1 mg/m3. After adjustment for potential confounders, including smoking, silica dust exposure accounted
for 15.2% of all deaths in this study. We estimated that 4.2% of deaths (231,104 cases) among Chinese workers were
attributable to silica dust exposure. The limitations of this study included a lack of data on dietary patterns and leisure time
physical activity, possible underestimation of silica dust exposure for individuals who worked at the mines/factories before
1950, and a small number of deaths (4.3%) where the cause of death was based on oral reports from relatives.

Conclusions: Long-term silica dust exposure was associated with substantially increased mortality among Chinese workers.
The increased risk was observed not only for deaths due to respiratory diseases and lung cancer, but also for deaths due to
cardiovascular disease.
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Introduction

Crystalline silica is one of the most ubiquitous minerals on

earth, with widespread exposure in working and living environ-

ments. Multiple serious diseases and increased mortality have been

associated with exposure to crystalline silica, making it a high-

priority public health concern. Occupational silica exposure and

its related health effects rank among the most important public

health concerns in developing and developed nations. Recent

reports indicate that more than 23 million workers are exposed to

crystalline silica in China [1] and over 10 million in India alone

[2]. In the United States and Europe, the respective figures are

1.7 million [3] and over 3 million [4]. Silica dust is generated at

industrial sources and transported to environments, and it is also

generated by such natural phenomena as volcanic explosions and

sandstorms.

Adverse health effects from exposure to silica dust are of

increasing public health concern worldwide, and have been

studied for many years [5]. Silicosis is a well known consequence

of silica dust exposure, and exposure has also been associated with

the risk of lung cancer, pulmonary tuberculosis, and other airway

diseases [6–9]. However, silica-related health effects are not

limited to those diseases [10]. The potential health effects of

particulate exposure on cardiovascular diseases (CVDs) have

drawn recent attention, but have yet to be well studied in workers

exposed to silica dust. Several studies suggest that ambient

particulates (mainly combustion-sourced) are associated with an

elevated risk of death [11–13] and CVD [14,15]. Silica is a non-

combustion-sourced particle, but its role in the pathogenesis of

CVD also needs to be addressed. In addition, adverse health

effects from low levels of silica exposure (below legally set exposure

limits) need further evaluation.

Therefore, we present results from a retro-prospective cohort

study of 74,040 Chinese workers followed from January 1, 1960, to

December 31, 2003. Cumulative silica dust exposure (CDE) was

calculated for each worker using a job–exposure matrix (JEM)

based on a large number of measurements broken down by job

title and collected since 1950. Our objectives were to quantify the

health effects of silica exposure on cause-specific mortality and to

determine population attributable risks (PARs) of mortality

associated with the exposure in Chinese workers.

Methods

Study Population and Health Data
We identified 74,040 workers from 20 metal mines and nine

pottery factories in central and southern China. All individuals

were unrelated ethnic Han Chinese. We selected workplaces with

systematically collected data on silica dust exposure and workers’

health condition. The study included ten tungsten mines in Jiangxi

and Hunan provinces, six iron and copper mines in Hubei

province, four tin mines in Guangxi province, and nine pottery

factories in Jiangxi, Hunan, and Henan provinces (Figure S1). The

cohort included all 74,040 workers who were registered in

company employment records—which included personnel files,

individual medical records, occupational records, and wage

rosters—for at least 1 y between January 1, 1960, and December

31, 1974. We collected retrospective data on vital status, work

history, and newly diagnosed pneumoconiosis (silicosis) until 1986,

with mortality follow-up until the end of 2003.

Trained investigators used a questionnaire to collect data on

demographic information, cigarette use, and drinking habits since

1986. In 2004, occupational history and other updates were

collected from survivors or those still employed. We defined

positive silica dust exposure status as employment in a silica-dust-

exposed job for 6 mo or more. Work histories for silica-dust-

exposed workers were taken from company occupational records.

Data included job titles, work start and end dates, and reasons for

leaving (e.g., retirement or workplace change).

All individuals were tracked for their vital status by local

hygienists (or occupational health doctors) from January 1, 1960,

through December 31, 2003. We classified cause of death evidence

by levels of confidence in the data: Level 1—medical record from

a hospital or a personal doctor at a local hospital (60.5%); Level

2—cause of death recorded in an employment register, accident

record, or death certificate (35.2%); and Level 3—oral reports

from relatives (4.3%). Results did not change materially after

excluding Level 3 deaths. We used the 10th International

Classification of Diseases (ICD-10) to code causes of death.

All workers exposed to silica dust received chest radiographs

every 2 to 4 y, even after cessation of dust exposure. National

diagnostic criteria for pneumoconiosis were standardized as stage

I, II, or III. These categories have been previously described [16].

The study was approved by the Tongji Medical College

Institutional Review Board and the US National Institute for

Occupational Safety and Health Institutional Review Board.

Occupational Exposure Data
We conducted a detailed quantitative occupational exposure

evaluation using data from historical industrial health records.

Industrial health record-keeping for occupational hazards in each

mine or factory started in the early 1950s, when the Chinese

government enforced systematic dust sampling regulations that

required monthly measurement of dust concentrations in work-

places. The dust monitoring scheme involved measuring total

airborne dust concentration by a gravimetric method for each

dust-exposed job title, and using a microscopic sizing method to

determine particle size distribution and crystalline silica content

(quartz by X-ray diffraction method) in bulk samples of settled dust

[17].

For the purpose of this study, more than 4,200,000 environ-

mental measurements of total dust concentrations from 29 mines

and factories from 1950 to 2003 were used to create a JEM. In this

matrix, the total dust concentrations associated with each job title

were averaged by year, then listed, along with specific facility and

job titles, for each calendar year [18]. For missing data for years or

jobs (less than 20%), total dust concentrations were estimated

using monitoring data for similar jobs or for the same job at

different times. In the matrix, there were 1,090 facility–job title

combinations for 54 calendar-year periods from 1950 to 2003.

We used the JEM of total dust concentrations to estimate silica

dust exposure for each worker. In this matrix, total silica dust

concentrations were listed along with specific facility and job titles

for each calendar year. We used all available total dust

concentrations for each job to create this JEM. The results

indicated good agreement for measured total dust concentrations

(r2 = 0.84) between Chinese and US methods [19]. To convert the

total dust JEM into a respirable silica JEM, each respirable silica

concentration was estimated by total dust concentration multiplied

by a conversion factor. The conversion factors from Chinese total

dust to US respirable silica concentrations (quartz by X-ray

diffraction method) were developed based on paired side-by-side

dust measurements. The conversion factors of respirable silica

concentration to total dust concentration were estimated to be

0.0143 for iron/copper mines, 0.0355 for pottery factories, 0.0429

for tin mines, and 0.0861 for tungsten mines [17]. These

Silica Exposure and Mortality Risk
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conversion factors were updated in a recent analysis with

additional data from the same side-by-side measurements

conducted from September 1, 2003, to June 30, 2009. The new

analysis confirmed that the mean crystalline silica percentage of

total dust measurements did not change substantially over time.

Complete work histories for each study individual were taken

from personal employment records in mine/factory files. Work

histories include job titles and calendar years for each worker’s full

duration of employment. They were used with the JEM to

estimate CDE for individual workers as follows:

CDE~
Xn

j~1

(Cj|Tj)

where CDE is cumulative respirable silica dust exposure in

milligrams/cubic millimeter–years; n is the total number of job

titles held by the individual during his or her work history; Cj is 8-h

time-weighted mean concentrations of dust in milligrams/cubic

millimeter for the jth job title within a facility and employment

period; and Tj is duration of employment in years in the jth job.

We calculated CDE from the starting date of dust-exposed work

until employees were either lost to follow-up, ended employment,

or died.

We used data from a standardized monitoring program in all

industrial facilities to track potential environmental hazards,

including radon, polycyclic aromatic hydrocarbons, asbestos, talc,

and metal elements. Findings indicated very low exposure to

asbestos, nickel, talc, and cadmium in the studied workplaces.

Statistical Analysis
We used Cox proportional hazards regressions to estimate the

hazard ratios (HRs) and 95% confidence intervals (CIs) for selected

causes of death by different levels of CDE compared with no

exposure. CDE was categorized into low, medium, and high levels

based on equally spaced percentiles from the exposure distribution

in the entire cohort. Further, tests of linear trend were conducted by

including the median value for each level of CDE as a continuous

variable in the models. We also estimated the HRs associated with a

1 mg/m3-y increase in CDE by entering CDE into the models as a

continuous variable. In addition, nonlinear association was assessed

by adding a quadratic term (CDE and square of CDE, continuous)

to the model. Other covariates included in the model were gender,

year of hire (five categories, 1955 or earlier, 1956–1960, 1961–1965,

1966–1970, and 1970 or later), age at hire (continuous), and type of

mine/factory (four categories, tungsten, iron/copper, tin, and

pottery) as potential confounders. For mortality with possible

nonlinear associations, we further examined the detailed exposure–

response relationship of mortality risk across the range of CDEs

using a penalized spline regression model [20]. The sample size (2.3

million person-years) was too large for fitting a Cox proportional

hazards model with penalized splines; therefore, we created a nested

case–control sample for each specific cause of death by randomly

selecting 20 controls (matched for type of mine/factory and gender)

for each case who were alive at the time of the case’s death. The

penalized spline regression model was fitted with and without

adjustment for smoking (never smoked/ever smoked) to detect the

potential confounding effect of smoking. The sensitivity of the

model was tested by selecting different degrees of freedom and

excluding influential outliers.

The PAR was calculated with the following equation:

PAR~ P| RR{1ð Þ½ �7 P| RR{1ð Þz1½ �

where P is the prevalence of silica-exposed workers among all

industrial workers (16.3%) [1], and RR is the multivariate-adjusted

relative risk. The HRs from Cox proportional hazards models of

this cohort were used as estimates of RR.

Standardized mortality ratios (SMRs) were defined as the ratio

of observed to expected deaths [21]. National death rate data were

not available before 1970; therefore, individuals who died before

that time were not included in the SMR analysis. In total, SMRs

were calculated using 17,783 deaths. We calculated the expected

number of cause-specific deaths by multiplying the gender-, age-,

period-, and cause-specific person-years at risk (5-y intervals for

age and period) by the corresponding mortality rates in the

Chinese national population [22]. We obtained the 95% CIs for

SMRs by setting limits for the numerator and the observed

number of cases, and by assuming the denominator to be a

constant [21]. A p-value#0.05 was considered statistically

significant. The penalized spline regression analyses were

conducted using S-Plus version 8.0 (Insightful Corporation); all

other analyses were performed using SAS version 9.1 (SAS

Institute).

Results

The cohort included 74,040 individuals (63,529 males, 85.8%).

The average age was 27.2 y for individuals entering into the

cohort. And 16.2% were still working at the end of follow-up

(Table S1). The baseline characteristics of the cohort and follow-

up information are summarized in Table 1. A total of 49,309

(66.6%) of workers were exposed to silica dust. The largest number

of exposed workers (78.9%) worked in tungsten mines; the lowest

(48.5%), in iron and copper mines. During a median follow-up

period of 33.1 y (2,306,428 person-years), 19,516 deaths were

reported. Mortality was 846.2 per 100,000 person-years, with

992.6 per 100,000 person-years among dust-exposed workers and

550.7 per 100,000 person-years among non-dust-exposed workers.

Respirable silica dust levels in the four types of mines/factories

from 1960 to the end of 2003 are shown in Figure 1. The mean

respirable silica dust concentrations ranged from approximately

0.08 mg/m3 in iron mines to 0.52 mg/m3 in tungsten mines.

Starting in 1960, safer working practices and increased protection

measures led to decreased dust concentration and exposure. Mean

dust concentration in mines fell to less than 0.1 mg/m3 after 1970.

Mean dust concentrations in pottery factories were approximately

0.15 to 0.30 mg/m3 from the 1960s to the 1980s, and 0.12 to

0.15 mg/m3 after 1990.

Table 2 shows the distribution of individuals according to

different silica dust exposure levels, the year of birth, age at first

hire, CDE, and prevalence of pneumoconiosis. Males accounted

for 92.6% of those exposed to silica dust. The prevalence of

smokers (current and former) among the entire cohort and the

dust-exposed workers was 61.7% (98.7% for males) and 69.4%

(99.1% for males), respectively.

The numbers of deaths and the HRs for the main mortality

causes are shown in Table 3. CVD was the leading cause of death in

this cohort. Non-malignant respiratory diseases, malignant neo-

plasms, infectious diseases, and cerebrovascular disease were the

second to fifth causes of death for all cohort members. Mortality

from all causes was significantly higher in the group exposed to silica

dust compared with the non-exposed group (HR 1.38, 95% CI

1.33–1.43). For both categorical and continuous CDE variables, a

positive exposure–response relationship was observed for mortality

from all causes, from CVDs (including pulmonary heart disease),

from respiratory diseases (including pneumoconiosis), and from

infectious diseases (including respiratory tuberculosis). Each 1 mg/

Silica Exposure and Mortality Risk
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m3-y increase in CDE was associated with a 2.6%, 6.9%, and 3.1%

increase in the mortality risk for all causes, respiratory diseases, and

CVDs, respectively. For lung cancer, a positive exposure–response

association was observed for categorical CDE (HRs 1.45, 1.53, and

1.46 for low, medium, and high levels of CDE, respectively; p-value

for linear trend = 0.01); however, the HR for each 1 mg/m3-y

increase in CDE did not reach statistical significance (HR 1.005,

95% CI 0.987–1.023). The HRs for the association between total

and cause-specific mortality and the continuous CDE variable,

estimated using penalized spline regressions, are shown in Figure 2.

The risk of mortality from all causes increased monotonically

with increased CDE; risk of mortality from lung cancer, CVDs

(including pulmonary heart disease), and diseases of the

respiratory system (including pneumoconiosis) increased mono-

tonically when CDE was lower than about 10 mg/m3-y, but

became attenuated or even decreased (lung cancer) with higher

CDE. Adjustment for smoking slightly attenuated the estimates

for lung cancer and pneumoconiosis, but did not change the

results for other causes of death (Figure 2).

For a subset of workers with exposures under the respirable silica

concentration limit of 0.1 mg/m3 during their lifetime work

histories (mean and median CDE were 0.64 and 0.56 mg/m3-y,

respectively), each 0.1 mg/m3-y increase in CDE was associated

with a 2.1% (95% CI 1.4%–2.7%), 7.2% (5.2%–9.4%), and 2.4%

(0.7%–4.1%) increase in the mortality risk for all diseases,

respiratory diseases, and CVDs, respectively. After adjusting for

gender, year of hire, age at hire, type of mine/factory, and smoking,

the respective mortality risk were 0.8% (0.1%–1.5%), 6.3% (4.1%–

8.6%), and 2.2% (0.4%–4.1%) for all diseases, respiratory diseases,

and CVDs, respectively; for CVDs, the mortality risk of pulmonary

heart disease and ischemic heart disease increased by 6.0% (2.8%-

9.3%) and 4.2% (1.4%-7.2%), respectively.

After adjustment for potential confounders including smoking,

we estimated the PAR for silica dust exposure. Silica exposure

accounted for 15.2% of mortality from all deaths, 63.9% of

mortality from respiratory diseases, and 21.0% of mortality from

CVDs among the silica-exposed workers. According to an annual

health statistical report in China, the prevalence of silica-dust-

exposed workers was 16.3% among Chinese industrial workers in

2008 [1]. We estimate that 4.2% of the deaths (231,104) among

industrial workers in 2008 were attributable to silica dust exposure

based on the relative risks derived from this study.

Table 4 shows the SMRs for deaths from all causes and from

the main exposure-related diseases among dust-exposed workers

from January 1, 1970, to December 31, 2003. Compared with

national mortality in China, workers exposed to silica had

significantly elevated mortality from all causes of death (SMR

1.21), and elevated mortality for nasopharynx cancer (1.76), liver

cancer (1.16), infectious diseases (6.83), respiratory tuberculosis

(4.88), CVDs (1.91), and respiratory diseases (2.32). Among CVDs,

mortality for pulmonary heart diseases (4.03) and hypertensive

heart disease (2.45) were significantly elevated. For those who

worked at annual respirable silica dust concentrations at or below

0.1 mg/m3, mortality was significantly elevated for all causes

(SMR 1.06, 95% CI 1.01–1.11), pneumoconiosis (11.01, 7.67–

14.95), infectious diseases (1.88, 1.55–2.25), and malignant

neoplasms (1.10, 1.01–1.19), including nasopharynx cancer

(1.63, 1.01–2.40) and liver cancer (1.55, 1.33–1.78). Elevated

mortality from CVDs (1.09, 0.97–1.23) included ischemic heart

disease (1.65, 1.35–1.99) and hypertensive heart disease (2.53,

1.76–3.44).

The SMR from all causes was 0.83 (95% CI 0.80–0.85) among

non-dust-exposed workers. In this group, we observed elevated

SMRs for nasopharynx cancer (SMR 1.91, 95% CI 1.41–2.48),

liver cancer (1.17, 1.04–1.31), hypertensive heart disease (2.24,

1.84–2.68), pulmonary heart disease (1.17, 1.04–1.32), and

infectious diseases (1.98, 1.76–2.22), including respiratory tuber-

culosis (1.24, 1.08–1.41).

Discussion

Our findings provide strong evidence that long-term silica dust

exposure is associated with substantially increased mortality

among Chinese workers. We not only confirmed significant

relationships between increased silica dust exposure and height-

ened risk of death from respiratory diseases and lung cancer, but

also found a significant exposure–response relationship between

silica dust exposure and mortality from CVD, even at lower

exposure levels.

These findings have important public health implications. Silica

dust exposure is very common and is associated with increased

morbidity and mortality from pneumoconiosis. Our study showed

that the cumulative incidence of pneumoconiosis was 20.3% and

the death rate from this disease in those with the disease was very

Table 1. Description of the cohort (n = 74,040) based on different types of mine/factory, 1960–2003.

Type of Mine/Factory End of Follow-Up

Number of
Mines/
Factories

Median Period
of Follow-Up
(Years)

Number of
Workers

Number of
Workers Exposed
to Silica Dust

Number of
Pneumoconiosis
Cases

Number
of Deaths

Tungsten mines December 31, 1994 4 29.9 13,857 10,787 3,650 3,678

Tungsten mines December 31, 2003 6 34.7 19,061 15,170 4,238 7,138

Iron and copper mines December 31, 1989 4 20.2 7,368 4,355 356 438

Iron and copper mines December 31, 2003 2 35.5 11,214 4,666 406 2,293

Tin mines December 31, 1994 1 28.9 2,717 1,838 621 548

Tin mines December 31, 2003 3 35.5 5,526 3,109 466 1,391

Pottery factories December 31, 1989 1 30.0 826 496 39 178

Pottery factories December 31, 1994 4 31.7 6,098 4,050 477 1,404

Pottery factories December 31, 2003 4 38.0 7,373 4,838 742 2,448

Entire cohort 29 33.1 74,040 49,309 10,995 19,516

doi:10.1371/journal.pmed.1001206.t001

Silica Exposure and Mortality Risk
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high (61.7%). A report from the Chinese Ministry of Health

indicated that the death rate from all reported pneumoconiosis

was 23.1% between 1949 and 2008 [1]. Data from this study and

prior ones provide strong evidence to support an association

between silica dust exposure and increased mortality from

cardiopulmonary diseases. We estimated that 4.2% of deaths

Figure 1. Annual silica dust concentrations, average of all job titles in different mines/factories in China, 1950–2003.
doi:10.1371/journal.pmed.1001206.g001
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Table 2. Characteristics of the cohort (n = 74,040) based on CDE, 1960–2003.

Characteristic
Entire Cohort
(n = 74,040) Levels of CDEa

Unexposed
(n = 24,731)

Low
(n = 15,438)

Medium
(n = 16,878) High (n = 16,993)

Number of workers in mines/factories (percent)

Tungsten mines 32,918 (44.5) 6,961 (28.1) 7,255 (47.0) 9,626 (57.0) 9,076 (53.4)

Iron and copper mines 18,582 (25.1) 9,561 (38.7) 5,272 (34.1) 2,041 (12.1) 1,708 (10.1)

Tin mines 8,243 (11.1) 3,296 (13.3) 2,082 (13.5) 2,478 (14.7) 387 (2.3)

Pottery factories 14,297 (19.3) 4,913 (19.9) 829 (5.4) 2,733 (16.2) 5,822 (34.3)

Number of male sex (percent) 63,529 (85.8) 17,879 (72.3) 14,432 (93.5) 15,659 (92.8) 15,559 (91.6)

Year of birth 1937.1611.1 1939.4610.9 1941.669.6 1935.7610.2 1930.9610.5

Year of birth—number (percent)

1900–1919 5,719 (7.7) 1,470 (5.9) 453 (2.9) 1,175 (7.0) 2,621 (15.4)

1920–1929 12,389 (16.7) 2,849 (11.5) 1,459 (9.5) 3,216 (19.1) 4,865 (28.6)

1930–1939 25,441 (34.4) 7,758 (31.4) 4,019 (26.0) 7,108 (42.1) 6,556 (38.6)

1940–1949 20,627 (27.9) 8,064 (32.6) 6,413 (41.5) 3,832 (22.7) 2,318 (13.6)

1950–1963 9,864 (13.3) 4,590 (18.6) 3,094 (20.0) 1,547 (9.2) 633 (3.7)

Year of hire 1961.867.4 1963.167.2 1965.366.6 1960.566.9 1958.066.9

Year of hire—number (percent)

1915–1954 16,181 (21.9) 3,884 (15.7) 969 (6.3) 4,406 (26.1) 6,922 (40.7)

1955–1959 21,383 (28.9) 6,702 (27.1) 3,852 (25.0) 5,683 (33.7) 5,146 (30.3)

1960–1964 8,611 (11.6) 2,933 (11.9) 1,917 (12.4) 2,010 (11.9) 1,751 (10.3)

1965–1969 11,219 (15.2) 4,228 (17.1) 3,197 (20.7) 1,975 (11.7) 1,819 (10.7)

1970–1974 16,646 (22.5) 6,984 (28.2) 5,503 (35.6) 2,804 (16.6) 1,355 (8.0)

Age at hire (years) 24.867.6 23.967.4 23.866.2 24.967.3 27.268.7

Smoking statusb

Current smokers—number (percent) 21,438 (48.0) 5,878 (37.9) 5,998 (54.7) 5,397 (57.2) 4,165 (47.5)

Current smokers—pack-years 33.9617.1 33.1617.6 33.3616.7 35.9617.5 33.2616.0

Former smokers—number (percent) 6,141 (13.7) 1,458 (9.4) 1,387 (12.6) 1,278 (13.5) 2,018 (23.0)

Former smokers—pack-years 28.5614.0 30.9615.6 26.8613.7 28.5613.2 27.9613.3

Never smokers—number (percent) 17,130 (38.3) 8,188 (52.7) 3,587 (32.7) 2,764 (29.3) 2,591 (29.5)

Duration of silica dust exposure (years)c 18.7610.4 0.060.0 14.669.6 18.169.4 23.4610.3

CDE (mg/m3-y)c 3.964.2 0.060.0 0.660.3 2.560.9 8.564.1

Mean silica dust concentration (mg/m3)c 0.260.2 0.060.0 0.160.1 0.260.2 0.460.2

Number of pneumoconiosis cases (percent)c 10,995 (22.3) 0 (0.0) 678 (4.4) 3,550 (21.0) 6,767 (39.8)

Year of diagnosis of pneumoconiosis—number
(percent)d

1955–1959 1,210 (11.0) NA 19 (2.8) 331 (9.3) 860 (12.7)

1960–1969 4,344 (39.5) NA 90 (13.3) 1,317 (37.1) 2,937 (43.4)

1970–1979 2,663 (24.2) NA 198 (29.2) 873 (24.6) 1,592 (23.5)

1980–2003 2,778 (25.3) NA 371 (54.7) 1,029 (29.0) 1,378 (20.4)

Age at first diagnosis of pneumoconiosis (years)d 44.2610.4 NA 47.869.8 43.6610.9 44.3610.1

Latency of pneumoconiosis (years)d 21.3610.2 NA 21.168.7 18.669.7 22.7610.3

Values expressed as mean 6 standard deviation, unless otherwise indicated. Percentages may not total 100 due to rounding.
aLevels are tertiles of CDE of all the workers with exposure to silica dust: low, 0.01–1.23 mg/m3-y; medium, 1.24–4.46 mg/m3-y; and high, .4.46 mg/m3-y.
bData were available for the sub-cohorts that had been followed through the end of 2003. Smokers were defined as those who had smoked regularly for over 1 y.
Smokers who stopped smoking within 1 y before the end of follow-up were defined as current smokers.
cThese characteristics were calculated among workers exposed to silica dust. Mean silica dust concentration was calculated as CDE divided by duration of silica dust
exposure.
dThese characteristics were calculated among workers diagnosed with pneumoconiosis. Latency of pneumoconiosis was defined as the period between the year of first
exposure to dust and the year of first diagnosis of pneumoconiosis.
NA, not applicable.
doi:10.1371/journal.pmed.1001206.t002
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(231,104) among industrial workers were attributable to dust

exposure in China in 2008. It is well known that silica dust

exposure is a preventable health hazard. These data underscore an

urgent need to tighten regulations on dust control at worksites.

Dust exposure has been linked to risk of death in previous

environmental and occupational health studies. The World Health

Organization has estimated that 1.4% of all deaths result from

exposure to various dust particles [23]. It is interesting that two

cohort studies conducted in Germany among 17,644 porcelain

production workers [24] and 19,943 construction workers [25]

showed no significant increase in SMR from any cause. However,

the mortality rates in both studies were very low, and the follow-up

was relatively short. In addition, neither study determined levels of

dust exposure. Our results are consistent with those from a study

conducted among 3,010 tin miners in the UK (SMR 1.27) [26],

although excess mortality in the UK cohort resulted from

malignant neoplasms and accidents, not from respiratory diseases

and CVDs. In our study, after 44 y of follow-up, we confirmed the

adverse health effects of silica dust through exposure–response

analysis of personal silica exposure and total mortality among

74,040 workers. After adjustment for potential confounders

including cigarette smoking, silica dust exposure accounted for

approximately 15.2% of all deaths in our cohort.

Our data suggest that silica dust substantially raises the risk of

death from respiratory diseases as well as CVDs. Traditionally,

non-malignant respiratory diseases were thought to be the main

causes of death among dust-exposed workers [27–29]. However,

this study showed that the proportion of deaths from respiratory

diseases to all deaths decreased from 36.6% to 23.1%, while the

proportion of deaths from diseases of the circulatory system

increased from 29.4% to 37.9% from 1974 to 2003. Increased

mortality from CVD was mainly due to higher rates of pulmonary

heart disease from 1970 to 1974. Pulmonary heart disease was

caused directly by high dust concentrations leading to a high

prevalence of pneumoconiosis. From the second half of the 1960s

onwards, there was a gradual decline in silica dust concentrations

because of safer working practices and increased protective

measures. From 1970 to 2003, the subtype of CVD changed:

the proportion of deaths from pulmonary heart diseases decreased

from 90.7% to 37.8%, while the proportion of deaths from

hypertensive, ischemic, and chronic rheumatic heart disease

increased from 5.4% to 41.3% during the same period. The

SMRs of hypertensive, ischemic, and chronic rheumatic heart

diseases gradually increased with ongoing follow-up of the cohort.

Among workers exposed to respirable silica concentrations lower

than 0.1 mg/m3 in their lifetime work histories, we observed

elevated mortality from hypertensive heart disease, and ischemic

heart disease. Among these workers, each 0.1 mg/m3-y increase in

CDE was associated with a 2.2%, 6.0%, and 4.2% increase in the

death rate from CVDs, pulmonary heart disease, and ischemic

Table 3. Estimated HRs for total and cause-specific mortality associated with CDE in the cohort (n = 74,040), 1960–2003.

Cause of Death (ICD-10 Codes)
Number of
Events

HR Increase per 1 mg/
m3-y Increase in CDE HRs for Levels of CDE versus Unexposeda

Low Medium High
p-Value for
Trendb

Malignant neoplasms (C00–C97) 3,621 0.982 (0.972–0.991) 1.20 (1.09–1.32) 1.13 (1.03–1.24) 0.97 (0.88–1.07) 0.06

Malignant neoplasm of nasopharynx (C11) 176 0.942 (0.895–0.991) 0.96 (0.63–1.48) 0.83 (0.55–1.24) 0.58 (0.36–0.93) 0.02

Malignant neoplasm of liver and
intrahepatic bile ducts (C22)

1,001 0.972 (0.953–0.991) 1.15 (0.96–1.37) 1.02 (0.86–1.22) 0.87 (0.72–1.06) 0.05

Lung cancer (C33–C34) 949 1.005 (0.987–1.023) 1.45 (1.19–1.75) 1.53 (1.27–1.84) 1.46 (1.19–1.78) 0.01

Certain infectious and parasitic
diseases (A00–B99, J65)

3,401 1.062 (1.055–1.068) 1.31 (1.09–1.56) 2.70 (2.36–3.08) 3.83 (3.38–4.35) ,0.001

Respiratory tuberculosis (A15–A16, J65) 3,100 1.065 (1.059–1.071) 1.30 (1.06–1.60) 3.14 (2.71–3.64) 4.53 (3.94–5.20) ,0.001

CVDs (I00–I52, I70–I99) 4,425 1.031 (1.025–1.036) 1.08 (0.96–1.21) 1.42 (1.29–1.57) 1.86 (1.71–2.03) ,0.001

Pulmonary heart diseases (I26–I27) 2,729 1.050 (1.044–1.056) 1.08 (0.88–1.33) 2.32 (2.01–2.67) 3.44 (3.01–3.92) ,0.001

Hypertensive heart disease (I11) 391 0.977 (0.955–0.999) 0.87 (0.62–1.24) 0.83 (0.63–1.11) 0.86 (0.66–1.12) 0.44

Ischemic heart disease (I20–I25) 624 0.971 (0.950–0.994) 1.25 (0.99–1.56) 1.03 (0.82–1.29) 0.80 (0.63–1.02) 0.01

Chronic rheumatic heart disease (I05–I09) 123 0.979 (0.934–1.026) 1.29 (0.74–2.25) 1.16 (0.70–1.92) 0.94 (0.56–1.58) 0.54

Cerebrovascular diseases (I60–I69) 2,662 0.997 (0.988–1.006) 1.01 (0.89–1.13) 0.89 (0.79–0.99) 0.90 (0.81–1.00) 0.05

Diseases of the respiratory
system (J00–J99)

4,309 1.069 (1.064–1.074) 1.89 (1.60–2.24) 4.28 (3.74–4.91) 6.68 (5.85–7.61) ,0.001

Pneumoconiosis (J60–J65)d 2,857 1.060 (1.053–1.067) 1.0 (referent) 4.36 (3.49–5.44) 7.75 (6.21–9.67) ,0.001

Diseases of the digestive
system (K00–K93)

879 0.991 (0.973–1.008) 1.15 (0.94–1.41) 0.88 (0.73–1.08) 0.94 (0.78–1.15) 0.36

External causes of morbidity
and mortality (V01–Y98)

1,180 0.983 (0.964–1.002) 1.47 (1.25–1.72) 1.17 (0.98–1.39) 1.06 (0.88–1.27) 0.34

All diseases (A00–Y98) 19,516 1.026 (1.023–1.029) 1.17 (1.12–1.23) 1.30 (1.25–1.36) 1.58 (1.51–1.64) ,0.001

All Cox proportional hazards models included age as the time variable. Categorical analyses were based on levels of CDE, including unexposed, low, medium, and high;
the unexposed level was used as the reference category (low level for pneumoconiosis). In all models, the HRs associated with CDE were adjusted for gender, year of
hire (five categories: 1955 or earlier, 1956–1960, 1961–1965, 1966–1970, and 1970 or later), age at hire (continuous), and type of mine/factory (four categories: tungsten,
iron/copper, tin, and pottery).
aLevels were tertiles of CDE of all the workers with exposure to silica dust: low, 0.01–1.23 mg/m3-y; medium, 1.24–4.46 mg/m3-y; and high, .4.46 mg/m3-y.
bAssessed by including the median values of exposure within each category as a continuous variable in the model, including the reference category.
doi:10.1371/journal.pmed.1001206.t003
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heart disease after adjusting for smoking and other confounder

factors, respectively. These results indicate that low dust exposure

is likely to contribute to CVDs without the presence of respiratory

disease. Increased cardiovascular mortality in this study may be an

independent and novel complication of silica exposure.

Several prior reports on the relationship between ambient

particulate matter and cardiovascular mortality have focused on

combustion-sourced particulate matter in cities [30,31]. However,

silica particles are not combustion-sourced. Rather, they are made

up of a continuous framework of silicon–oxygen tetrahedral

crystals, an essential constituent of granite and other felsitic

igneous rocks. Increased risk of ischemic heart diseases from silica

dust exposure was observed in South African gold miners and in

the Swedish national census [32,33], although these studies did not

examine a dose–response relationship. Our study showed that

non-combustion-sourced particles of crystalline silica were associ-

ated with elevated cardiovascular mortality, and this finding needs

to be confirmed in further studies. The mechanisms by which non-

combustion-sourced silica particulates increase the risk of CVD

are largely unknown. Possibilities may involve the direct effects of

fine particulates that cross the pulmonary epithelium into the

cardiovascular system and lung receptors, or an indirect effect

mediated through pulmonary oxidative stress and inflammatory

responses [34–36].

In addition, we found elevated mortality from all causes,

pneumoconiosis, infectious diseases, malignant neoplasms includ-

ing nasopharynx cancer and liver cancer, and CVDs including

ischemic heart disease and hypertensive heart disease among

individuals who worked in an environment with respirable silica

dust concentrations equal to or lower than 0.1 mg/m3. The 0.1-

mg/m3 level is the exposure limit for respirable silica in the

workplace specified by the US Occupational Safety and Health

Figure 2. Estimated HRs for total and cause-specific mortality associated with a continuous CDE variable in nested case–control
samples from workers with detailed data on historical silica exposure and smoking, 1960–2003. HRs and 95% CIs were derived from
penalized spline regression models to examine the nonlinear relation of CDE to mortality. The vertical solid line in each panel represents the 95th
percentile of CDE. Dashed lines represent the point estimate of the HR adjusted for duration of follow-up (time-dependent, continuous) and calendar
time (time-dependent, continuous); solid lines represent HR further adjusted for smoking (never smoked/ever smoked), with dotted lines indicating
the 95% CI; the rug plots along the horizontal axes give the distribution of CDE values. For simplicity of presentation, the reference value of CDE was
set to 0 mg/m3-y (0.01 mg/m3-y for pneumoconiosis).
doi:10.1371/journal.pmed.1001206.g002
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Administration. In China, the limit for respirable silica (0.07–

0.35 mg/m3, depending on the percentage of silica dust) is similar

to the US standard. However, even keeping silica exposure lower

than 0.1 mg/m3 may not fully protect workers.

The association of silica dust exposure and lung cancer risk has

been controversial for decades. In the present study, silica dust

exposure was associated with lung cancer; risk ratios based on

exposure levels ranged from 1.45 to 1.53. The penalized spline

curve suggested a positive exposure–response association between

silica exposure and lung cancer risk, although the HR decreased at

higher levels of CDE. Possible explanations for the decrease in

lung cancer risk at higher CDE include (1) a depletion of the

number of susceptible workers in the cohort at high exposure levels

and (2) bias introduced by the healthy worker survivor effect. This

phenomenon was also observed in studies of other occupational

populations [37]. Although adjustment for smoking did not change

the overall shape of the exposure–response curve, it decreased the

lung cancer mortality risk across the range of CDE levels,

indicating a confounder effect of smoking in the association of

silica exposure and lung cancer risk.

The strengths of this study include a large sample size, a long

duration of follow-up, and a low rate of loss to follow-up (4.6%).

We collected detailed information on silica dust exposure and

cause-specific mortality; the diversity of mine types provided a

wide range of exposures.

There were several limitations to this study. First, we did not

collect data on dietary patterns and leisure time physical activity,

and, therefore, we were unable to evaluate the confounding

influence of these factors, especially on CVDs. However, diet and

physical activity patterns were likely to be relatively homogenous

in this cohort. Second, long-term exposure to silica dust was

estimated carefully, but measurement errors were inevitable. Silica

dust concentrations before 1950 were estimated using the

concentrations in 1950, which may have led to underestimation

of exposure for those who worked before 1950 (6,164 workers).

Third, although the majority of deaths were ascertained by

reviewing medical or accident records or death certificates, 4.3%

of deaths were reported orally by relatives, yielding cause of death

data that might not be reliable. However, results did not change

after excluding these deaths. Finally, silica dust levels vary across

different industries and companies, and thus the use of HRs

estimated from this cohort may lead to inaccurate estimation of

the PAR due to silica dust exposure for the entire population of

Chinese industrial workers.

In summary, in this large cohort study, we found a significant

exposure–response relationship between silica dust exposure and

mortality from all causes, pneumoconiosis, and respiratory disease.

Importantly, we also demonstrated a significant exposure–

response relationship between silica dust exposure and CVDs.

Findings from this study have important public health implications

for improving occupational safety among those exposed to silica

dust in China and around the world.
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Editors’ Summary

Background. Walk along most sandy beaches and you will
be walking on millions of grains of crystalline silica, one of
the commonest minerals on earth and a major ingredient in
glass and in ceramic glazes. Silica is also used in the
manufacture of building materials, in foundry castings, and
for sandblasting, and respirable (breathable) crystalline silica
particles are produced during quarrying and mining.
Unfortunately, silica dust is not innocuous. Several serious
diseases are associated with exposure to this dust, including
silicosis (a chronic lung disease characterized by scarring and
destruction of lung tissue), lung cancer, and pulmonary
tuberculosis (a serious lung infection). Moreover, exposure to
silica dust increases the risk of death (mortality). Worryingly,
recent reports indicate that in the US and Europe, about 1.7
and 3.0 million people, respectively, are occupationally
exposed to silica dust, figures that are dwarfed by the
more than 23 million workers who are exposed in China.
Occupational silica exposure, therefore, represents an
important global public health concern.

Why Was This Study Done? Although the lung-related
adverse health effects of exposure to silica dust have been
extensively studied, silica-related health effects may not be
limited to these diseases. For example, could silica dust
particles increase the risk of cardiovascular disease (diseases
that affect the heart and circulation)? Other environmental
particulates, such as the products of internal combustion
engines, are associated with an increased risk of
cardiovascular disease, but no one knows if the same is
true for silica dust particles. Moreover, although it is clear
that high levels of exposure to silica dust are dangerous, little
is known about the adverse health effects of lower exposure
levels. In this cohort study, the researchers examined the
effect of long-term exposure to silica dust on the risk of all
cause and cause-specific mortality in a large group (cohort)
of Chinese workers.

What Did the Researchers Do and Find? The researchers
estimated the cumulative silica dust exposure for 74,040
workers at 29 metal mines and pottery factories from 1960 to
2003 from individual work histories and more than four
million measurements of workplace dust concentrations, and
collected health and mortality data for all the workers. Death
from all causes was higher among workers exposed to silica
dust than among non-exposed workers (993 versus 551
deaths per 100,000 person-years), and there was a positive
exposure–response relationship between silica dust
exposure and death from all causes, respiratory diseases,
respiratory tuberculosis, and cardiovascular disease. For
example, the hazard ratio for all cause death was 1.026 for
every increase in cumulative silica dust exposure of 1 mg/
m3-year; a hazard ratio is the incidence of an event in an
exposed group divided by its incidence in an unexposed
group. Notably, there was significantly increased mortality
from all causes, ischemic heart disease, and silicosis among
workers exposed to respirable silica concentrations at or
below 0.1 mg/m3, the workplace exposure limit for silica
dust set by the US Occupational Safety and Health

Administration. For example, the standardized mortality
ratio (SMR) for silicosis among people exposed to low
levels of silica dust was 11.01; an SMR is the ratio of observed
deaths in a cohort to expected deaths calculated from
recorded deaths in the general population. Finally, the
researchers used their data to estimate that, in 2008, 4.2% of
deaths among industrial workers in China (231,104 deaths)
were attributable to silica dust exposure.

What Do These Findings Mean? These findings indicate
that long-term silica dust exposure is associated with
substantially increased mortality among Chinese workers.
They confirm that there is an exposure–response relationship
between silica dust exposure and a heightened risk of death
from respiratory diseases and lung cancer. That is, the risk of
death from these diseases increases as exposure to silica dust
increases. In addition, they show a significant relationship
between silica dust exposure and death from cardiovascular
diseases. Importantly, these findings suggest that even levels
of silica dust that are considered safe increase the risk of
death. The accuracy of these findings may be affected by the
accuracy of the silica dust exposure estimates and/or by
confounding (other factors shared by the people exposed to
silica such as diet may have affected their risk of death).
Nevertheless, these findings highlight the need to tighten
regulations on workplace dust control in China and
elsewhere.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001206.

N The American Lung Association provides information on
silicosis

N The US Centers for Disease Control and Prevention
provides information on silica in the workplace, including
links to relevant US National Institute for Occupational
Health and Safety publications, and information on silicosis
and other pneumoconioses

N The US Occupational Safety and Health Administration also
has detailed information on occupational exposure to
crystalline silica

N ‘‘What does silicosis mean to you’’ is a video provided by
the US Mine Safety and Health Administration that
includes personal experiences of silicosis; ‘‘Don’t let silica
dust you’’ is a video produced by the Association of
Occupational and Environmental Clinics that identifies
ways to reduce silica dust exposure in the workplace

N The MedlinePlus encyclopedia has a page on silicosis (in
English and Spanish)

N The International Labour Organization provides informa-
tion on health surveillance for those exposed to respirable
crystalline silica

N The World Health Organization has published a report
about the health effects of crystalline silica and quartz
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