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Long-term field comparison of 
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Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and 
mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure 
to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve 
monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. 
PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were 
deployed at each of two schools in Southampton, UK, for around one year and sensor performance 
was analysed. Comparison of sensor readings with a nearby background station showed moderate to 
good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies 
with different PM sources and background concentrations, and to a lesser extent relative humidity 
and temperature. This may have implications for their potential use in different locations. Data also 
indicates that these sensors can track short-lived events of pollution, especially in conjunction with 
wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost 
PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or 
feasible, and that they may be useful in studying spatially localised airborne PM concentrations.

Exposure to particulate matter (PM) air pollution is one of the leading causes of morbidity and mortality globally, 
being responsible for between 4.2 million to 8.9 million deaths per year worldwide1–4. PM exposure is associated 
with increased risk of lung cancer, asthma, ischaemic heart disease and strokes, while there is growing evidence 
for associations with chronic obstructive pulmonary disease (COPD), type 2 diabetes mellitus, and dementia5. 
PM is classi�ed by its mean aerodynamic diameter, into size bins, usually of <10 µm (PM10), <2.5 µm (PM2.5) and 
<0.1 µm PM0.1), the latter two referred to as �ne and ultra�ne PM, respectively. At a diameter <10 µm, PM can be 
inhaled into the respiratory tract. Fine PM is respirable and can reach bronchioles and potentially alveoli, while 
ultra�ne PM is able to cross the air-blood barrier and enter the circulation6,7.

PM originates from a variety of sources - a recent global review of source apportionment studies, estimated 
that 25% of PM2.5 pollution originates from tra�c, 22% from unspeci�ed sources of human origins, 20% from 
domestic fuel burning, 18% from natural dust and salt and 15% from industrial activities8. Within urban areas, 
relative and total contribution of these sources varies spatially and temporally, being further modulated by 
weather conditions9. While reference-level monitoring stations can capture temporal �uctuations in PM con-
centration, their cost, expertise for maintenance and size mean it is not feasible to use them to obtain the spatial 
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granularity required to understand spatially heterogeneous PM concentrations across urban environments 
strongly in�uenced by localised sources of pollution10–12.

�e most common reference techniques for monitoring PM are the Tapered Element Oscillating Microbalance 
(TEOM) and Beta Attenuation Monitor (BAM), both of which measure properties of PM directly related to PM 
mass. Commercially available low-cost PM sensors may provide an opportunity to complement the existing mon-
itoring network13. Unlike reference-grade instruments, these PM sensors generally utilise light-scattering and can 
detect particles with aerodynamic diameters 0.3–10 µm. Particles with diameter <0.3 µm do not scatter light suf-
�ciently, while PM >10 µm are not easy to draw into the sensor14. Since such sensors work by detecting particles 
by number, they are only able to infer PM mass.

�ese sensors are more suitable for deployment in large numbers in terms of their cost but questions remain 
regarding the quality of data produced15–17 and their precision and accuracy may not be su�cient for regulatory 
use18. Various models of low-cost PM sensors have been tested both under controlled conditions and in the �eld 
but the validity and variability of the data they produce is poorly understood19. �e available evidence suggests 
PM concentrations reported by low-cost PM sensors are of questionable accuracy20, with their reliability varying 
depending on PM concentration20–22 and meteorological factors23 such as relative humidity24,25. �is has led to 
suggestions that each low-cost PM sensor should be tested under conditions as close as possible to those at its 
potential deployment site19. Moreover, low-cost PM sensors are strongly in�uenced by aerosol composition19 
and it is thus necessary to study them in di�erent environments. �e low-cost PM sensors selected here (see 
Table 1) have been studied before21,23–33 (with the exception of the Honeywell HPMA115S0). Such studies gen-
erally analysed the data produced by the sensors over short period of time (a few days to some weeks)21,23–28,30,33. 
Sayahi et al.32 compared two Plantower PMS1003 and two Plantower PMS5003 in the �eld for 320 days, over two 
di�erent periods of time, comparing hourly and daily readings to a collocated TEOM; Badura et al.29 compared 
a total of 12 sensors from four di�erent manufacturers (three of each) including the Plantower PMS7003 and the 
Alphasense OPC-N2 against a TEOM for half a year with four di�erent time average period ranging from 1 min 
to 1 h; Feinberg et al.31 compared a total of 21 low-cost PM sensors from seven di�erent manufacturers (three of 
each) including the Alphasense OPC-N2 for seven months against a GRIMM EDM 180 dust monitor for 1 h, 12 h 
and 24 h data.

In this study, we have characterised the �eld-based performance of di�erent PM sensors at two school sites 
in Southampton, UK, over ≈a year. �e aim of this study was the long-term evaluation of: (1) the capacity of the 
sensors to produce hourly data, informing about trends in pollution, with correlation with reference instruments; 
(2) the need to host several low-cost sensors at the same place; (3) the usefulness of the sensors to produce spa-
tial information about air pollution; (4) the capacity of these sensors to detect short-lived event not detected by 
Automatic Urban and Rural Network (AURN) stations. We also provide some recommendations and best prac-
tices about the use of these sensors in the context of real-world monitoring situation. To our knowledge, this is 
the �rst study to collocate multiple sensors of di�erent models in a �eld setting con�gured as a network of sensors 
for an extended duration (≈a year long) and compare them against each other as well as against reference instru-
ments. �is allows us to determine the e�ects of external factors such as background pollution and meteorological 
conditions on sensor performance over a full year of environmental conditions, as well as studying their response 
to a range of short-lived events of pollution. It is also the �rst to conduct a long-term sensor evaluation of these 
sensors in a coastal port city.

Methods
Area of the study. In February 2018, we deployed a network of low-cost sensors to monitor PM concentra-
tions at two schools in Southampton, UK34,35. �e data analysed in this study covers the period from 13/03/18 
until 28/02/19, the full datasets used are available in the Additional Information. Southampton is located on the 
south coast of England with population ≈236900 and area ≈52 km2. �e city is surrounded on three sides by 
motorways (M3, M27, M271). In the south of the city is the busiest cruise port in Europe and one of the largest 
ports in the UK36, leading to Southampton water and the Solent, a strait of the English Channel. A passenger air-
port is located 5 km NNE of the city centre. Southampton has been identi�ed by the UK Government as one of a 
number of cities which need to improve air quality.

PM2.5 monitoring in Southampton. In Southampton, PM2.5 is monitored by a single AURN background 
station located in the city centre37 with a roadside AURN station (A33 station) monitoring PM10 and nitrogen 
oxides. �e next nearest AURN station monitoring PM2.5 is located in Portsmouth, 40 km to the East. �e back-
ground station is equipped with a FDMS 8500 and a TEOM 1400ab Ambient Particulate Monitor which report 
the PM2.5 concentration levels hourly along with the volatile and non-volatile PM2.5. �e inlet is situated on the 

Model
Size (mm) 
(H × W × D)

Price 
(USD)

Detection 
range (µm)

Concentration 
range (µg/m3)

Declared Accuracy 
(µg/m3)

Sampling 
interval (s)

Particle 
count

Alphasense OPC-N2 60 × 64 × 75 443 0.38 to 17 0.01 to 1,500 Not known 1 to 10 Yes

Plantower PMS5003 38 × 21 × 50 28 0.3 to 10 0 to 500 ±10 1 Yes

Plantower PMS7003 37 × 12 × 48 28 0.3 to 10 0 to 500 ±10 1 Yes

Honeywell HPMA115S0 36 × 43 × 24 33 Not known 0 to 1,000 ±15 <6 No

Table 1. Main characteristics of the fan assisted low-cost PM sensors used in the study. Adapted34,35. Prices 
accurate at the time of construction.
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roof of the AURN station at 4 m above ground level. �e FDMS TEOM reads concentration changes on a 12 min 
cycle. Hourly averages are available at http://www.airquality.co.uk.

Meteorological conditions and PM2.5 during the study. Supplementary Fig. S2 shows the daily mean 
of temperature, humidity and wind direction and speed over the study and PM2.5 concentrations recorded by the 
AURN station. �e meteorological data presented here was recorded by Southampton Weather station and the 
data is readily available from http://www.southamptonweather.co.uk/. �is weather station is located in the city 
centre (latitude: 50.899,7°; longitude: −1.395,5°). Mean air temperature was 8.8 °C (range −6.3 °C–32.1 °C) and 
mean relative humidity 76.4% (range 23–98%). Wind was predominantly from North-East or South-West with 
fewer occurrences of wind events coming from the South-East. Supplementary Fig. S1 presents the wind roses 
per month during the study.

Low-cost sensor selection. Four PM sensors were compared: Plantower PMS500338, Plantower 
PMS700339, Honeywell HPMA115S040 and Alphasense OPC-N241. Table 1 lists their main characteristics. �ese 
sensors are controlled remotely through a Raspberry Pi and they are su�ciently small to be deployed in an enclo-
sure small enough for mobile or wearable applications. �ey all report PM2.5 and PM10 concentrations in µg/m3. 
�e Plantower PMS5003, the Plantower PMS7003 and the Alphasense OPC-N2 also report PM1 and particle 
count for di�erent bin sizes - the Plantowers report size distribution for 0.3, 0.5, 1.0, 2.5, 5.0, 10 µm bins and the 
Alphasense OPC-N2 reports 16 bins ranging from 0.38 µm and17 µm. �e Plantower sensors claim a counting 
e�ciency of 98% for particles of diameter 0.5 µm and 50% for diameter 0.3 µm38. All use a sampling interval <10 
s. According to the manufacturers, their accuracy is between ±10–15 µg/m3.

Deployment. �e sensors were assembled into an Air Quality Monitor (AQM) as described previously34,35. 
A brief description of the AQMs is available in Supplementary Section 1. AQMs were deployed outdoor in two 
schools in distinct areas of Southampton from February 2018. �e two schools were selected as part of a pilot 
project by Southampton City Council and had the added interest of monitoring PM exposure of a vulnerable 
population5. School A is located 1.3 km SW of the background AURN station and School B is located 2.7 km 
E of the AURN station. For each school (Fig. 1), one AQM was sited <10 m away from the school driveway to 
record exposure near road PM (AQM A.1 and AQM B.1) while the two others were located further from the road 
(≈40 m for School A and ≈100 m for School B), in the playground (AQM A.3 and AQM B.2) with the third one 
placed sited to obtain a good coverage of the school away from the two other monitors. �e height of the AQM 
(<2 m below AURN inlet, see Table 2) was imposed by physical constraints (access to power supply, protection 
against vandalism, protection against ball games in the playground, safety). In each case, the AQM have been 
placed as close to the ground as possible.

Data analysis methods. Sensor performance was assessed by determination of the Pearson coe�cient (r), 
the Spearman coe�cient (ρ), the slope, the Root Mean Square Error (RMSE) and the Coe�cient of Variation 

Figure 1. Locations of the Air Quality Monitors (AQM) deployed at School A and School B. To be noted that 
the vignette and the main maps have di�erent scales. background map adapted from OpenStreetMap53. �e 
cartography in the OpenStreetMap map tiles is licensed under CC BY-SA (www.openstreetmap.org/copyright). 
�e licence terms can be found on the following link: http://creativecommons.org/licenses/by-sa/2.0/.
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(CV). �e slope is reported with a con�dence interval of two standard errors, computed using a linear model 
based on total least square which is a non-symmetric optimisation algorithm hence the slope is non-symmetrical. 
RMSE characterises error against other readings, and for two measurements is calculated as 

= −RMSE mean X Y(( ) )2 . We also calculated the CV each hour for each sensor de�ned by =
σ

µ
CV  where σ is 

the standard deviation of the sensor during the hour considered and µ is the average of the concentration of PM2.5 
of the three sensors of the same model on the same site, providing a measure of the variability between sensors 
and is a measure of the precision of individual sensors42. A CV of zero represents a perfect agreement between 
sensors and a CV of 0.1 is judged to be su�cient for monitoring PM concentrations43. Statistical tests were con-
ducted using a Shapiro-Wilk test of normality and a Friedman Analysis of Variance (ANOVA) followed by a 
Dunn post-hoc test. Data were analysed using Prism 8 (GraphPad So�ware, San Diego, USA) and R 3.5.1 using 
the packages ‘openair’, ‘lattice’, ‘dplyr’, ‘psych’ and ‘MASS’.

�e sensors sampled with di�erent time periods (between 1–6 s depending on the model) and it was necessary 
to take the median readings obtained over a period of time greater than the sampling period of each sensor. With 
short time windows, a high variability was observed for each sensors. Wider averaging windows reduce the noise 
of the measurements. Timeseries comparing di�erent averaging windows are presented in Supplementary Fig. S3 
for each sensors. To reduce the noise while preserving a high degree of temporal resolution the best averaging 
windows appears to be between 1–5 min. One of the goals of this study is to compare the behaviour of these sen-
sors while monitoring short-lived events such as �res in the city or local sources of pollution such as the 15 min 
during which parents come to drop-o� or pick-up their children from school. A 5 min averaging window would 
only provide 3 measurements for this period of time, compared to 15 measurements with 1 min averaging period. 
As such, it was decided that the averaging window should not exceed 1 min.

Data quality and outlier detection. Traditional methods to detect and remove outliers use standard devi-
ation or median absolute deviation44. We tested these methods with di�erent time windows (10 min, 15 min, 
30 min, 1 h, 8 h). However, we found negligible di�erences in correlation with the reference stations when apply-
ing these methods (∆r < 0.01) and given the currently limited understanding of the data produced by the sensors 
it was decided not to use these techniques.

To determine whether a transient signal was reliable, it was required that any peak needed to be registered by 
the reference station or by multiple sensors in the same AQM or in another AQM. For each sensor, the data was 
visualised week by week, and processed according to a non-automated algorithm presented in Fig. 2: (1) verify 
the logs of the sensors for error messages, (2) remove the values that are >10,000 µg/m3, (3) compare the weekly 
mean of the sensors, (4) compare the readings of the sensor to the reference station week by week to detect peaks 
that are present on the sensor but not on the AURN station, (5) compare the sensor with the other sensors week 
by week in the same Air Quality Monitor (AQM), (6) compare the sensor with the sensors of the same model 
week by week in the other AQM. �e six steps of the process de�ne six categories of data. Categories 1 and 2 are 
considered as time when the sensor was not operational. Category 3, combined with a visual inspection, ena-
bled detection of invalid readings from the Plantower PMS7003 in AQM A.3 between 19/09/18 and 03/10/18, 
at which point the sensor was reset and gave reliable measurements again. It also enabled detection of a fault in 
the Plantower PMS5003 of AQM B.1 from the 06/10/18 which could not be resolved. �e mean of the sensors 
during these periods are presented in Supplementary Table S1. All the other peaks identi�ed in the dataset fell 
into category 4, 5 or 6 and as such were not removed from the analysis. Supplementary Figs S4, S5 and S6 present 
an example for each category.

�e majority of the peaks observed in the dataset on multiple sensors are hypothesised to result from large 
�res in the city or spatially localised sources of pollution in the vicinity of the AQM such as barbecues or car 
emissions. Supplementary Fig. S7 describes peaks of pollution recorded by one of the AQM during a �re in the 
city and Supplementary Figs S13 and S14 present other peaks recorded at School B which are discussed further 
in the study.

Honeywell
HPMA115S0

Plantower
PMS5003

Plantower
PMS7003

Alphasense
OPCN2

Height 
above
ground (m) Location

AQM A

1 91% 94.5% 94.7% 92.6% 3.8 School entrance, East facing

2 — 96.6% 96.6% 95.9% 2.4
School employees car park (6 parking 
spaces), East facing

3 — 99.5% 52.1% 98.9% 3.5 School playground, East facing

AQM B

1 — 57.4% 99.7% 0% 2.1 School entrance, South facing

2 — 98.9% 98.9% 56.6% 3.4 School playground, North facing

3 — 95.7% 96.5% 95.7% 3.4
Opposite from the playground, South 
facing

Reference station 92.8% 4

Table 2. Individual sensors uptime per location and comparison with the reference background station. For 
AQM B.1 the Alphasense OPC-N2 reported a random signal. �e Honeywell HPMA115S0 was only operational 
for AQM A.1. �e table also presents some characteristics of the di�erent sites.

https://doi.org/10.1038/s41598-019-43716-3
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Results
Supplementary Figs S8 andS9 show the time series of PM2.5 concentration reported by the sensors at each location 
averaged by hour over the study period and compare them with the reference station. For both sites, the sensors 
follow similar trends to the reference station suggesting that there is similarity between PM2.5 concentrations at 
each site.

Sensor operating period. Sensor uptime was generally high but due to technical issues, not all of 
the sensors were operational during the whole study (Table 2). An error occured con�guring the Honeywell 
HPMA115S0 (a 5 V logic was used instead of a 3.3 V logic) which could only be �xed for AQM A.1 due to limited 
resources and access restrictions. �e Alphasense OPC-N2 performed correctly in four out of six AQM. For AQM 
B.2, the Alphasense OPC-N2 experienced intermittent communication issues falling into categories 1 and 2 of the 
data quality check process from 13/03/18 until 21/06/18 and from 13/09/18 until 19/11/18 (average 2,000 error 
messages/day). For AQM B.1 the Alphasense OPC-N2 had unresolvable communication problems. �e data pro-
duced by these sensors was discarded from this analysis. �e two Plantower models performed correctly in each 
AQM except for Plantower PMS7003 AQM A.3 which did not perform from February to March 2018 and for the 
period of time detailed in the ‘Data quality and outliers detection’ section. �e Honeywell HPMA115S0 stopped 
reporting correct data on 23/02/19 reporting a constant PM2.5 concentration of 1 µg/m3. �e AURN station was 
not operational from the 12/07/18 until 27/07/18 and from 08/08/18 until 13/08/18. �e background reference 
station had 92.8% uptime with downtime due to maintenance shut downs.

Performances of the sensors between the different air quality monitors. Figure 3 shows the cor-
relation between the reported PM2.5 concentrations for the di�erent sensor models, with the data merged across 
the six AQMs. �e Plantower PMS5003 and Plantower PMS7003 reported very high correlations (Pearson and 
Spearman), slope close to 1 and a RMSE of 2.22 µg/m3. �e Alphasense OPC-N2 shows a di�erent behaviour vs. 
the Plantower PMS5003 and Plantower PMS7003 with a high correlation for Pearson and a moderate correlation 
for Spearman, higher RMSE <12.1 µg/m3 and over-reporting by a factor of 2 compared to the Plantower models.

�e Alphasense OPC-N2 plots present three modes - one reporting higher values than the other three sensors, 
one reporting similar values and one reporting lower values, the latter having fewer datapoints. �is behaviour 
can also been observed for each AQM on Supplementary Fig. S10, apart for AQM B.2. Supplementary Fig. S11 
presents the ratio of the PM2.5 concentrations reported by the sensors with relative humidity divided into 20 quan-
tiles. �e Alphasense OPC-N2 reports higher values than the Plantower PMS5003 for relative humidity >83%, 
while reporting lower values at lower relative humidity. �is behaviour may therefore at least partly explain the 
three aforementioned modes.

�e comparison of the Plantower PMS5003 and the Honeywell HPMA115S0 with relative humidity does not 
reveal a clear e�ect of relative humidity on the values reported across the two sensors, although it should be noted 
they correlated more at higher relative humidity potentially explaining the two trends observed between the two 
sensors.

�e analysis of the CV between sensors of the same model within each site is presented in Table 3. For the 
Alphasense OPC-N2, the data is only available for School A as only one sensor of this model functioned correctly 
in School B. �e Alphasense OPC-N2 displayed a CV of 0.11–0.17 with an upper 95th percentile 0.24–0.35. �e 
Plantower PMS5003 and the Plantower PMS7003 obtained higher values with similar results over the two loca-
tions. �e Plantower PMS5003 showed a CV of 0.21–0.26 with an upper 95th percentile 0.57–0.76. �e Plantower 

Figure 2. Flow chart presenting the data quality check process applied to the data from each sensor: (1) verify 
the logs of the sensors for error messages, (2) remove the values that are >10,000 µg/m3, (3) compare the weekly 
mean of the sensors, (4) compare the readings of the sensor to the reference station week by week to detect 
peaks that are present on the sensor but not on the AURN station, (5) compare the sensor with the other sensors 
week by week in the same Air Quality Monitor (AQM), (6) compare the sensor with the sensors of the same 
model week by week in the other AQM. Categories 1 and 2 are considered as time when the sensor was not 
operational.
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PMS7003 obtained similar results. �e intra-class correlation (ICC) applied to the CV with the model of sensors 
as subjects and the sites as raters for two-way mixed e�ect, consistency, single raters (ICC(3,1))45 yields a value of 
0.94 with a p-value of 2.18 × 10−7 and 95th con�dence interval of 0.75–0.999 indicating excellent reliability of the 
CV and a low intra-model variability.

Supplementary Fig. S12 presents the evolution of the CV and the concentration measured for each sensors in 
School A during the period ranging from 14/03/18 to 31/05/18. �e CV increased as the PM concentration meas-
ured by the sensors decreased suggesting a better agreement between sensors when PM concentrations are higher.

Correlation with the background AURN reference station. A�er comparing inter-sensor perfor-
mances, we studied their performance against the AURN background reference station. To study the correlation 
of individual sensors with the background AURN reference station, the data from each sensor was averaged to 
give the mean PM2.5 concentration per hour to match the frequency reported by the background station. Figure 4 
shows the readings per AQM compared to the readings from the reference station. At School A, the Plantower 
PMS7003 demonstrated statistically signi�cant high positive correlations, slopes between (1.15 ± 1.65) × 10−2 
and (1.22 ± 1.69) × 10−2 and RMSE <6.8 µg/m3]. �e Plantower PMS5003 records very similar values across 
the three locations of School A. �e Alphasense OPC-N2 presents more variability across the three locations of 
School A with moderate positive correlations, slopes between (1.01 ± 3.16) × 10−2 and (1.34 ± 3.72) × 10−2 and 
RMSE <14.7 µg/m3.

In School B, the two Plantower models had very similar coe�cients to School A for AQM B.2 and B.3 but 
the correlation coe�cients were lower for AQM B.1 (r = 0.79/0.82 and ρ = 0.79/0.82) with a slope close to 1. For 
AQM B.2, the Plantower PMS5003 presents a lower slope than the Plantower PMS7003 which can be attributed 
to a variability in the calibration of these sensors, further illustrated by the slope obtained in Supplementary 
Fig. S10. For this AQM, Alphasense OPC-N2 also presents lower results than in the other locations (which per-
formed 56.6% of the time at this location). AQM B.2 is also the AQM reporting the highest concentrations with 
>10 peaks during the month of August - these peaks may have resulted from barbecues nearby or wood burning. 
Some of these peaks were detected with a short time delay by the two other AQM of the School and mainly by 
AQM B.1 (a building separated AQM B.2 and AQM B.3) as presented in Supplementary Figs S13 and S14.

Factors impacting the correlation with the background reference station. To evaluate the impact 
of external factors, we compared the Pearson coe�cient for each sensor against the reference station, with varia-
tions in (1) month, (2) quartile of background PM2.5 (PM2.5) concentration, (3) quartile of relative humidity, (4) 
wind direction and (5) quartile of temperature.

Figure 3. Correlation of the concentration of PM2.5 in µg/m3 reported by di�erent PM sensor models. 
Graphs show reported PM2.5 concentrations from Plantower PMS7003 (n = 5,906,616), Plantower PMS5003 
(n = 5,523,274), Alphasense OPC-N2 (n = 4,420,042) and Honeywell HPMA115S0 (n = 946,372), with the data 
combined from each model at each location of the study except for Honeywell HPMA115S0 (only one location 
available). �e x-axis corresponds to the sensor named above the graph and the y-axis correspond to the sensor 
named to the right of the graph. �e upper 0.0001% of the datapoints are not displayed. Slope is reported ±2 
standard error (***p < 2 × 10−16).
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Sensors AQM

CV

Mean Median 95th percentile

Alphasense OPC-N2

A.1 0.17 0.14 0.35

A.2 0.13 0.10 0.30

A.3 0.11 0.08 0.24

Plantower PMS5003

A.1 0.25 0.17 0.70

A.2 0.26 0.16 0.76

A.3 0.21 0.14 0.57

B.1 0.23 0.16 0.59

B.2 0.24 0.14 0.57

B.3 0.23 0.15 0.59

Plantower PMS7003

A.1 0.24 0.16 0.63

A.2 0.24 0.16 0.66

A.3 0.22 0.15 0.59

B.1 0.25 0.18 0.67

B.2 0.23 0.15 0.60

B.3 0.25 0.17 0.66

Table 3. Mean, median and 95th percentile of the Coe�cient of Variation (CV) per sensor and per AQM from 
13/03/18 to 09/03/19. �e Plantower PMS5003 in School B.1 stopped working a�er 06/10/18, calculations for 
this sensor at School B only include the period from 13/03/18 to 06/10/18.

Figure 4. Correlation between PM2.5 concentrations reported by low-cost PM sensors and data from 
background reference station. Graphs show comparison of the PM2.5 concentration from Plantower PMS7003 
(n = 49,255), Plantower PMS5003 (n = 46,066) and Alphasense OPC-N2 (n = 36,870), with the data combined 
from each model at each location of the study against the background Automatic Urban and Rural Network 
(AURN) station except for the Honeywell HPMA115S0 (only one location available). �e upper 0.000005% of 
the datapoints is not displayed. �e slope is given ±2 standard error (***p-value < 2 × 10−16).
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�e Shapiro-Wilk tests of normality conducted on the di�erent subsets of data revealed that some groups of 
Pearson coe�cients were not normally distributed. To verify the statistical signi�cance observed between the 
di�erent categories, we conducted a non-parametric statistical analysis on the groups of data with a Friedman 
ANOVA with Dunn multiple comparison test to determine pairwise comparisons driving the di�erences. �e 
analysis was not conducted on the Honeywell HPMA115S0 due to the paucity of sites. Figure 5 shows the Box 
and Whisker plots of the Pearson coe�cients for the di�erent sensors at the di�erent sites with the �ve potential 
confounding factors. �e graphs for relative humidity, background pollution, wind direction and temperature 
does not include the data collected in August (see ‘Month’ and ‘Combined e�ects’ below). �e analysis including 
August is presented in Supplementary Fig. S15.

Month. �e Alphasense OPC-N2 for AQM B.2 has not been included in this analysis due to the lack of data for 
this sensor. �e signi�cant di�erences observed are mostly involving August, driven down by the AQM located 
in School B and in particular by AQM B.2 for which the three sensors performing registered notable peak of 
pollution, recorded to a lesser magnitude by AQM B.1 and AQM B.3 as presented in Supplementary Fig. S13 and 
with a zoom on one speci�c spike in Supplementary Fig. S14 where we can see the spike monitored successively 
by AQM B.2, then AQM B.3 and �nally AQM B.2 with a 1 min interval between each location wind speed being 
<0.8 m/s. �ese peaks were not recorded by the reference station or by the AQMs in School A. Given that these 

Figure 5. E�ect of pollution and climate factors on correlation between readings from low-cost sensors and 
AURN background station. Graphs show variation in Pearson coe�cient between the three sensor models and 
the background AURN reference station per site with (1) months (excluding the Alphasense OPC-N2 for AQM 
B.2 due to the lack of data), (2) quartile of background PM2.5 concentration (µg/m3), (3) quartile of relative 
humidity (RH), (4) wind direction and (5) quartile of temperature. August has been excluded from the graphs 
except for (1). Each box represents median, the 25th and 75th percentiles with maximum and minimum whiskers 
of Pearson coe�cient for the locations considered (n = 4 for the Alphasense OPC-N2 and n = 6 the Plantowers). 
Data analysed using a Friedman analysis of variance (ANOVA) with Dunn’s post-hoc test for pairwise 
comparison, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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readings are present on the three AQM at School B, they may indicate a very localised source of pollution illus-
trating the capacity of these sensors to detect highly localised sources of pollution. To remove the e�ect observed 
during August on the analysis of the other environmental factors, the data produced during this month has been 
excluded from the analysis. �e two Plantowers do not show a drop in performances but the Alphasense OPC-N2 
appears to show a trend for decreasing correlation with months although no signi�cant di�erences could be 
observed between the beginning and the end of the study.

Background concentration. All sensors showed increasing correlation with the background station as back-
ground pollution increased with Pearson coe�cients >0.6 for the Plantowers and >0.4 for the Alphasense 
OPC-N2 for background pollution in the upper quartile (17.8 to 77.4 µg/m3). �is value fell with decreasing 
pollution for all sensors, but the drop was more pronounced for the Alphasense OPC-N2, whereas the lowest 
Pearson coe�cient was at a background concentration in the second quartile (8.2–11.4 µg/m3, p < 0.01) vs. upper 
quartile. For the 3 sensors, the second background PM2.5 quartile showed a signi�cantly lower Pearson correlation 
than the highest group.

Relative humidity. �e two Plantower sensors presented a better correlation with the background PM2.5 station 
at the upper quartiles of relative humidity (76–98% RH). For the Alphasense OPC-N2, there was no signi�cant 
di�erence between the di�erent quartiles while the correlation dropped for the third quartile. Supplementary 
Fig. S16 presents the same analysis conducted using ventiles of relative humidity showing that the correlation 
increases with relative humidity up to the last ventile (96–98%). At lower relative humidity there is also more var-
iability across the sites illustrated by the spread of the boxes with the Alphasense OPC-N2 presenting the widest 
range of values. �e two Plantower sensors present signi�cant di�erences between their upper quartile and their 
�rst and second quartiles.

Wind direction. The two Plantower sensors present little variability with wind direction. The Alphasense 
OPC-N2 has lower correlation coe�cients for wind from S, SW and W. All of the signi�cant di�erences observed 
involve at least one of these directions and are more pronounced for the sensors located in School B. �e di�er-
ences observed are likely to result from the combined e�ect of environmental factors as these three directions 
are the one for which the lower background concentration were registered by the reference station with W being 
the direction recording the lowest background concentration. �ese directions are from the coast and are likely 
subject to fewer sources of pollution than directions coming from inland.

Temperature. �e correlation between AQM sensors and background station readings was higher at temper-
atures in the second quartile (7.3–11.2 °C). �e Alphasense OPC-N2 showed a drop in correlation for the �rst 
and third quartile and shows more variability with temperature compared to the Plantower models. Conversely, 
the Plantower models show signi�cant di�erences between their quartiles but with little variation of correlation.

Combined e�ects. A linear model predicting background concentration with month, wind direction, relative 
humidity and temperature gave a statistically signi�cant adjusted R2 of 0.11. A linear model including only wind 
direction and months also obtained a statistically signi�cant adjusted R2 of 0.11 (adjusted R2 of 0.07 when only 
taking into account months only) and a linear model including only relative humidity and temperature obtained 
a statistically signi�cant adjusted R2 of 0.001 suggesting a strong e�ect of months on background concentration 
and a more limited e�ect wind direction. �e lowest correlations were during August. �e analysis of the wind 
direction during this month showed that the wind was blowing mostly from SW which is also the direction for 
which we observed the lowest correlation between AQM sensor and background reference station readings. �is 
di�erence is further illustrated by the di�erences observed between Fig. 5 and Supplementary Fig. S15 which sug-
gest a confounding source of pollution from SW in August. Two possible explanations for this are local combus-
tion events in particular barbecues, burning of garden waste or PM generating works taking at the school during 
the summer holiday. Supplementary Figs S13 and S14 focus on these period of time and support the hypothesis of 
burning of garden waste or barbecues given the times when these events happens a�er 7 pm during a particularly 
warm August.

Discussion
We have evaluated the performance of four models of low-cost PM sensor characterising inter-model perfor-
mance as well as performance against the nearest reference station, examining potential confounding condi-
tions. �e sensors generally operated reliably with 14 sensors out of 19 (�ve sensors being miscon�gured) having 
uptime greater than the reference station. �e sensors showed medium to high correlation between each other 
while performing di�erently with variable relative humidity. �e correlation of the sensors with the reference sta-
tion is strongly in�uenced by the background concentration and dri� over-time was observed for the Alphasense 
OPC-N2. Relative humidity and temperature have a limited in�uence in general, albeit statistically signi�cant for 
the Plantowers. Month and wind direction have a combined e�ect on the correlation suggesting di�erent perfor-
mances with di�erent sources of pollution.

�e comparison of the two Plantower models con�rms the manufacturer statement that these two sensors 
have the same performances. Zheng et al.27 obtained similar Pearson coe�cients and slope when comparing 3 
Plantower PMS3003 (one month in the �eld). �e Plantower models also have a non-linear relationship with 
the Honeywell HPMA115S0 which may be explained by the e�ect of relative humidity on both sensors the latter 
reporting lower PM2.5 concentrations compared. �e Alphasense OPC-N2 exhibits a di�erent behaviour to the 
other sensors with three apparent modes of operation which may be linked to a combined e�ect of di�erent 
environmental factors. �e inter-comparison of the sensors by relative humidity reveals that the three makes of 
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sensor behave di�erently at di�erent relative humidity, with reported values diverging increasingly with relative 
humidity. �is is further illustrated by the greater variability of the coe�cient of correlation with the reference sta-
tion for the Alphasense OPC-N2 for di�erent levels of relative humidity. An analysis of the CV revealed a limited 
variation between sensor models with the Alphasense OPC-N2 presenting better values. Chen et al.26 tested nine 
Plantower PMS3003 sensors (36 h in the �eld) and found a CV < 0.4 suggesting a limited inter-sensor variability 
further supported by Kelly et al.21 calculation of R2 > 0.99 between the two sensors. Longer �eld studies with a 
greater number of sensor are required to precisely evaluate the inter-model variability of the Plantower models. 
Similarly, in studies of the Alphasense OPC-N2 against reference instruments, Crilley et al.24 found a inter-unit 
agreement with a CV of 0.25 ± 0.14 across 14 units while Badura et al.29 observed a CV of 0.2 across three units, 
values similar to those obtained in this study.

In terms of the correlation of sensor-reported PM2.5 concentrations with those from the nearby reference 
station, the two Plantower models presented very similar coe�cients. During a two-day outdoor collocation of 
17 Plantower PMS7003 with a TEOM, Wang et al.28 obtained R2 between 0.72–0.78 for PM2.5, very similar to our 
results. �is suggests that these sensors may be suitable for reporting hourly concentration of pollution. �e two 
Plantower models also have similar coe�cients across the two sites which are 2 km apart and the time series of the 
hourly data shows that the six AQMs were measuring in similar surroundings. While the Alphasense OPC-N2 
has lower coe�cients than the Plantower models, it shows more variability across the three locations of School A 
which may re�ect higher precision of the Alphasense OPC-N2 and a better capacity to monitor short-term local-
ised events or be linked to external environmental factors. To con�rm their precision, an extended collocation 
study is required.

All three sensors tended to report greater concentrations of PM2.5 compared to the reference station, but it 
should be noted that the sensors record concentrations every 1–10 s, while the TEOM records hourly averages. 
Moreover, the TEOM is sampling only half of the time on a 12 min cycle46 in a background location, so it may not 
detect the same temporal variations as the low-cost sensors. �e sensors may be also more susceptible to local 
short-lived events as illustrated by the �re event and episodes at School B in August 2018. Suitability for monitor-
ing highly spatially resolved events would be best evaluated against a reference-grade instrument with the same 
frequency of measurement and reporting. Sousan et al.30 also found over-reporting by the Alphasense OPC-N2 
suggesting that this may be a more general property of these sensors, while Kelly et al.21 suggests this behaviour 
may be environmentally speci�c for the Plantowers sensors, although a collocation is needed to con�rm that this 
is not simply due to higher concentrations at the AQM sites.

Wang et al.47 studied the response of Shinyei PPD42NS, Samyoung DSM501A and Sharp GP2Y1010AU0F 
sensors, in controlled conditions, and found that responses depended strongly on particle composition and size 
and that relative humidity a�ected the readings across a wide range of concentrations (0–1000 µg/m3). �us, we 
expected to �nd variability with wind direction and months for which the sources of pollution may vary changing 
the particle composition and size. �e results obtained here for the month of August, exhibited a clear impact of 
wind direction on the correlation with the background AURN station suggests the importance of particle com-
position and particle size, hence sources of pollution, on PM2.5 concentrations reported by the sensors, con�rmed 
by a number of studies15,19.

Our sensors obtained Pearson coe�cients >0.6 when background concentration levels were in the highest 
quartile which is con�rmed by other studies22. �ere was no signi�cant di�erence between the correlations for 
the two lower quartiles of background concentration <11.2 µg/m3. �is value is similar to the Lower Limit of 
Detection (LLOD) advertised by the manufacturers (10 µg/m3). For low background concentration, the readings 
will likely be in�uenced to a greater extent by local sources of pollution. �e sensors were located away from the 
reference station, possibly explaining the drop in correlation. To the best of our knowledge no studies have eval-
uated the LLOD of the Alphasense OPC-N2. For the Plantowers, Kelly et al. determined a LLOD of 10.5 µg/m3 in 
outdoor environments and LLOD from 1–3.22 µg/m3, in a laboratory. Sayahi et al.32 extended the duration of the 
study conducted by Kelly et al.21 from 28 datapoints to 320 days and obtained LLOD ≈6 µg/m3. For the Shinyei 
PPD42NS in laboratory conditions, Wang et al.47 reported a LLOD, of 4.28–26.9 µg/m3, and Austin et al.20 of 1 µg/
m3. During a �eld deployment, Zikova et al.48 calculated a LLOD of 10 µg/m3 for 58 Syhitech DSM501A, although 
across only two days of deployment. We showed that the CV decreased with increasing background concentra-
tion. Zikova et al.49 used the value obtained for the LLOD to correct the data for measurements that were lower 
than the LLOD and obtained a better CV between sensors with the corrected data. �erefore, a higher variability 
between sensors is to be expected at levels of pollution below the stated LLOD.

�e sensors studied presented very limited e�ect of relative humidity. Gao et al.50 observed a strong e�ect of 
relative humidity and temperature on sensor readings with a background of 167 µg/m3 while Wang et al.28 noted 
increased correlation between low-cost sensors and a TEOM for relative humidity 67–75% but decreased correla-
tion for low and high relative humidity (20% and 90%), for PM concentrations 0–1,000 µg/m3. Conversely, Jiao et 
al.51 found no e�ect of relative humidity on the sensors readings, with average concentrations of PM2.5 of 10 µg/m3 
suggesting that relative humidity may exert more of an e�ect at higher PM concentrations. Crilley et al.24 devel-
oped a correction factor for the Alphasense OPC-N2 for relative humidity >85%. Feinberg et al.31 reported peaks 
for relative humidity >90%. Jayaratne et al.25 studied the impact of relative humidity on a Plantower PMS1003 
and observed that the sensor over estimated PM2.5 concentrations for relative humidity >80%. �ey suggested 
that the deviation observed at high relative humidity may result from the absence of heated inlet on the low-cost 
sensors. �e sensors respond to relative humidity di�erently, which may be a result of testing in di�erent envi-
ronments, with di�erent PM characteristics. In our study, the Alphasense OPC-N2 presents a higher variability 
with wind direction suggesting that it is more susceptible to di�erences in PM composition. In a recent study, Di 
Antonio et al.33, studied the Alphasense OPC-N2 and suggested that data should be corrected for relative humid-
ity based on particle-size distribution rather than on PM mass and according to PM composition. However, it 
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is unclear whether this suggestion is also applicable to other models of low-cost PM sensors given the di�erent 
behaviour we observed for relative humidity between sensor model.

Temporal dri� has been observed for gas sensors, with attempts made at correction52. Dri� over time of 
low-cost PM sensors may result from degradation of electrical components, or dust accumulation. We saw no 
consistent dri� over time for the two Plantowers but trend to dri� was observed for the Alphasense OPC-N2. In 
our AQMs, the sensors facing downward may help reduce the build-up of dust inside the sensors but accumu-
lation of particles inside the AQMs cannot be not excluded. Mukherjee et al.23 attributed dri� over time for the 
Alphasense OPC-N2 (12 weeks in the �eld) to the potential build up of dust inside the sensor and on the fan.

Conclusion
In this study, we have shown that there is general agreement in readings between the four models sensors tested, 
despite the di�erences in the way in which these sensors derive reported PM mass concentrations. �e low-cost 
sensors show more variability at low PM concentrations and may be di�erentially a�ected by varying temper-
ature and humidity implying the potential need for di�erent correction methods. Despite these issues, these 
low-cost sensors are suitable for monitoring short-lived pollution events especially where coupled with wind data 
and they may provide useful information on personal exposure to PM. �ey may also be suitable for reporting 
hourly data to produce data to inform the public. �e inter-model variability suggests that they should not be 
deployed individually, with collocation of multiple sensors also providing redundancy facilitating fault/outlier 
detection and ensuring full data coverage. Further work, including long-term collocation studies and laboratory 
testing under controlled conditions, is required to determine the precise nature and magnitude of the e�ects of 
confounding factors, leading to a better understanding of the behaviour of these low-cost sensors. Given future 
characterisation, low-cost sensors may be a cost-e�ective means to improve spatial resolution of PM monitoring 
in urban networks.

Data Availability
�e underlying datasets for this publication are available at https://doi.org/10.5281/zenodo.2605402.
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