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Extensive scientific and clinical microbiome studies have explored
contemporary variation and dynamics of the gut microbiome in human
healthand disease' >, yet the role of long-term life history effects has been
underinvestigated. Here, we analyzed the current, quantitative microbiome
compositionin the older adult Bruneck Study cohort (Italians, Bruneck, n = 304
(male, 154; female, 150); age 65-98 years) with extensive clinical, demographic,
lifestyle and nutritional data collected over the past 26 years*. Multivariate
analysis of historical variables indicated that medication history, historical
physical activity, past dietary habits and specific past laboratory blood
parameters explain asignificant fraction of current quantitative microbiome
variationinolder adults, enlarging the explanatory power of contemporary
covariates by 33.4%. Prediction of current enterotype by a combination of past
and contemporary host variables revealed good levels of predictability (area
under the curve (AUC), 0.78-0.83), with Prevotella and dysbiotic Bacteroides
2beingthebest predicted enterotypes. These findings demonstrate long-term
life history effects on the microbiota and provide insights into lifestyle variables
and their role in maintaining a healthy gut microbiotainlater life.

Thesstructure, function and dynamics of the human gut microbi-  host variables such as age, sex, stool consistency/transit time, health
omeare generally studied in cross-sectional or short-term longitudinal  status, dietand medication’. However, the gut is a dynamic ecosystem,
settings. Contemporary microbiome variationis partially explainedby  continuously perturbed by dietary intake and egestion or occasional
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exposures to medication and disease’. Isolated events and long-term
lifestyle choices can permanently alter the microbiome®, yet long-term
temporal effects have been understudied. While diet only allows future
microbiome prediction up to 2d after food consumption’,incomplete
recovery of the original microbiota following antibiotic exposure even
after 6 monthsimplies that, when strong enough, perturbation effects
can last long term®. As host health and lifestyle continuously impact
the microbiome environment over time, a prospective collection of
host datais necessary to study the long-term cumulative effects of life
history, especially for long-lived human hosts.

Here, we capitalized on the community-based north Italian
Bruneck Study cohort (n =304 (male, 154; female, 150), age 65-98
years), which prospectively collected long-term, individualized host
metadata (thatis, food intake, lifestyle, medication, blood chemistry
and clinical assessments) over 26 years (1990 to 2016) in 5-year inter-
vals*. Fecal samples collected in 2016 from individuals aged 65-98 years
were subjected to quantitative microbiota profiling (QMP), enabling
association of current absolute microbiome abundances with historical
metadata’. Using this unique dataset, we explored (1) the associations
of historical variables and the current microbiome and (2) the predic-
tive capacity of lifestyle history on the current microbiome.

Tofirstevaluate base explanatory power, we performed quantitative
investigation of contemporary microbial community covariates usinga
distance-based redundancy analysis (db-RDA) approach as applied previ-
ously%. Weidentified 11 contemporary variables that could significantly
explain the community variation with 7% nonredundant cumulative
explanatory power. These analyses confirmed that covariates related
to transit time (that is, current stool moisture, defecation frequency,
hard stools and obstipation) contribute significantly to overall varia-
tions (db-RDA, adjusted R? 0f 1.5-2.4%, false discovery rate (FDR) < 0.1,
n=304; Fig.1a,b and Supplementary Table 1). We then assessed the
potential of the extensive array of historical parameters collected dur-
ing previous Bruneck Study evaluations (1990-2016) to explain current
microbiome variation. Using historical parameters from each year as
explanatory variables (Supplementary Table 2a), we identified several
historical variables contributing significantly to a cumulative model
that also included present variables (Supplementary Table 2b). Over-
all, significant historical variables were mostly linked to beta-blocker
use, blood parameters and diet (db-RDA, adjusted R? of 0.60-0.80%,
FDR <0.1,n=304; Supplementary Table 2a). Interestingly, inclusion of
these significant historical parameters significantly increased the cumu-
lative nonredundant effect size to 8.5% (likelihood ratio test, P< 0.05;
Supplementary Table 2b), indicating the potential explanatory power
oflong-term historical covariates on the current microbiome.

Tobetter capture long-term lifestyle and health effects, we further
investigated overall historical trends of variables using the average
across all years and difference (that is, delta) for continuous variables
and counts of event occurrence for categorical variables between each
year and the year 2016. Analysis of averaged covariates revealed that
only average intake of dumplings (canederli or knddel) from 1995 to
2016 was significant (db-RDA, adjusted R = 0.75%, FDR < 0.1, n =304;
Supplementary Table 3a). Given that canederli are traditional foods
in the northeast region of Italy, this result is likely a proxy for a more
traditional lifestyle. Covariate analysis of change (delta) in historical
host parameters identified multiple non-colinear parameters inde-
pendent of the time period covered (db-RDA, adjusted R*= 0.63-1.11,
FDR < 0.1, n=304; Supplementary Table 3b and Fig. 1c). These were
again analyzed with 11 significant contemporary covariates to cal-
culate nonredundant cumulative effect sizes. Beta-blocker change
from 1990 to 2016, non-sport physical activity change from 2005 to
2016, hemoglobin change from 1990 to 2016 and alanine transaminase
change from 2005 to 2016 were shown to have significant explanatory
power in addition to contemporary covariates, significantly raising
the cumulative nonredundant effect size to 8.5% (likelihood-ratio test,
P<0.05; Supplementary Table 3c).

Finally, we combined all significant contemporary and historical
features (Supplementary Tables1a,2aand 3a,b) in one comprehensive
db-RDA analysis. This analysis found a final set of 15 variables signifi-
cantly explaining the current microbiome variation. All together, they
significantly increased the final cumulative nonredundant effect size to
10.4% (likelihood-ratio test, P < 0.05; Fig. 1aand Supplementary Table
3d). Overall, this shows that the inclusion of historical data resulted
in a 33.4% increase in nonredundant explanatory power for global
microbiota variation. To verify that the improvement in explanatory
power was not due to just an additional number of data features but
indeedreflects historicalimpact, we carried out an analysis in which we
added all of the randomly permuted historical covariates to the 2016
data. The time effect was removed by using residuals obtained from
autocorrelative models. These random features dropped the effect
size to a lower level than with the results from only 2016 because the
additional features served as nonsignificant covariates, increasing the
multiple-testing correction hurdle and thus allowing fewer variables
to enter in the selection model (cumulative nonredundant effect size
of 4.36%; Supplementary Table 3e). These results confirm that the
observed 33.4% increase in explanatory power is indeed attributable
to historical covariates.

We further deepened the relationship of these historical variables
with the current microbiome by focusing on the current taxonomic
group abundances as well as community enterotype based on Dirichlet
multinomial mixtures (DMM) clustering previously validated across
multiple cohorts'*™*2, Previous studies detected four enterotypes’,
dominated by either Bacteroides (Bl and B2 enterotypes, with B2 hav-
ing a lower microbial load and abundance of Faecalibacterium than
B1)®, Prevotella (P) or Ruminococcaceae (R). All four enterotypes were
presentin the Bruneck cohort (Fig. 2a).

Of the significant historical covariates, we further analyzed beta-
blocker treatment inassociation with community diversity. By dividing
participantsinto three groups (chronic (treatment with beta-blocker
bothin1990and2016), current (treatment with beta-blocker in 2016)
and none (not medicated in1990 or 2016)), we found that beta-blocker
treatment was linked to a significant compositional shift (beta-diver-
sity; Adonis # = 0.013, P< 0.001, n = 304; Fig. 2b and Supplementary
Table 4a), but not to alpha-diversity (Kruskal-Wallis test, P> 0.05,
n=304; Fig. 2c). Enterotype prevalence was significantly different
among the three groups (pairwise Fisher’s exact test, FDR < 0.1 for B2
and P versus other enterotypes, n =304; Fig. 2d (left) and Supplemen-
tary Table 4b). In prticular, the B2 enterotype was more prevalent in
individuals treated with beta-blocker than other enterotypes, whereas
the P enterotype showed the opposite trend (Kruskal-Wallis test,
FDR < 0.1, n =304; Fig. 2d (right) and Supplementary Table 4c), with
the former observation confirming previous findings". Further analysis
of specific taxonomic associations identified a list of bacteria more
abundantin individuals who did not use beta-blockers, which can be
potential targets for remediation strategies if future studies confirm
a causal link for this association (generalized linear model (GLM),
standardized Srange of 4.3t00.78,FDR < 0.1, n =304, adjusted for age
and stool moisture; Supplementary Table 5). Additionally, we found
alink between beta-blocker treatment duration and cardiovascular
disease history (Wilcoxon test, P< 0.01; Supplementary Table 4d),
but no associations with long-term dietary patterns, as determined
by the total Alternative Healthy Eating Index (AHEI) (chi-squared test
and Kruskal-Wallis test, P> 0.05; Fig. 2e). These results are in line
with recent reports on the associations of microbiome changes with
cardiovascular disease and beta-blocker use'*". Analysis of average
dumpling intake (1995-2016), a historical covariate with the second-
largest effect size corresponding to an important staple food in this
region, showed a significant association with Dialister abundance but
notwith enterotype (Spearman’srho=0.23,FDR < 0.1, adjusted for age
and stool moisture, n = 304; Supplementary Table 6). We next looked
at the change in non-sport physical activity between the years 2005
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Fig.1| Explanatory variables for the microbiome variationin the Bruneck
Study cohort. a, Individual and cumulative effect size of contemporary and
historical covariates. Dark-colored bars indicate individual (upper bar) and
cumulative (lower bar) effect sizes of variables included in the forward stepwise
RDA model. Historical covariates are denoted with blue labels. IQR, interquartile
range. b, Principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity.
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Arrows indicate significant covariates that can significantly explain the current
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y-glutamyl transferase; PA, physical activity. ¢, Comparison of the individual
effect size of historical parameters and contemporary covariates. All statistical
tests were performed on 304 individuals in the Bruneck Study cohort.

and 2016. We first identified taxa associated with both physical activ-
ity shifts (that s, the change from the past to the present) and current
levels of physical activity. Although no genera were associated with
both variables, butyrate-producing bacteria (that is, Roseburia, Fae-
calibacterium and Butyricicoccus) significantly increased in abundance
withlong-term physical activity (Spearman’srho=0.18-0.21, FDR< 0.1,
adjusted forage and stool moisture, n = 304; Fig. 3b and Supplementary
Tables 7 and 8). The positive influence of exercise on gut health has
gained recent attention, with elevated abundance of Roseburia and
Faecalibacterium reported in fit individuals and those who perform
regular exercise'® ™. To study the effects of changing physical activity,
we clustered individuals into four categories: those with high activity
inthe pastand at present (cluster1), those with high activity in the past
and low activity at present (cluster 2), those with low activity in the past
and high activity at present (cluster 3) and those with low activity in
the past and at present (cluster 4). Interestingly, individuals who had
recently increased physical activity as well as those who had consist-
ently maintained high activity exhibited areduced ratio of (dysbiotic)
B2 to non-B2 enterotypes. This suggests that physical activity has a
beneficial role in the gut ecosystem of healthy older adults (pairwise
chi-squaredtest, FDR < 0.1, n =304; Fig. 3aand Supplementary Table 9).

Finally, we studied changesin hemoglobin between1990 and 2016.
Analysis of taxonomic association with both current hemoglobin and
changes showed that another butyrate-producing bacterial genus,
Coprococcus, was significantly associated with high levels of current
hemoglobin as well as hemoglobinincrease over time (Spearman’srho
=0.19-0.20, FDR < 0.1, adjusted for age and stool moisture, n =304;
Fig.3cand Supplementary Tables 10 and 11). This association could be
linked to iron levels and/or consumption. For example, Coprococcus
abundance was foundtobelowerinratsfed aniron-depleted diet and
ininfants withiron deficiency anemia®>”. At the enterotype level, the
clustering approach used above did not show asignificant association
(Fig. 3¢). Similarly, analysis of changes in alanine aminotransferase
(ALT) between 2005 and 2016 showed that only the current ALT levels
were significantly associated with Methanobrevibacter but not with
enterotypes (Spearman’s rho =-0.18, FDR < 0.1, adjusted for age and
stool moisture, n =304; Supplementary Table 12 and Fig. 3d).

Next, we studied the predictive potential of life history on the
current microbiome, moving from single-parameter models to more
complex models. We first investigated long-term predictability by
focusing on the power of the three significant individual historical
variables from the year 2010 (db-RDA, FDR < 0.1, n=304; Fig. 1a and
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Fig. 2| Association of beta-blocker history with microbiomes of older adults.
a, Left, evaluation of model fit was performed using Bayesian information
criterion (BIC) where the best model fit was found at four Dirichlet components.
The FGFP cohort (n =2,215) was used as a background dataset when enterotyping
the Bruneck cohort. Right, top seven most abundant generain enterotypes.

b, Ordination plot by beta-blocker treatment (PCoA based on Bray-Curtis
dissimilarity; Adonis r*=0.013, P= 0.0002). ¢, Biodiversity of individuals by
beta-blocker treatment. No groups is significantly different. d, Left, prevalence of
enterotype by beta-blocker treatment (Fisher’s exact test permuted, P= 0.0005).

Chronic, treatment with beta-blocker both in1990 and 2016; current, currently
medicated; and none, not medicated in 1990 and 2016. Right, number of years
of beta-blocker treatment across the years. An asterisk indicates FDR < 0.1 by
Kruskal-Wallis test followed by post hoc Dunn'’s test. e, Association of beta-
blocker use with cardiovascular disease history and diet (chi-squared test,
P=0.327).Boxes represent the 25th percentile, median, and 75th percentile.
Whiskers represent the lowest and highest values of the data. All statistical tests
used were two sided and performed on 304 individuals in the Bruneck Study
cohort. A.total. AHEL, total Alternate Healthy Eating Index.

Supplementary Table 3d) to predict current enterotypes, but no find-
ingsemerged (Kruskal-Wallis test, P> 0.05; Supplementary Table 13).
Therefore, we sought to use a combination of variables as well as to
investigate how far back we could use this combined information. To
this end, we applied a random forest classifier with class balancing,
feature selection and hyperparameter optimization (see Methods and
Supplementary Information Fig. 2) to predict the current enterotype
for each sampling year using only variables that were available across
allyears for parallel comparison. Models derived fromarandom train-
ing dataset were applied to test data using a k-fold cross-validation
approachinaninnerloop, whichwas repeated 40 timesinan outerloop
to estimate predictive power and avoid overfitting. Models performed
well for all enterotypes each year with classification power highest
for the Pand B2 enterotypes (area under the curve (AUC) = 0.75-0.83;
Fig. 4a). Interestingly, the prediction variables selected for each year
showed distinct patterns for each enterotype (Fig. 4b, Extended Data
Fig.1aand Supplementary Table 14).

Finally, we built a prediction model using variables from all time
points (Fig. 4aand Supplementary Table15). Asaresult, we were able to
improve the prediction power for all enterotypes based on the past and
contemporary variables, yielding the best prediction level compared to
allotheryears (AUC = 0.78-0.83). Prediction power was mostly foundin
variables fromthe diet and health categories (Fig. 4b and Extended Data
Fig.1b). The proportion of features selected was comparable between
early (1995-2005) and recent (2010-2015) time points (Fig. 4c), but B1
and P presented more predictions from the early time points. Overall,
these results suggest that past lifestyle variables can indeed predict
the current microbiome.

We performed multiple validations to verify these results. For
instance, we tested whether suggested historical effects were con-
founded by consistency inlifestyle and diet throughout the years. Over
theyears, autocorrelation analysis of historical variables showed that
only afew variables, such as vegetable score, liquor and seeds intake,
shared a strong correlation (correlation coefficient >|0.5]) between
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performed on 304 individuals in the Bruneck Study cohort.

theinitial year and the first two time points (Extended Data Fig. 2 and
Supplementary Table 16). Given that the autocorrelation could have
lagged effects from previous time points, we further carried out a
linear mixed model with the time points as the predictor and the his-
torical variables as the dependent variables (Supplementary Table 17).
These results also corroborated the observation that lifestyles and
dietary patterns vary over the years (likelihood-ratio test, FDR < 0.1)
and could thus contain relevant and different additional effects over
contemporary data. Next, we permuted individuals and covariates of
the residual matrix to study whether the improvement of prediction
power observed with real historical data is replicated when an equal
amount of random, but similarly structured, dataisadded. Theresults
showed that, inall cases, predictions onreal historical dataoutperform
those withrandomdata (Supplementary Table 18). These validations,
combined with the extensive safety measures implemented in the
model constructionitself, minimize the chances that these models are

overfitted. Thus, we provide evidence that the current gut microbiome
is predictable by past variables and that inclusion of such variables
can increase the variation explained by the current host lifestyle and
physiology. Nonetheless, further validation in independent cohorts
with a similar long-term sampling protocol would be warranted to
confirmthese results. Limitations of this study are the current lack of
replicationin similar large-scale long-term follow-up cohortsinother
populations to assess the generalizability of these results. Additionally,
use of shotgun metagenomics and meta-metabolomics could enhance
taxonomic resolution and functional insights.

In conclusion, we show that an individual’s life history has long-
term effects onthe assembly of the gut microbiome. We report the pre-
dictability of the current gut microbiome by historical host parameters
using a quantitative approach. Our results indicate that microbial com-
munity variation can be partly explained by the host’s life history. Spe-
cifically, we found that changes in an individual’s medication history,
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operating characteristic curve for the evaluations in 1995,2000, 2005,

2010, 2016 and all years together based on 40 rounds of 40-fold cross-
validation. Error bars indicate ranges of true-positive rate (TPR) in the
cross-validation process. FPR, false positive rate. Data are shown as mean
TPR + standard error (SE) obtained from the cross-validation. The mean
AUCs and their s.d. are shown in the bottom-right corner. b, Proportion of the
variables in each category per enterotype. Top, variables selected from the

PRI

analysis of each year. Bottom, variables selected from the analysis of all years
together. ¢, Proportion of feature importance calculated for each enterotype
in the analysis of all years together. Divisions within the bar chartindicate
different variables. Values reported are the mean of the cross-validation
replicates. The numbers in parentheses indicate the combined number of
variables selected. All analyses were performed on 304 individualsin the
Bruneck Study cohort.
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non-sport physical activity and hemoglobin levels over time were
linked to the individual’s current microbiome. Further, we assessed
the prediction potential of the historical metadata over the current
microbiome composition and could predict an individual’s current
enterotype based on the combination of past and contemporary host
parameters. Overall, these results suggest that long-term history of
host laboratory blood parameters, medication, diet and lifestyle can
exert significant impacts on the current microbiome, highlighting
the key variables that are important for maintaining a healthy gut at
alater life stage.

Methods

Study cohort

The study protocol was approved by the ethics committees of Bolzano
and Verona by Comitato Etico della Azienda Sanitaria dell’ Alto Adige,
Provincia Autonoma di Bolzano, and conformed to the Declaration of
Helsinki. Fecal samples were collected in the Bruneck Study, a prospec-
tive population-based study on the epidemiology and pathogenesis
of atherosclerosis launched in 1990 in Bruneck in northwest Italy®.
Bruneck is an urban area located in an alpine region in northern Italy
(South Tyrol). The genetic background of the populationis heterogene-
ous, with sizable segments of the population having either anorthern
Italian or Austro-German background. Population mobility within
the Bruneck area is low, at 0.2% per year at the time of the study. The
official population register contains information obtained from the
national census and is continuously updated regarding births, deaths
and changes of residence. The study population was recruited as a
sex- and age-stratified random sample of all inhabitants aged 40-79
years (125 men and women each in the fifth to eighth decade of life)
selected using a computer-based random number generator. The
baseline examination was performedin1990 (July to November) with
follow-up evaluations at 5-year intervals. Of the total sample, 93.6%
participated in the baseline examination. The study population was
white. The study has extensive metadata on all individuals since 1990
with comprehensive evaluations every 5 years up to 2016. The 2016
evaluation was performed with a 6-month delay in the spring of 2016
rather than in the autumn of 2015 (as usual) due to delays in ethics
approval. All study participants provided written informed consent.
Stool samples (n = 325) were collected at the most recent time point
during the 2016 evaluation when study participants were 65 to 98
years old. Metadata collected include anthropometric information,
each individual’s physician-confirmed medical history and diseases,
foodintake, lifestyle, vascular risk factors, medication and laboratory
parameters*** 2, Inthe survey area, virtually allinhabitants are referred
to one local hospital that works closely with the general practition-
ers, which allows retrieval of full medical information. Accordingly,
in this study, information on clinical diseases (current and past) and
morbidities as well as medication does not rely on the participant’s
self-report but was validated by medical records and based on standard
diagnostic criteria.

Dietaryintake was evaluated by quinquennial (1995,2000, 2005,
2010 and 2015) dietician-administered 118-item food-frequency ques-
tionnaires (FFQs) based on the gold-standard FFQ by Willett and Stamp-
fer” and adapted to the dietary peculiarities in the survey area”?*.
Dieticians made use of illustrative photos of foods when exploring
aphasic patients and of information provided by spouses, caregivers
and nursing homes. For each item in the FFQ, a common unit or por-
tion size was specified, and we instructed participants to customize
how often on average they had consumed that amount in the past
years. The nine response categories ranged from ‘never’ to ‘six or more
times a day’. We calculated nutritional intake by assigning a weight
proportional to the frequency of use for each food (once per day equals
aweight of one), multiplying this weight by the nutrient value for the
specified size and summing the contribution of all foods. Nutrient com-
positiondataforfoods were based on the US Department of Agriculture

Nutrient Database (Release 23) (US Department of Agriculture, Agri-
cultural Research Service, 2010, USDA National Nutrient Database for
Standard Reference, Release 23; http://www.ars.usda.gov/ba/bhnrc/
ndl). We dissected complex foods into component foods using com-
mon recipes. Estimates of nutrient intakes were calorie adjusted. For
this purpose, we used the residuals obtained by regressing polyamine
orother nutrientintake on total energy intake’**®, The reproducibility
and validity of the original FFQ are well documented® and extend toiits
applicationinthe Bruneck Study, in which it was compared against 9-d
dietrecords??. The Alternative Healthy Eating Index (AHEI), ameasure
of diet quality, significantly associated with the risk of major chronic
diseases in a large number of studies, was calculated as described
previously”. We did not consider the ‘duration of multivitamin use com-
ponent’because multivitamin supplementation was almost absentin
our cohort. Accordingly, thisindex has eight components in our study
(vegetablescore, fruitscore, cereal fiber score, alcohol score, meat ratio
score, nuts and soy score, trans-fat score, polyunsaturated-to-saturated
fatty acids ratio)”. Physical activity was quantified using the Baecke
questionnaire®® and the Adult Compendium of Physical Activities to
rate activity intensities, and the average metabolic-equivalent hours
per week were calculated using these results (overall and separated
into sports and non-sport physical activity). Individuals were coded
as current smokers or non-smokers (including former smokers) with
assessment of pack-years of smoking®. Alcohol intake was quantified
in grams per day. BMI was calculated as weight in kilograms divided
by height squared in meters. Systolic and diastolic blood pressure
measures were taken after the participant had beensitting for at least 10
min, and themean of three independent measurements was calculated.
Hypertension was defined as systolic blood pressure >140 mm Hg, or
diastolic blood pressure =90 mm Hg or the use of antihypertensive
drugs. Socioeconomic status was defined on a three-category scale
(low, mediumand high) based oninformation about the occupational
status and educational level of the person with the highest income in
the household. Blood samples were taken in the morning hours after
anovernight fastand 12 h of abstinence from smoking and immediately
processed or stored at -70 °C. Diabetes mellitus was diagnosed when
fasting plasma glucose exceeded 126 mg dI” or when participants were
onantidiabetic medication. Laboratory parameters were assessed by
standard methodsin certified laboratories as detailed previously*** 2,
Allstudy participants underwent ultrasound and transient elastogra-
phy (Fibroscan, Echosens) examination to evaluate hepatic steatosis
and liver stiffness. Of 325 individuals, 20 were excluded because of
missing data for [aboratory parameters, liver stiffness, stool features
andvisceral fat thickness. Variables with missing data for fewer than five
individuals were replaced by the cohort mean or data were otherwise
removed throughout the analysis (variables removed: muscle mass (%),
metabolicrate, Bristol stool score, and fat mass (kg)). The FGFP cohort
usedinthepresentstudy (n=2,215) isanexpanded version of the first
round of sampling completed in 2014 (n =1,106)"".

DNA extraction and sequencing

Fecal DNA extraction and sequencing were performed as described
previously'. Briefly, DNA was extracted from150-200 mg of the frozen
samples using the MagAttract PowerMicrobiome DNA/RNA KF kit
(QIAGEN) following the manufacturer’s instructions. The V4 region
of 16 S rRNA genes was amplified using the 515 F/806 R primer pair
and purified using the QIAquick PCR Purification Kit. Sequencing was
performed using the lllumina MiSeq platform (MiSeq Reagent Kit v2)
and HiSeq 2500 system (151bp paired-end reads) for the Bruneck Study
and the FGFP cohorts, respectively.

Microbial load measurement by flow cytometry

Microbial load of the study cohort was measured as described previ-
ously’. Briefly,200-250 mg of frozen (=80 °C) fecal aliquots was diluted
in saline solution (0.85% NaCl; VWR International) and filtered using
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asterile syringe filter (a pore size of 5 pum; Sartorius Stedim Biotech).
Next, 1 ml of the microbial cell suspension obtained was stained with
1l of SYBR Greenl(1:100 dilutionin DMSO; Thermo Fisher Scientific)
andincubated for15 mininthe darkat37 °C. The flow cytometry analy-
sis was performed using a C6 Accuri flow cytometer (BD Biosciences)
according to Prest et al.”. Fluorescence events were monitored using
the FL1533/30-nmand FL3 > 670-nm optical detectors. The BD Accuri
CFlow software was used to gate and separate the microbial fluores-
cence events on the FL1/FL3 density plot from the fecal sample back-
ground. A threshold value of 2,000 was applied on the FL1 channel.
Based on the exact weight of the aliquots analyzed, cell counts were
converted to microbial loads per gram of fecal material.

Relative and quantitative microbiome profiling

After demultiplexing with LotuS v1.565 (ref. *?), fastq sequences were
further processed following the DADA2 microbiome pipeline®. Briefly,
sequence reads were first filtered and trimmed with the following
parameters: truncQ=11, truncLen=c(130,200) and trimLeft=c(30,
30). Filtered reads were denoised using the DADA2 algorithm, which
infers the sequencing errors. After removing chimeras, an amplicon
sequence variant table was constructed, and taxonomy was assigned
using the Ribosomal Database Project (RDP) classifier implemented
in DADA2 (RDP trainset 16/release 11.5). The ELDERMET cohort data
(n=752) were obtained from the Sequence Read Archive under study
accession number PRJNA283106. The dataset was processed using
the same DADA2 pipeline following the recommendations for 454
sequencingtechnology and using the following filtering and trimming
parameters: trimLeft=c(15) and truncLen=c(200). For the diversity
analysis, we only included community-dwelling individuals and the
first time point (n=153).

To prepare the QMPtable, the relative microbiome profiling (RMP)
taxonomic table was then corrected for copy number and rarefied to
evensampling depth by dividing the sequencing depth by the cell count
and was subsequently multiplied by bacterial cell load to quantify the
number of bacteria per gram of fecal sample as previously described
inref.°. One participant was further excluded due to low read counts
during the data conversion. Using this approach, the sequencing data
became proportional to the microbial loadsinthe samples. Allanalysis
was performed based on QMP unless otherwise noted.

Fecal moisture content

Moisture content was determined as the percentage of mass loss after
lyophilization from 200-300 mg of frozen aliquots of non-homoge-
nized fecal material (-80 °C). Lyophilization was performed for 2 d.

Fecal calprotectin measurement

Fecal calprotectin concentrations were determined using the fCAL
ELISA kit (BiihImann) on frozen fecal material (-80 °C). The level of
calprotectin was corrected for the amount of fecal samples used.

Microbiome and statistical analysis

Statistical and microbiome analyses were performed in R (version
3.6.0)** using the phyloseq®, vegan®®, pairwiseAdonis”, rcompanion®®,
CoDaSeq”, DirichletMultinomial*®, Im.beta* and ppcor*’ packages.
Past lifestyle and dietary patterns were tested by autocorrelation (func-
tion ‘acf’) and alinear mixed model followed by the likelihood-ratio test:

Null model : dietary habit or lifestyle ~ (1|participant)

Alternative model : dietary habit or lifestyle ~ time + (1|participant)

For the microbiota associations with any host parameters, taxa
foundinlessthan20% ofthe population were excluded for noise reduc-
tionand alleviation of multiple-testing correction. Comparison of two
groups was performed using the Wilcoxon rank-sum test, and Kruskal-
Wallis test was used when analyzing more than two groups followed

by post hoc Dunn'’s test. Count data were analyzed by Fisher’s exact
test. Taxonomic associations with host parameters were determined
by partial correlation to adjust for confounders using the R package
ppcor®. All statistical tests used were two sided. All statistical tests were
followed by multiple-testing correction using the Benjamini-Hochberg
method when testing more than two features. Data distribution was
assumed to be normal, but if this was not the case, nonparametric
testing or data transformation was applied.

Analysis of community variations using the current and past vari-
ables. The explanatory power of cohort covariates and their com-
bined effect size for the microbial community variation was evaluated
as described previously". Briefly, distance-based RDA (db-RDA) was
performed on the genus level using the Bray—-Curtis dissimilarity as
implemented in vegan®®. Covariates (FDR < 0.1) found in this step were
entered for forward stepwise model selection to measure their cumula-
tive effect sizes. Before the analysis, the collinearity of variables was
assessed by using Spearman’s rank correlation and the Wilcoxon rank-
sumtest for continuous and binary variables, respectively. One of the
collinear variables wasremoved based onitsrepresentativeness and the
explanatory power of its effect size of > |0.8| (Supplementary Table 20).
To assess the effect of past events or host parameter shifts on the cur-
rent microbiome variation, different approaches were performed for
continuous and binary variables (infection, medication and smoking).
For continuous variables, variable shifts between each time point
and the year 2016 were calculated by subtracting the values. History
of the categorical binary variables was determined by summing the
event that occurred between the two time points. Smoking was taken
assmokinghistoryif theindividuals were current smokers at the time
point. Comparison of past and present nonredundant effect size was
performed by likelihood-ratio test.

Associations of the past with the current microbiome. Enterotyping
based on the DMM approach was performed as described by Holmes
et al.”” on a genus-abundance RMP matrix using the R package Dir-
ichletMultinomial* and the FGFP cohort (n =2,215) as a background
dataset. Evaluation of model fit was performed using the Bayesian
information criterion (BIC) where the best model fit was found at four
Dirichlet components. Taxonomic association analysis after adjust-
ing for age and stool moisture was performed by fitting a GLM (link
=logit). Beta-blocker treatment and hemoglobin clusters were used
as binary dependent variables and genera were used as independent
variables. Standardized g coefficients were calculated using the R
package Im.beta*. Significant associations of deconfounded genera
with the host parameters were tested by performing likelihood-ratio
tests. Clustering of individuals was carried out by categorizing themas
highor low based on the median values measuredin the first time point.
Multiple linear regression was performed on non-sport physical activ-
ity, hemoglobin and alanine transaminase, regressing out the effect of
age, sex and BMI. Before the regression, physical activity and alanine
transaminase were transformed by inverse normal transformation to
fitanormal distribution.

Prediction of the current microbiome based on life history

To constructamicrobiome prediction model, arandom forest classifier
(R package caret**) was trained by setting the historical metadata as the
predictor variablesand the enterotype as the response variable. Here, the
historical covariates were corrected for time effects by retrieving residuals
fromautocorrelative models (thatis, dependent variables - year) for each
individual. Enterotype prediction was carried out for each time pointand
allyears together to determine the most predictive variables regardless
ofthetime points. We followed a nested cross-validation approximation,
which includes data balancing, feature selection and hyperparameter
optimization to eliminate redundant variables, simplify the model and
improve the model’s performance. The outer loop was subjected to 40
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rounds of k-fold cross-validation, while the inner loop was subjected to 5
rounds. Splitting the training datasetinto training and validation datasets
allowedfor databalancing, feature selection and hyperparameter adjust-
mentintheinnerloop (Supplementary Information Fig. 2). The param-
eters that maximized the Matthews correlation coefficient (MCC), using
function‘mcc’ (R package mitools)*, and AUC values, using function ‘roc’
(Rpackage pROC)*, were selected to trainand test on the 40 partitions of
the outer loop.

Data balancing. Due to the dataset’s imbalance property with the
Prevotella enterotype showing the largest imbalance, a permuted
covariate may be as good a predictor as the true historical data when
one or more classes have meager proportions compared to the other
classes. The enterotype distributionin the Bruneck cohort (B1 =34.4%,
B2 =24.6%, P=13.44% and R = 27.5%) was in the range of moderately
(7:3) to highly (8:2 or 9:1) imbalanced. Enterotype data balancing was
carried out using the synthetic minority over-sampling technique
(SMOTE") (R package DMwR*®), the function ‘ROSE’ (R package ROSE*’)
and the down- and upsampling methods (R package caret**). To avoid
overfitting due to the small sample proportionin the training partition,
downsampling was skipped when the sample size was less than thatin
the first quartile (77 samples). As aresult, four datasets were created,
each of whichwas balanced independently. These datasets were further
used for feature selection and hyperparameter tuning.

Feature selection. Feature selection was performed using recursive
feature elimination (RFE)*“. The RFE algorithm performsiterative mod-
eling for feature selection. Ateachiteration, the top-ranked predictors
areretained, and the modelis reevaluated, with the best model being
determined by the highestaccuracy. This analysis was carried out using
the function‘rfe’in the caret R package with the following parameters:
functions=rfFuncs, method="cv’, metric='kappa’ and Number=10. The
number of features selected from eachiteration was set to be selected
from one-quarter of the available covariates in the dataset. Cohen’s
kappametric was used asaselection criterion, given thatithasabetter
performance thanthe accuracy scoreinimbalanced datasets. Feature
selection was performed for each of the four previously balanced
datasets (Supplementary Information Fig. 2).

Hyperparameter optimization. Once feature selection was performed,
arandom forest classifier was implemented for each of the four pre-
viously balanced datasets with its respective selected feature. Each
model was tuned using a grid search optimization strategy (mtry=1:15
and ntree=1000 with 10 repetitions) using the caret R package** func-
tions ‘trainControl’ and ‘train’. The optimal parameters were the ones
that had an AUC of > 0.7 and maximized the MCC, an index for an
imbalanced dataset thatincorporates allinformation from the confu-
sion matrix.

Model performance. The model’s performance was assessed by apply-
ing the best parameters and features for each round to the remaining
40 rounds (functions ‘trainControl’, ‘train’ and ‘predict’; R package
caret**). The model parameters and features that maximized the AUC
and the mean MCC of the 40 rounds of k-fold cross-validation were
selected as the best model. Random forest feature importance was
estimated using the mean decrease in accuracy implemented in the
caret package** (function ‘varimp’).

Assessment of the effect of additional features. To verify that the
predictionbased on covariates with datafor all years was not solely due
to increasing the size of the feature pool from which the model could
select, we evaluated the effect of additional data features by adding
anincreasing numbers of randomly selected additional features (10%,
25%,50%,75% and100% of the entire historical dataset) to the 2016 data.
By comparing the mean AUCs of prediction models with and without

feature selection, we observed that the additional number of features
was not associated with greater prediction power (Spearman’s correla-
tion, P> 0.05 (Extended DataFig. 3a,b); of note, with feature selection,
asmaller number of features enters the model compared to the initial
input). AUC values were significantly improved with the feature selec-
tionapproach, evenwithalower number of features entering the model
compared to the one without the feature selection (Wilcoxon rank-sum
test, P<0.0001; Extended Data Fig. 3¢). Within the feature selection
prediction models, a greater number of initial input features did not
significantly increase the number of features entering into the predic-
tionmodel (Spearman’srho=0.048; P=0.771; Extended DataFig.3d).

Statistics and reproducibility

We used all survival data from the Bruneck cohort since its inception
in1990; therefore, no statistical method was used to predetermine the
sample size. Of 325 individuals, 20 were excluded due to missing data
for laboratory parameters such as liver stiffness, stool features and
visceral fat thickness. Missing data less than five was replaced by the
cohort mean or otherwise removed throughout the analysis. To verify
that the improvement in explanatory power was not due to an extra
number of data features, we carried out the prediction analysis with
randomly permuted historical covariates. The investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw 16S data are available through managed access at the European
Genome-Phenome Archive (https://ega-archive.org) under accession
number EGAS00001004453. Dataare available under controlled access
for participant privacy reasons. They are available in accordance and
in consent with ethical permission through managed access subject
to a data use agreement with the FGFP and organized via principal
investigator J.R. Derived species abundance counts and transformed
microbial trait data can be found in Supplementary Table 19. Bruneck
host metadata from this study are available in accordance and in con-
sent with ethical permission through managed access and organized
via principal investigator H.T. as follows: upon data request by email
to herbert.tilg@i-med.ac.at, the Bruneck data, access committee will
evaluate access permission, which will be granted upon signature of
a data use agreement and material transfer agreement between the
governing legal entities.

Code availability
The custom script for the prediction analysis is available at https://
github.com/raeslab/Enterotype-prediction-based-on-the-life-history.
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Extended DataFig. 1| Prediction of current microbiome using life history. (a) Variables selected for enterotypes in the analysis of individual years and (b) all years
combined. All statistical tests were performed on 304 subjects in the Bruneck Study cohort.
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Data collection  Amplicon sequencing data were obtained using lllumina MiSeq platform. Flow cytometry analysis was performed using a C6 Accuri flow
cytometer (BD Biosciences, New Jersey, USA) with BD Accuri Cflow software v.1.0.264.21 (BD Biosciences, New Jersey, USA).

Data analysis Amplicon sequencing data were demultiplexed with LotuS (v1.565) and further processed following the DADA2 microbiome pipeline (R
package version 1.12.1). Quantitative microbiome profiling (QMP) of microbiome data was prepared by correcting for copy number and
rarefied to even sampling depth, which is the ratio of sequencing depth by the cell counts. Statistical and microbiome analysis were
performed on Rstudio (v3.6.0) using phyloseq (v1.28.0), vegan (v2.5.6), pairwiseAdonis (v.0.0.1), rcompanion (v2.3.25), CoDaSeq (v0.99.4),
DirichletMultinomial (v1.26.0), Im.beta (v1.5.1), and ppcor (v.1.1). Prediction analysis was carried out using Caret (v6.0-86), DMwR (v.0.4.1),
ROSE (v.0.0-4), pROC (1.17.0.1), and mltools (0.3.5) packages.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

Lc0c Y21o

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw 16S data is available through managed access at the European Genome/Phenome Archive (https://ega-archive.org) under accession number




EGAS00001004453. Data is available under controlled access for participant privacy reasons. It is available in accordance and in consent with ethical permission
through managed access subject to a data use agreement with the FGFP and organized via principal investigator Jeroen Raes. Derived species abundance counts
and transformed microbial trait data can be found in Supplementary Table 21. Bruneck host metadata from this study are available in accordance and in consent
with ethical permission through managed access, and organized via Principal Investigator Herbert Tilg, as follows: Upon data request by email to Herbert.tilg@i-
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Sample size No sample-size calculation was performed. A prospective cohort, the Bruneck study, started with 934 subjects in 1990 (Kiechl, 2019). After 26
years, we used the samples available for the Bruneck Study in 2016 (n = 325).

Data exclusions  Out of 325, 20 subjects were excluded due to missing data of laboratory parameters, liver stiffness, stool features, and visceral fat thickness.
One subject was further excluded due to low read counts during the QMP data conversion (Supplementary Information).

Replication Covariates with the highest effect sizes in explanation of the microbial community variation were successfully replicated in previous studies on
the FGFP cohort (Falony et al. (2016) Science, Valles-Colomer et al. (2019) Nature Microbiology). For the prediction of the current

microbiome, no prospective cohort with the past 26 years of metadata is available.

Randomization  The prediction analysis and db-RDA analysis were validated with a randomly permuted dataset. Given that this is not a case-control study,
random allocation of experimental groups was not needed.

Blinding Blinding is not relevant to this study as it is not an experimental study. This study is based on a prospective and population cohorts and a
descriptive study.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Human research participants

Policy information about studies involving human research participants

Population characteristics The Bruneck Study cohort includes 325 subjects recruited in Bruneck, northwest Italy (166 males and 159 females; age
65-98). Metadata (anthropometric information, physician-confirmed medical history and diseases, food intake, lifestyle,
vascular risk factors, medication, and laboratory parameters) available for this study cohort can be found in the methods
section.

Recruitment The Bruneck Study, a prospective population-based study on the epidemiology and pathogenesis of atherosclerosis launched
in 1990 in Bruneck. In the survey area, all inhabitants were referred to one local hospital that closely worked together with
the general practitioners. Stool samples (n = 325) were collected at the most recent time point during the 2016 evaluation
when study participants were 65 to 98 years old.

Ethics oversight The study protocol was approved by the ethics committees of Bolzano and Verona by Comitato Etico della Azienda Sanitaria
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Ethics oversight dell” Alto Adige, Provincia Autonoma di Bolzano and conforms to the Declaration of Helsinki. All study subjects provided
written informed consent. No compensation was provided to participants for participatiing in the Bruneck Study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation 200-250 mg frozen (-80°C) faecal aliquots were dissolved in saline solution (0.85% NaCl; VWR International, Germany) to a
total volume of 100 mL. This slurry was further diluted 1,000 times and filtered using a sterile syringe filter (pore size of 5 um;
Sartorius Stedim Biotech GmbH, Germany). Next, 1 mL of the microbial cell suspension obtained was stained with 1 uL SYBR
Green | (1:100 dilution in DMSO; 10,000 concentrate, Thermo Fisher Scientific, Massachusetts, USA) and incubated for 15
min in the dark at 37°C.

Instrument C6 Accuri flow cytometer (BD Biosciences, New Jersey, USA)

Software BD Accuri Cflow software v.1.0.264.21 (BD Biosciences, New Jersey, USA).

Cell population abundance Not applicable. No sorting of fractions was performed.

Gating strategy Fluorescence events were monitored using the FL1 533/30 nm and FL3 >670 nm optical detectors. In addition, also forward

and sideward-scattered light was collected. The BD Accuri CFlow software was used to gate and separate the microbial
fluorescence events on the FL1/FL3 density plot from the faecal sample background. A threshold value of 2000 was applied
on the FL1 channel. The gated fluorescence events were evaluated on the forward/sideward density plot, as to exclude
remaining background events. Instrument and gating settings were kept identical for all samples

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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