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Abstract

Genomic data is crucial in the understanding of many diseases and for the guidance of medical treatments.

Pharmacogenomics and cancer genomics are just two areas in precision medicine of rapidly growing utilization. At
the same time, whole-genome sequencing costs are plummeting below $ 1000, meaning that a rapid growth in
full-genome data storage requirements is foreseeable. While privacy protection of genomic data is receiving growing

attention, integrity protection of this long-lived and highly sensitive data much less so.
We consider a scenario inspired by future pharmacogenomics, in which a patient’s genome data is stored over a long
time period while random parts of it are periodically accessed by authorized parties such as doctors and clinicians. A

protection scheme is described that preserves integrity of the genomic data in that scenario over a time horizon of
100 years. During such a long time period, cryptographic schemes will potentially break and therefore our scheme
allows to update the integrity protection. Furthermore, integrity of parts of the genomic data can be verified without

compromising the privacy of the remaining data. Finally, a performance evaluation and cost projection shows that
privacy-preserving long-term integrity protection of genomic data is resource demanding, but in reach of current and
future hardware technology and has negligible costs of storage.

Keywords: Long-term security, Integrity, Authenticity, Genomic data, Genomic privacy, Genomic security,
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1 Introduction
Full genome sequencing is becoming a standard medical

procedure in the near future, not only in the assessment

of many diseases but also in the research or consumer ser-

vices setting. For example, in its recent annual report [1],

the UK’s chief medical officer called for a revolution

of gene testing and wants whole-genome sequencing to

become a standard procedure for National Health Ser-

vice patients—not only for cancer treatment but also rare

diseases testing, targeting of drugs etc.

With decreasing sequencing costs, periodic and tissue

specific sequencing will be the next step forward. Thus,

storage requirements are ever increasing and long-term

data protection schemes become more complex. While

genomic privacy is attracting much attention recently

[2–4], the assurance of genomic data integrity has almost

not been discussed yet. Genomic data not only requires
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hundreds of gigabytes of storage but also needs to be

secured against loss and tampering for at least a human

life span.

This paper is concerned with the integrity protection of

genomic data for decades after data generation. As crypto-

graphic primitives such as hash algorithms and signatures

may become insecure in the future this undertaking is

challenging.

1.1 Motivation

Endeavors like the 100,000 Genomes Project [5] in the

UK show that one important scenario to consider is the

outsourcing of genomic data storage to a trusted third

party. The key challenge is to guarantee that none of the

outsourced data gets ever modified, either by an outside

attacker or even an insider, over a hundred years. In the

future, doctors might get authorized access to parts of a

patient’s genome, stored in a national database, to support

personalized medicine decisions. A renowned example

from pharmacogenomics is the dosage determination for
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drug Warfarin based on just a few single-nucleotide poly-

morphisms (SNPs) [6–8]: for certain variants of CYP2C9,

only a fifth of the normal dose is recommended. This

prime example shows why even the change, or suppres-

sion, of a few entries in a database of genomic variants can

have disastrous consequences on treatment decisions with

implications for liability and legal procedures.

On the technical side, cryptographic primitives

like symmetric encryption schemes, digital signature

schemes, or hash functions are deemed to break over

time. For example, in 1997 the widely used symmetric

encryption scheme DES was broken by brute force for the

first time1 and can nowadays be broken for a small fee on

crack.sh. Also in 1997, the results of Shor [9] showed

that the RSA signature scheme is insecure against quan-

tum computers. In 2004, Wang et al. [10] for the first time

found collisions for the three then popular hash func-

tions MD5, HAVAL-128, and RIPEMD. Thus, long-term

security needs to take future breaches of cryptographic

primitives into account.

1.2 Contribution

In this paper, we propose a solution that allows to store

genetic data in a database, while guaranteeing integrity

and authenticity over long time periods. Data may be

stored in plain-text, encrypted, or secretly shared form.

We examine a scenario in which a full set of raw sequencer

reads, alignments, and genomic variant data files are gen-

erated and stored in a certified database (see Sections 2

and 3).

We propose a long-term protection scheme (Section 4)

that uses unconditionally hiding commitments, Merkle

hash trees, and digital signatures for protecting the

integrity of the data while preserving confidentiality. The

scheme allows querying and proving of integrity and

authenticity of specific positions in the genomewhile leav-

ing the remaining data undisclosed. No information can

be inferred about adjacent positions. The scheme sup-

ports updating the integrity protection in case one of the

used cryptographic schemes (i.e., commitments, hashes,

or signatures) is expected to become insecure in the near

future. The integrity update procedure uses timestamping

while it is guaranteed that no information is leaked to the

involved timestamp servers.

We also evaluate the performance of our scheme

(Section 5), in a scenario with periodic updates of the

timestamps, commitments and hashes. Our performance

evaluation shows that long-term integrity protection of a

human genome of size 3 · 109 is feasible on current hard-

ware. Furthermore, verification of the integrity of a small

subset of genomic data is fast.

1Achieved by the DESCHALL Project, the winners of the first $ 10,000 DES
Challenge by RSA Security.

1.3 Related work

Various timestamping-based long-term integrity protec-

tion schemes for various use cases have been proposed in

the literature [11, 12]. However, these schemes leak infor-

mation to the involved timestamp services and therefore

do not preserve long-term confidentiality of the protected

data. Braun et al. [13] use unconditionally hiding com-

mitments to combine long-term integrity with long-term

confidentiality protection. However, they only consider

the protection of a single large data item while genomic

databases consist of a large number of relatively small

data items. Computation and storage costs of their scheme

scale unfavorably for such databases, because each data

item needs to be protected by a separate signature-

timestamp pair, which is costly to generate and store. We

resolve this issue by using Merkle Hash Trees [14] which

enable us to protect a whole dataset with just a single

signature-timestamp pair.

As an alternative to computationally secure signature

schemes, proposals for unconditionally secure signature

schemes which do not rely on computational assumptions

[15] exist as well. However, these schemes function inher-

ently differently from their computationally secure coun-

terparts and require a number of other strong assump-

tions, e.g., that data verifiers are known and active at

scheme initialization. They are thus not applicable to the

scenarios discussed here.

In the field of genomic data security, the recent work

by Bradley et al. [16] explores several methods for the

integrity protection of genomic data. Merkle hash trees

are also studied to deliver integrity protection of single

positional mutations while keeping the remaining posi-

tions confidential. Instead of commitments, they use a

similar approach by salting the leaf values before hashing.

The authors argue that, without salting, up to 32 neigh-

boring base nucleotide leafs could be revealed by learning

the hashes along the path to the MHT root. However,

the paper does not consider the long-term aspect of data

storage, with cryptographic primitives becoming insecure

over time. Achieving long-term security is the main focus

of this work.

The same can be said about recent works on blockchain-

based integrity protection [17, 18]. While decentralized

blockchain technology is a novel and promising approach

to data integrity and time-stamping, it faces the same

long-term security issues like any other scheme that does

not include regular updates of hash functions. Hence,

these works do not solve the problem of long-term protec-

tion. Recently, Bansarkhani et al. [19] explored long-term

integrity of blockchains. When the time comes to replace

a hash function, the authors propose to hash the whole

blockchain and store this hash in a new block, result-

ing in extended data integrity. However, this approach is

not applicable to the random-access queries that we will

https://crack.sh
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introduce, where we only want to proof integrity of parts

of the genomic data.

2 Genomic data
For completeness, we give a short overview of all relevant

genomic file formats even thought our actual scheme will

only be applied to variant data (VCF files).

2.1 File types

The initial data produced by genome sequencers goes

through several steps of processing to reach differ-

ent levels of representation and abstraction. In our

scenario, we are interested in storing genomic varia-

tions, which have high utility in personalized medicine.

They allow random access to specific positions and,

at the same time, protection of adjacent genomic

positions.

Sequencers produce short raw reads, that, in a first step,

are aligned to form a contiguous genome. Those aligned

genomes can then be compared to a reference genome to

deliver a more interpreted view, highlighting the genomic

variation.

2.1.1 Raw reads

Typically, sequencing machines produce output in the

FASTQ format, consisting of billions of small unaligned

so-called reads (of nucleotides, making up the full DNA)

together with a quality score for each nucleotide. FASTQ

files are usually stored in compressed form [20]. Depend-

ing on coverage and read length, they are typically of size

between 10 GB and 70 GB.

2.1.2 Aligned reads

Assembly of raw reads to a full genome is performed via

an alignment of the short reads in FASTQ format to a ref-

erence genome (e.g., GRCh38 [21]). The alignment infor-

mation is most commonly stored in SAM/BAM [22] or

CRAM [23] files. By applying lossy compression to quality

scores, CRAM achieves the smallest file sizes [24]. For

example, the 1000 Genomes Project [5] distributes CRAM

files with quality scores compressed into 8 bins. Depend-

ing on coverage, file sizes vary between 3 GB and 14 GB

for full genome alignments [25] (excluding high-coverage

alignments).

2.1.3 Variant calls

Variant calls2 of aligned genomes are usually stored in the

variant call format (VCF) [26], or its binary counterpart

BCF. They represent a difference against the reference

genome and are thus an abstract representation in com-

parison to the aforementioned alignment formats. Cover-

age and read length do not play a role anymore, as each

2In the context of genomics, the verb to call is often used in the sense to
determine. E.g. a variant call is a variant determined from the underlying data.

line in a VCF file represents a called mutation at a unique

position of the reference genome.

A human genome has approximately 4 to 5 million vari-

ations compared to a reference genome [27]. VCF files

that store this information typically require a few hundred

megabytes of storage. Usually, a single file per genome, or

per chromosome, is produced. This translates to an aver-

age storage requirement of about 100 bytes per variation

in VCF.

2.1.4 Efficient random access

Efficient random access for SAM, BAM, CRAM, and VCF

files is realized by storing the data sorted by chromosome

and position and then creating an index map, which stores

for a chosen set of positions the corresponding location in

the file.

2.2 Data access scenarios

The following scenarios describe different access patterns

to genomic data for real-world applications. In particular,

the first scenario motivates the solution developed in this

work.

2.2.1 Personalizedmedicine and testing

A typical workflow in personalized medicine requires

access to a few mutations in the genome during regu-

lar visits to a doctor or hospital. This random access

to genomic variant data (e.g., stored in VCF) is roughly

required at most once a month for older patients who rou-

tinely need to see a doctor. The same is true for ancestry

and paternity tests, which primarily access tandem repeat

variations.

2.2.2 Cancer

Cancer researchers need access to the full alignments

(BAM/CRAM) of healthy and cancer tissue. That is, sev-

eral full-genome datasets per patient are accessed.

2.2.3 Studies

Pan-genome studies like genome-wide association studies

(GWAS) will probably access whole BAM/CRAM files to

produce study-specific input files, for each study partici-

pant’s genome.

3 Application scenario
We consider an application scenario for personalized

medicine that involves a patient, a sequencing laboratory,

a certified genome database and the patient’s doctors and

hospitals. The genome of the patient is stored in the cer-

tified database and the doctors regularly request parts of

the patient’s genome (e.g., to identify the best medication

and dosage, or to detect possible genomic predisposi-

tions). The patient may also want to prove the authenticity

of its genomic data towards a third party verifier (e.g., a

judge in court in case of a law suit because of a wrong
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treatment). An overview of the application scenario is

depicted in Fig. 1 and the details are described in the

following subsections.

3.1 Data generation

When the genome of the patient is sequenced for the first

time (e.g., at birth), the sequencing laboratory timestamps

and signs the resulting FASTQ files. The laboratory then

creates an alignment of those raw reads against some stan-

dardized current version of a human reference genome in

the CRAM format. Additionally, variants are called and

stored in a VCF file. Both the alignment and variants are

timestamped and signed by the laboratory.

The data is then transferred to the genome database,

who will also conduct future integrity proof updates, with-

out any interaction with the laboratory. From this point

on, the laboratory is not involved in any further protocol.

The data may be stored in blocks of plain-text, encrypted

with a symmetric block-cipher, or secretly shared, since

our scheme works on any kind of data blocks. The block

cipher would need to be seekable, e.g., AES in counter

mode, so that blocks can be decrypted individually. A

position in the human genome takes ⌈log(3 · 109)⌉ = 32

bits. A pseudorandom permutation could be applied to

the 32-bit index of each block to hide the accessed posi-

tions. A detailed analysis of the different kinds of block

storage are out of scope of this work and we focus on the

long-term integrity of data blocks.

Note that we do not consider the scenario of re-

sequencing a human’s genome and the subsequent regen-

eration of the genomic data. This case is discussed in the

outlook Section 6.3.

3.2 Data access

Consider a doctor who wants to identify the best medicine

and dosage for their patient, or detect possible genomic

predispositions that could influence future treatment.

Such a procedure requires to query dozens (and in the

future, possibly thousands) of variants from the most

recently stored VCF file. A current real-world exam-

ple is the medicine Warfarin, whose optimal dosage

is highly dependent on a patient’s genome (cf. moti-

vation Section 1.1). More precisely, eight SNPs3 were

identified that significantly influence a person’s dosage

dependent response to the drug.

If the data blocks are stored in encrypted form, the

patient or a designated doctor or hospital would need

to manage the secret keys to assist the decryption of

retrieved data blocks.

3.3 Protection goals and threat model

We demand that a solution for holistic genomic data

protection achieves the following protection goals:

3two in gene CYP2C9, one in gene GGCX and five in gene VKORC1

Integrity. The integrity of the genomic data as pro-

duced by the laboratory should be protected. That

is, it should be infeasible for an adversarial entity

to modify the data at rest or in transit without the

modifications being detected at a subsequent data

access.

Confidentiality. The confidentiality of genomic data that

is not revealed should be protected. An authorized

querier should only learn the requested genomic

data. That is, a patient or database must be able to

prove the integrity of parts of the genomic data with-

out leaking information about the remaining parts of

the data.

Authenticity. The database or patient should be able to

prove authenticity of the genomic data to a third

party verifier.

We allow the querier to be adversarial, i.e., they may try

to infer any additional information beyond the authorized

parts of the genomic data from their interaction with the

database. An adversary within the certified database may

have full read and write access to the, possibly encrypted,

genomic data blocks. We furthermore consider two cases:

if the database provider can be trusted to keep the data

confidential, it may be stored in plain text. Otherwise, it

should be encrypted or secretly shared. Note that after ini-

tial data generation and signing by the laboratory, only the

database and requesters are involved in any protocol.

4 Protection scheme
To meet the above stated demands of long-term integrity

and confidentiality protection, we have derived a protec-

tion scheme, which is described in this chapter.

4.1 Full-retrieval data

Unprocessed raw reads, e.g., stored in compressed FASTQ

format, and resulting alignments, e.g., stored in CRAM

format, are usually only accessed as a whole and a long-

term protection scheme for that use case was proposed in

[13]. The scheme presented here in Section 4.3 enhances

the integrity protection scheme of [13], so that a large

number of small data items can be protected together

efficiently.

4.2 Random access data

As opposed to whole-data integrity proofs, our scheme

provides random access integrity proofs of genomic vari-

ation data on the finest level possible—per position in the

reference genome.

We view genomic variation data like VCF/BCF files as

a table G, where for each genome position i, G[i] denotes

the corresponding variant data entry in G. If there is no

mutation at position i, we set G[i] to 0. Note that we do

not need to actually store those 0s as the absence of a
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Fig. 1 Overview of the application scenario for our protection scheme

variation implicitly represents a 0. However, the scheme

also needs to create commitments for the absence of vari-

ants so that absence can also be proven. Since a human

genome has about 3 · 109 positions, this is the size of

table G and the number of commitments that have to be

created, independent of the underlying data format.

For genome data G, generated and signed by a sequenc-

ing laboratory, the scheme generates an integrity proof

P. The validity period of such a proof is limited in time

because the cryptographic primitives used for its gen-

eration have a limited validity period. Therefore, the

proof is updated regularly. Furthermore, we describe

how a partial integrity proof for a subset G′ ⊂ G

can be extracted from P, and how such a partial

integrity proof is verified. Our scheme thus delivers ran-

dom access to G′ ⊂ G with integrity proofs while

keeping the remaining data G \ G′ private. We also

present a security analysis of the proposed scheme.

The scheme uses components of the schemes Lincos

[13] and Mops [12]. More information on the used

cryptographic primitives (i.e., timestamps, commitments,

hashes, and signatures) can be found in the respective

publications.

4.3 Scheme description

Our scheme for long-term integrity protection of genomic

data provides the algorithms Protect,Update, PartialProof,

and Verify. Algorithm Protect generates the initial

integrity proof when genomic data is stored. Algorithm

Update updates the integrity proof if a used crypto-

graphic primitive (e.g., the hash function) is threatened

to become insecure. Algorithm PartialProof generates

a partial integrity proof for verification of a subset of

the genomic data. Algorithm Verify allows a verifier to

verify the integrity of a given genomic dataset using a

given partial integrity proof.

4.3.1 Initial protection

The initial integrity proof P for sequenced genome data

G is generated by the sequencing laboratory using algo-

rithm Protect (Algorithm 1). The algorithm obtains as

input genome data G, an information-theoretic hiding

commitment algorithm Com [28], a hash algorithm Hash,

a signing algorithm Sign, and a time-stamping algorithm

TS. The algorithm first uses algorithm Com to gener-

ate commitments and decommitments to all entries in

G. The commitments can be used as placeholders for

the data items, which itself do not leak information, and

the decommitments can be used to prove the connec-

tion between the commitment and the corresponding data

item. Then, it uses the hash algorithm Hash to compute a

Merkle hash tree (MHT) [14] for the generated commit-

ment values. The root node of the generated tree is then

signed using algorithm Sign and timestamped using the

trusted timestamp authority TS [29]. Output of the initial

protection algorithm is an integrity proof P which con-

tains the commitments, the decommitments, the MHT,

the signature, and the timestamp.

In our algorithm listings we denote by MHT :

(Hash, L) → T an algorithm that on input a hash algo-

rithm Hash and a set of leaf nodes L, outputs a MHT T .

Furthermore, we denote the root of a MHT T by T .r.

4.3.2 Protection update

Timestamps, hash values, and commitments have a lim-

ited validity periods, which in turn limits the validity

period of the corresponding integrity proof. The overall

validity of an integrity proof is therefore prolonged regu-

larly by the genome database by running Algorithm 2. The
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Algorithm 1: Protect(G,Com,Hash, Sign, TS) → P

/* commit to all entries of G */

for i ∈ G do

(c1,i, d1,i) ← Com(G[i] );

C1 ←[ c1,i]i∈G; D1 ←[ d1,i]i∈G;

/* create merkle hash tree for

commitments, sign root of tree,

and timestamp signature with tree

root */

T1 ← MHT(Hash,C1); σ ← Sign(T1.r);

ts1 ← TS([ σ ,T1.r] );

op1 ← init; P1 ← (op1,C1,D1,T1, ts1); P ←[ σ ,P1];

return P;

input parameter op ∈ {upCHT,upHT,upT} determines

which primitives are updated; op = upCHT updates com-

mitments, hashes, and timestamps; op = upHT updates

only hashes and timestamps; and op = upT updates only

timestamps. For op = upCHT, first new information the-

oretically hiding commitments are generated. Then, a new

MHT T is generated and finally the root of T is times-

tamped. Output of the update algorithm is an updated

integrity proof P′.

In the algorithm listings, we denote by AuthPath(T , i)

→ A an algorithm that on input MHT T and leaf index i,

outputs the authentication path A from leaf node i to root

node T .r.

4.3.3 Generate partial integrity proof

A data owner may want to create a partial integrity proof

P′ for a subset G′ ⊂ G such that P′ does not reveal any

information about G \ G′. This can be done using Algo-

rithm 3. The algorithm extracts from P all information rel-

evant for proving the integrity of G′ and outputs them in

form of a partial integrity proof P′. In particular, the partial

integrity proof contains the commitments corresponding

to the positions contained in G′, the corresponding hash

tree authentication paths, as well as the corresponding

timestamps and the corresponding signature.

4.3.4 Verification

A verifier receives partial genome data G′ and a corre-

sponding partial integrity proof P′. Additionally, it uses a

trusted verification algorithm Ver and reads the current

time tn+1. It then uses Algorithm 4 to verify the integrity

of G′.

The trusted verification algorithm Ver is used for verify-

ing the validity of timestamps, hashes, commitments, and

signatures. It can be realized by leveraging trusted public

key certificates that include verification parameters and

validity periods. It must provide the following function-

ality. If VerTS(m, ts; t) = 1, then ts is a valid timestamp

Algorithm 2:

Update(op,G,P,Com,Hash, Sign, TS) → P′

P → (σ ,P1, . . . ,Pn);

∀i ∈[n]: Pi → (opi,Ci,Di,Ti, tsi);

if op = upCHT then

/* if update commitment, then

create a new commitment to the

corresponding entry and

decommitments */

for i ∈ G do
(cn+1,i, dn+1,i) ←

Com([G[i] ,D1[i] , . . . ,Dn[i] ] );

Cn+1 ←[ cn+1,i]i∈G; Dn+1 ←[ dn+1,i]i∈G;

else

Cn+1 ← ⊥; Dn+1 ← ⊥;

if op ∈ {upCHT,upHT} then

/* if update hash, then create a

new hash tree to the

corresponding commitments and

authentication paths */

CA(i) :=

[ [C1[ i] , . . . ,Cn+1[ i] ] , [AuthPath(T1, i), . . . ,

AuthPath(Tn, i)] ];

Tn+1 ← MHT(Hash, [CA(i)]i∈G );
else

Tn+1 ← ⊥;

/* timestamp signature with tree

roots and timestamps */

tsn+1 ← TS([ σ , (T1.r, . . . ,Tn+1.r), (ts1, . . . , tsn)] );

opn+1 ← op;

Pn+1 ← (opn+1,Cn+1,Dn+1,Tn+1, tsn+1);

P′ ←[ σ ,P1, . . . ,Pn+1];

return P′;

Algorithm 3: PartialProof(G′,P) → P′

P → (σ ,P1, . . . ,Pn);

∀i ∈[ n]: Pi → (opi,Ci,Di,Ti, tsi);

for i ∈ {1, . . . , n} do

/* extract the commitments,

decommitments, and

authentication paths

corresponding to G′ from Pi */

if Ci �= ⊥ ∧ Di �= ⊥ then

C′
i ←[Ci[ j] ]j∈G′ ; D′

i ←[Di[ j] ]j∈G′ ;

if Ti �= ⊥ then

A′
i ←[AuthPath(Ti, j)]j∈G′ ;

P′
i ← (opi,C

′
i ,D

′
i,A

′
i,Ti.r, tsi);

P′ ←[ σ ,P′
1, . . . ,P

′
n];

return P′;
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Algorithm 4: Verify(Ver,G′,P′; tn+1) → b

P′ → (σ ,P′
1, . . . ,P

′
n);

∀i ∈[ n]: P′
i → (opi,C

′
i ,D

′
i,A

′
i,Ti.r, tsi), ti ← tsi.t;

b ← 1;

for i ∈ {n, . . . , 2} do

if op ∈ {upCHT,upHT,upT} then

/* check that timestamp tsi is

valid at time tNxTs(i) for the

signature, the previous tree

roots, and the previous

timestamps */

R := (T1.r, . . . ,Ti.r); T := (ts1, . . . , tsi−1);

b ← b ∧ VerTS([ σ , R, T] , tsi; tNxTs(i));

for j ∈ G′ do

if op ∈ {upCHT,upHT} then

/* check that A′
i[ j] is a valid

authentication path at

time tNxHa(i) from root Ti.r to

the previous commitments

and authentication paths

*/

CA′(i, j) :=

[ [C′
1[ j] , . . . ,C

′
i[ j] ] , [A

′
1[ j] , . . . ,A

′
i−1[ j] )];

b ←

b ∧ VerMHT(CA
′(i, j),A′

i[ j] ,Ti.r; tNxHa(i));

if op = upCHT then

/* check that D′
i[ j] is a valid

decommitment at time tNxCo(i)

from commitment C′
i[ j] to the

corresponding entry and

previous decommitments */

GD :=[G′[ j] ,D′
1[ j] , . . . ,D

′
i−1[ j] ];

b ← b ∧ VerCom(GD,C′
i[ j] ,D

′
i[ j] ; tNxCo(i));

/* check that the first timestamp is

valid for the initial signature

and the first tree root */

b ← b ∧ VerTS([ σ ,T1.r] , ts1; tNxTs(1));

/* check that the signature is valid

for the first tree root */

b ← b ∧ VerSign(T1.r, σ ; t1);

for i ∈ G′ do

/* check that A′
1[ i] is a valid

authentication path from the

first tree root T1.r to the

corresponding commitment C′
1[ i] */

b ← b ∧ VerMHT(C
′
1[ i] ,A

′
1[ i] ,T1.r; tNxHa(1));

/* check that D′
1[ i] is a valid

decommitment from commitment

C′
1[ i] to genome entry G′[ i] */

b ← b ∧ VerCom(G′[ i] ,C′
1[ i] ,D

′
1[ i] ; tNxCo(1));

return b;

for m at time t, meaning that the cryptographic algo-

rithms used for generating the timestamp are considered

secure at time t. The time that the timestamp ts refers to

is denoted by ts.t. Hence, VerTS(m, ts; t) = 1 means that

it is safe to believe at time t that data m existed at time

ts.t. Similarly, VerMHT(m, a, r; t) = 1 means that at time t,

a is a valid authentication path for m through a hash tree

with root r. VerCom(m, c, d; t) = 1 means that at time t, d

is a valid decommitment from commitment c to message

m. VerSign(m, σ ; t) = 1 means that at time t, σ is a valid

signature for messagem. We refer to Section 5.2 for more

details on how the validity periods of the cryptographic

primitives are derived.

We use the following shorthand notations tNxTs(i),

tNxHa(i), tNxCo(i) to denote update times with respect to

a given partial integrity proof P′ =
[

σ ,P′
1, . . . ,P

′
n

]

. By

tNxTs(i) we denote the time of the next timestamp update

after Pi, i.e., tNxTs(i) = min{tsj.t : j > i}. Likewise, by

tNxHa(i) we denote the time of the next hash tree update

after Pi, and by tNxCo(i) we denote the time of the next

commitment update after Pi.

The verification function Verify of the genome data

protection scheme works as follows. It checks whether

the integrity proof has been constructed correctly, and

whether the cryptographic primitives have been updated

before becoming invalid. We refer the reader to the next

section (Section 4) for more details on the security of this

scheme.

4.4 Security analysis

We now analyze the security of the proposed scheme

and argue that it fulfills the requirements described in

Section 3.3.

4.4.1 Confidentiality

We observe that a partial integrity proof P′ for genome

data G′ ⊂ G does not reveal any information about the

remaining data G \ G′ by the following argument. Let

P′ = (σ ,P′
1, . . . ,P

′
n) be a partial integrity proof for G′,

where P′
i = (opi,C

′
i ,D

′
i,A

′
i,Ti.r, tsi). We observe that for

every i ∈ {1, . . . , n}, opi, C
′
i , and D′

i are independent

of G \ G′ because of the information-theoretic hiding

property of the commitments. Furthermore, A′
i contains

authentication paths that only depend on information the-

oretically hiding commitments and thus does not reveal

any information as long as the decommitment values are

not revealed. Hence, also the tree root Ti.r, the timestamp

tsi, and the signature σ are independent of G \ G′.

4.4.2 Integrity

Next, we show that it is infeasible for an adver-

sary, who cannot break any of the used cryptographic

primitives within their validity period, to present a

valid partial integrity proof P′ for partial genome
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data G′ if G′ has not been originally signed by the

laboratory.

For our security analysis, we consider an adversary that

can potentially become computationally more powerful

over time and use methods developed in [30–32] for argu-

ing about the knowledge of an adversary at an earlier

point in time. For this, we require that the timestamp,

commitment, and hash algorithms chosen by the user are

extractable. Thereby, we are able to show that if an adver-

sary presents a valid integrity proof, then the signed data

together with the signature must have been known at a

point when the corresponding signature scheme was con-

sidered valid. If the signature is valid for the data, then it

follows that the data is authentic.

Here, we use the following notation to express the

knowledge of the adversary. For any datam and time t, we

write m ∈ K[ t] to denote that the adversary knows m at

time t. We remark that for any t < t′, m ∈ K[ t] implies

m ∈ K[ t′].

Extractable timestamping [30, 32] guarantees that if at

some time t, a timestamp ts andmessagem are known and

ts is considered valid for m at time t, then m must have

been known at time ts.t, or in the notation introduced

above:

(m, ts) ∈ K[t]∧VerTS(m, ts; t) =⇒ m ∈ K[ ts.t] . (1)

Moreover, extractable commitments [31] guarantee that

if a commitment value is known at time t, and a message

m and a valid decommitment value are known at a later

time t′ > t, then the message m was already known at

commitment time t, i.e.:

c ∈ K[t]∧(m, d) ∈ K[t′]∧VerCom(m, c, d; t′)

=⇒ m ∈ K[t] .

(2)

Extractable hash trees [32] provide similar guarantees,

i.e., for any hash tree root value r, time t, messagem, hash

tree authentication path a, and times t, t′:

r ∈ K[t]∧(m, a) ∈ K[t′]∧VerMHT(m, a, r; t′)

=⇒ m ∈ K[ t] .

(3)

Furthermore, we know that if a signature σ and a mes-

sagem are known at some time t, and σ is considered valid

form at time t, then by the existential unforgeability of the

signatures it follows thatm is authentically signed [30, 33]:

(m, σ) ∈ K[ t]∧VerSign(m, σ ; t) =⇒ m is authentic .

(4)

Finally, it is known that signing the root of a Merkle

tree preserves the integrity of the leafs. Furthermore, if the

leafs are commitments, the authenticity of the committed

messages is preserved. That is, for any hash tree root value

r, signature σ , commitment c, hash tree authentication

path a, messagem, decommitment d, and times t, t′, t′′:

(r, σ) ∈ K[ t]∧VerSign(r, σ ; t)∧

(c, a) ∈ K[ t′]∧VerMHT

(

c, a, r; t′
)

∧

(m, d) ∈ K[ t′′]∧VerCom
(

m, c, d; t′′
)

=⇒ m is authentic .

(5)

We now show that it is infeasible to produce a valid

integrity proof for genome data that is not authentically

signed. Assume an adversary outputs (G′,P′) at some

point in time tn+1 and let Ver be a verification function

trusted by the verifier. We show that if P′ is a valid par-

tial integrity proof for data G′ (i.e., Verify(Ver,G′,P′) = 1),

then the signature σ for G′ is not a forgery.

Let P′ = (σ ,P′
1, . . . ,P

′
n), where P′

i = (opi,C
′
i ,D

′
i,A

′
i,

Ti.r, tsi). Define P′′
i = (σ ,P′

1, . . . ,P
′
i) and ti = tsi.t. In

the following, we show recursively for i ∈[ n, . . . , 1], that

given Verify(Ver,G′,P′) = 1, statement St(i) = 〈(G′,P′′
i ) ∈

K[ ti+1] 〉 holds.

We observe that St(n) is trivially true because the

adversary presents valid (G′,P′) at tn+1 by assump-

tion. Next, we show that assuming St(i) holds, then

also St(i − 1) holds. Given St(i), we observe that by

VerTS([ σ , (T1.r, . . . ,Ti.r), (ts1, . . . , tsi−1)] , tsi; tNxTs(i)) =

1 and (1), we have [ σ , (T1.r, . . . ,Ti.r), (ts1, . . . , tsi−1)]∈

K[ ti]. Furthermore, by

VerMHT(CA
′(i, j),A′

i[j] ,Ti.r; tNxHa(i)) = 1

and (3), we have CA′(i, j) ∈ K[ti] for every j ∈ G′. Finally,

by

VerCom([G′[ j] ,D′
1[j] , . . . ,D

′
i−1[j] ] ,C

′
i[j] ,D

′
i[j] ;

tNxCo(i)) = 1

and (2) we have [G′[ j] ,D′
1[ j] , . . . ,D

′
i−1[ j] ]∈ K[ ti] for

every j ∈ G′. Combined, we obtain (G′,P′′
i−1) ∈ K[ ti],

which means that St(i − 1) holds.

We observe that St(1),VerTS([ σ ,T1.r] , ts1; tNxTs(1)) = 1,

and (1) implies that [ σ ,T1.r]∈ K[ t1]. Furthermore,

by VerSign(T1.r, σ ; t1) = 1 and (4), we obtain that

σ is genuine for T1.r. Finally, we observe that for

every i ∈ G, VerMHT(C
′
1[ i] ,A

′
1[ i] ,T1.r; tNxHa(1)) = 1,

VerCom(G[ i] ,C′
1[ i] ,D

′
1[ i] ; tNxCo(1)) = 1, and we obtain

by (5) that σ is a genuine signature for G′.

5 Performance evaluation
In order to illustrate the applicability of our scheme to

today’s challenges in bioinformatics and medicinal infor-

matics, in the following, we evaluate the performance of

the scheme described in Section 4.3 in this chapter.
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5.1 Protection scenario

We focus on the following situation: a human genome

is sequenced and protected for a human lifespan of

100 years. The scenario starts with sequencing the

genomic data G in 2019 and creating an integrity proof P.

Here, we are only interested in the protection of a single-

genome dataset, that is, we do not consider additional

genomic data generated due to resequencing.

We assume that the lifetime of signature-based times-

tamps is based on the lifetime of the corresponding public

key certificate, which is typically 2 years. For our com-

mitments and hash functions, we assume a longer valid-

ity period of 10 years, as they are not dependent on

secret parameters which may leak over time. The integrity

protection update schedule is summarized in Table 1.

5.2 Instantiation of cryptographic primitives

For our analysis, we instantiatiate the cryptographic algo-

rithms of our protection scheme as follows. As hash

functions, we use the ones from the SHA-2 hash function

family [34], which are extractable if modeled as a random

oracle [35]. As timestamp schemes, we employ signature-

based timestamps [29] based on the XMSS signature

scheme [36], which is a hash-based signature scheme

conjectured secure against quantum computers. As com-

mitment schemes, we use the construction proposed by

Halevi and Micali [37], which uses a hash function and is

extractable if the hash function is extractable [35]. When

generating Merkle hash trees, we use an optimization

where we take commitments to the data directly as the

leafs of the hash trees in order to save one hash tree

level. Cryptographic parameters are chosen based on the

recommendations by Lenstra and Verheul [38, 39]. The

chosen parameters are summarized in Table 2.

5.3 Evaluation results

We show the storage space consumed by an integrity proof

P corresponding to genome data G containing 3 · 109

entries, which is roughly the number of nucleotides of a

human genome. We also show the storage space required

by a partial integrity proof P′ corresponding to partial

genome data G′ containing 1, 100 or 105 entries. As the

Warfarin example shows, current personalized medicine

applications would only be concerned with a few dozen

entries. To take future medical scientific advances into

accounts, we choose to evaluate partial proofs of size up

Table 1 Schedule for updating the integrity proof

Update method Update time

Initial protection Once in the beginning (i.e., in 2019)

Update Ts Every 2 years (i.e., 2021, 2023, . . . )

Update ComHashTs Every 10 years (i.e., 2029, 2039, . . . )

Table 2 Parameter selection based on Lenstra and Verheul

[38, 39]

Validity Hashes Signatures Commitments

2066 SHA-224 XMSS-256 HM-224

2090 SHA-256 XMSS-256 HM-256

2186 SHA-384 XMSS-512 HM-384

to 105. We also measure the time it takes to generate the

initial integrity proof, to update an integrity proof, and to

verify a partial integrity proof.

We remark that we measure the space consumed in

terms of the size of the commitments, timestamps, and

hashes to be stored. Likewise, we measure the time con-

sumed for generating and updating an integrity proof in

terms of the computation time required to generate the

commitments, timestamps, and hashes. For the verifica-

tion time, we sum up the time required for verification of

the individual cryptographic elements. The time and sizes

required for hashing, signing, and committing to a mes-

sage of size 128 B are shown in Table 3. This is an upper

bound on the average storage requirement for a variation

in VCF, cf. 2.1.3. For XMSS, the height parameter is cho-

sen as 10. The timings were taken on a computer with a

2.9 GHz Intel Core i5 CPU and 8 GB RAM running Java.

5.3.1 Size of integrity proof

Figure 2 shows the storage space over time required

for storing the full integrity proof. The size of the ini-

tial integrity proof in year 2019 is 391 GB. The size

only increases minimally when updating the timestamps.

When updating the commitment, hashes, and timestamps

together, the size grows significantly. After the first such

update, the size of the integrity proof is 782 GB. After

100 years, the size of the integrity proof is 5309 GB. Com-

paring this to the size of an average 600MBVCF file shows

that after 100 years, the integrity proof is roughly 10,000

times larger than the actual variant data.

Table 3 Space and time required for storing, generating, and

verifying, hashes (SHA), commitments (HM), and signatures

(XMSS)

Primitive Size Generation Verification

SHA-224 224 bit 1.33 µs 1.3 µs

SHA-256 256 bit 1.29 µs 1.29 µs

SHA-384 384 bit 1.43 µs 1.43 µs

HM-224 896 bit 5.68 µs 3.20 µs

HM-256 1024 bit 6.16 µs 3.11 µs

HM-384 1536 bit 6.08 µs 5.71 µs

XMSS-256 20000 bit 17.00 ms 2.43 ms

XMSS-512 72736 bit 46.37 ms 7.67 ms
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Fig. 2 Size of integrity proof for whole-genome data G

For |G′| ∈ {1, 100, 105}, Fig. 3 shows the size of a par-

tial integrity proof P′ for G′ over time. As the number of

elements covered by the partial integrity proof is consider-

ably smaller, also its size is much smaller compared to the

full integrity proof. For the largest partial proof parameter

|G′| = 105, the size of P′ ranges from 9.62 MB in 2019 to

130.67 MB in 2118, growing roughly linearly. For a fixed

point in time and |G′| ≥ 100, the size also grows roughly

proportionally to |G′|.

5.3.2 Cost projection for integrity proof storage

Although it is impossible to predict long-term storage

costs, we will nevertheless try to give a rough cost pro-

jection into the future. We examined two sources of his-

torical hard disk prices and found that between 1980 and

2010HDD storage costs per gigabyte roughly halved every

14 months [40], leading to a cost reduction by a factor

of 10 roughly every 4 years. Then since 2009, this rapid

decline in storage costs has slowed down, only showing a

reduction in storage costs by a factor of 4–5 over the last

10 years 4. However, new technologies like HAMR and

MAMR [41] are on the horizon, which are expected to

show HDDs of size 4 TB by 2025, according to Western

Digital [42].

We calculated yearly expenses for the storage of a full

integrity proof, considering three cost-per-storage pro-

jection scenarios: no change in storage costs and cost

reductions by rates of R = 2 and 4 per 10 years. In view

of past developments, we deem those rates conservative.

We furthermore assumed that HDDs have to be replaced

every 5 years and started with storage costs of $ 15 per

TB[4].

The results can be seen in Fig. 4. The first year of stor-

age costs 0.391TB · $ 15/5 = $ 1.15. From then on, while

the amount of data increases, thanks to the exponential

decline in costs, the overall yearly costs decline sharply for

R = 2 and 4. For R = 1, it is proportional to the amount

of storage (Fig. 2). Even in the unrealistic case that storage

costs do not drop over 100 years, the costs still only grow

to $ 15.55 yearly in 2190. For R = 2, the costs decline

to 22 cents in 2069 and 2 cents in 2119. For R = 4, the

costs reach 1 cent in 2069 and after that are well below

4On 28 July 2019, there were available a 4 TB HDD for $ 64 and 6 TB for
$ 90 at the price comparison website newegg.com.

1 cent. To be fair, in reality, this data would probably be

stored redundantly to protect against data loss, so the

actual costs would need to be multiplied by the amount of

redundancy.

5.3.3 Computation time

The time required for the initial integrity proof generation

in year 2019 is 5.85 h, for G with |G| = 3 · 109. Figure 5

shows the time required for performing a commitment,

timestamp, and hash update of the integrity proof. Com-

putation time for each full update every 10 years is compa-

rable to the computation time of the initial integrity proof.

However, it should be considered that with more pow-

erful computers in the future these update times can be

expected to decrease significantly.

Figure 6 shows the time required for verifying a partial

integrity proof P′ corresponding to partial genome dataG′

with |G′| ∈ {1, 100, 105}. The computation time required

for verification of P′ of the largest partial size, generated

in 2019, is 0.46 s. For P′ generated in 2119 the verification

time is 5.37 s.

5.4 Comparison with [13]

We briefly compare the performance of our scheme with

performance of the integrity protection scheme of [13].

We observe that for protecting a dataset with [13], for each

data item, a separate commitment, decommitment, sig-

nature, and timestamp need to be generated and stored.

This results in an initial proof generation time of 28338 h

(or 3.2 years) and a size of 14283 GB. In comparison, our

scheme generates the initial proof in 5.9 h and the proof

has a size of 391 GB.

6 Conclusion and future work

6.1 Conclusion

We have evaluated a scenario where the integrity of

genomic data is protected over a time span of 100 years.

We first described a scenario in which genomic data is

generated and accessed for medical treatment and ana-

lyzed the protection requirements. Next, we proposed a

long-term integrity protection scheme suitable for this

scenario. Then, we analyzed the performance of the

proposed scheme for the given scenario. We estimate

that long-term integrity protection of a genome database
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Fig. 3 Size of partial integrity proof for partial genome data G′

Fig. 4 Projected yearly storage costs of integrity proofs. The calculation starts with initially $ 15 per TB, then reduces the costs per TB by a rate of

R = 1, 2 and 4 per 10 years. HDDs are assumed to be replaced every 5 years

Fig. 5 Computation time for updating integrity proof for whole-genome data G

Fig. 6 Computation time for verifying partial integrity proof for partial genome data G′
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with 3 · 109 independently verifiable entries for 100 years

requires a storage space of approximately up to 5.3 TB in

2119.We estimated the yearly storage costs of the integrity

proof to start at $ 1.15 and, depending on the assumed

reduction in general storage prices, reach $ 15.55 in 2119

(no reduction) or fall to negligible levels for reduction

rates of R = 2 or 4 per 10 years. We therefore deem

this 10,000-fold increase in storage compared to the actual

variation data as acceptable, considering the possible dan-

gers of unprotected integrity and low actual yearly costs.

It takes approximately 5.9 h to generate the initial integrity

proof and up to 6.3 h to update it when used crypto-

graphic primitives must be replaced. The size of a partial

integrity proof for a genome subset of size 105, assumed to

be a future-proof choice for personalized medicine, after

100 years is approximately 130 MB and the verification

takes approximately 5 s. The computation times can be

expected to decrease in the future when more powerful

computers will be available.

6.2 Confidentiality

In Section 3.1 we explain that our scheme works on any

data that is stored in blocks, also in encrypted form. If

the database is an untrusted cloud, it obviously makes

sense to not store the data in plain text. To achieve certain

long-term confidentiality, only information-theoretically

secure methods such as secret sharing should be used.

This stems from the simple fact that once data is obtained

in encrypted form by an adversary, they only have to wait

until the encryption is broken in the future. We leave it as

future work to combine Oblivious RAM techniques [43]

with our long-term integrity scheme to achieve better

query pattern hiding.

6.3 Genome re-sequencing

Our scenario only considered a single production of

genomic data, e.g., at birth. After that, only updated

integrity proofs were generated. However, it is foresee-

able that advanced sequencing technology will be used

to re-sequence a human’s genome periodically, e.g., every

10 years, once personalized medicine has gone main-

stream. Additionally, it is already becoming standard pro-

cedure to sequence somatic cancer tissue of patients with

certain types of cancers [44, 45]. More cancer types will

follow to be subjected to genetic analysis. Furthermore,

once cancer is detected, a re-sequencing of cancer tissue

every few weeks seems plausible in the future, to observe

the development of the cancer’s genome.

Every (re)sequencing of either healthy or cancer tissue

follows the alignment and variant calling procedures, so

FASTQ, CRAM, and BCF files, or future enhanced ver-

sions thereof, are produced. How to provide long-term

protection of this additional data, in combination with

existing data, will be investigated in future work.

It could also become feasible to redo the alignment and

variant calling step, once a new reference genome might

be agreed upon on a (super)national health governance

level.

An open question is whether alignments against obso-

lete reference genomes could be safely deleted, since they

could still be reproduced from the raw reads. This, how-

ever, is solely determined by medical needs and legislative

issues (liability and regulatory mechanisms).

6.4 Omics data

Other data apart from the genome itself, typically summa-

rized under the term omics, like genome methylation pat-

tern sequencing [46, 47] is receiving increasing attention

in the area of precision medicine [48]. For these advanced

but forseeable areas, an all-encompassing data integrity

solution needs to combine integrity proofs of newly gen-

erated and updated data, taken at different time intervals.

Such a full solution, however, is beyond the scope of the

present study and will be pursued in the future.
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