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Long-term life history predicts current  
gut microbiome in a population-based 
cohort study

Jiyeon Si    1,2,12,13, Jorge F. Vázquez-Castellanos1,2,13, Ann C. Gregory    1,2, 
Lindsey Decommer1,2, Leen Rymenans1,2, Sebastian Proost1,2, 
Javier Centelles Lodeiro1,2, Martin Weger3, Marlene Notdurfter4, 
Christoph Leitner4, Peter Santer5, Gregorio Rungger6, Johann Willeit    7, 
Peter Willeit7,8,9, Raimund Pechlaner7, Felix Grabherr    10, Stefan Kiechl7,11, 
Herbert Tilg    10,14   and Jeroen Raes    1,2,14 

Extensive scientific and clinical microbiome studies have explored 
contemporary variation and dynamics of the gut microbiome in human 
health and disease1–3, yet the role of long-term life history effects has been 
underinvestigated. Here, we analyzed the current, quantitative microbiome 
composition in the older adult Bruneck Study cohort (Italians, Bruneck, n = 304 
(male, 154; female, 150); age 65–98 years) with extensive clinical, demographic, 
lifestyle and nutritional data collected over the past 26 years4. Multivariate 
analysis of historical variables indicated that medication history, historical 
physical activity, past dietary habits and specific past laboratory blood 
parameters explain a significant fraction of current quantitative microbiome 
variation in older adults, enlarging the explanatory power of contemporary 
covariates by 33.4%. Prediction of current enterotype by a combination of past 
and contemporary host variables revealed good levels of predictability (area 
under the curve (AUC), 0.78–0.83), with Prevotella and dysbiotic Bacteroides  
2 being the best predicted enterotypes. These findings demonstrate long-term 
life history effects on the microbiota and provide insights into lifestyle variables 
and their role in maintaining a healthy gut microbiota in later life.

The structure, function and dynamics of the human gut microbi-
ome are generally studied in cross-sectional or short-term longitudinal 
settings. Contemporary microbiome variation is partially explained by 

host variables such as age, sex, stool consistency/transit time, health 
status, diet and medication1. However, the gut is a dynamic ecosystem, 
continuously perturbed by dietary intake and egestion or occasional 
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Finally, we combined all significant contemporary and historical 
features (Supplementary Tables 1a, 2a and 3a,b) in one comprehensive 
db-RDA analysis. This analysis found a final set of 15 variables signifi-
cantly explaining the current microbiome variation. All together, they 
significantly increased the final cumulative nonredundant effect size to 
10.4% (likelihood-ratio test, P < 0.05; Fig. 1a and Supplementary Table 
3d). Overall, this shows that the inclusion of historical data resulted 
in a 33.4% increase in nonredundant explanatory power for global 
microbiota variation. To verify that the improvement in explanatory 
power was not due to just an additional number of data features but 
indeed reflects historical impact, we carried out an analysis in which we 
added all of the randomly permuted historical covariates to the 2016 
data. The time effect was removed by using residuals obtained from 
autocorrelative models. These random features dropped the effect 
size to a lower level than with the results from only 2016 because the 
additional features served as nonsignificant covariates, increasing the 
multiple-testing correction hurdle and thus allowing fewer variables 
to enter in the selection model (cumulative nonredundant effect size 
of 4.36%; Supplementary Table 3e). These results confirm that the 
observed 33.4% increase in explanatory power is indeed attributable 
to historical covariates.

We further deepened the relationship of these historical variables 
with the current microbiome by focusing on the current taxonomic 
group abundances as well as community enterotype based on Dirichlet 
multinomial mixtures (DMM) clustering previously validated across 
multiple cohorts10–12. Previous studies detected four enterotypes9, 
dominated by either Bacteroides (B1 and B2 enterotypes, with B2 hav-
ing a lower microbial load and abundance of Faecalibacterium than 
B1)13, Prevotella (P) or Ruminococcaceae (R). All four enterotypes were 
present in the Bruneck cohort (Fig. 2a).

Of the significant historical covariates, we further analyzed beta-
blocker treatment in association with community diversity. By dividing 
participants into three groups (chronic (treatment with beta-blocker 
both in 1990 and 2016), current (treatment with beta-blocker in 2016) 
and none (not medicated in 1990 or 2016)), we found that beta-blocker 
treatment was linked to a significant compositional shift (beta-diver-
sity; Adonis r2 = 0.013, P < 0.001, n = 304; Fig. 2b and Supplementary 
Table 4a), but not to alpha-diversity (Kruskal–Wallis test, P > 0.05, 
n = 304; Fig. 2c). Enterotype prevalence was significantly different 
among the three groups (pairwise Fisher’s exact test, FDR < 0.1 for B2 
and P versus other enterotypes, n = 304; Fig. 2d (left) and Supplemen-
tary Table 4b). In prticular, the B2 enterotype was more prevalent in 
individuals treated with beta-blocker than other enterotypes, whereas 
the P enterotype showed the opposite trend (Kruskal–Wallis test, 
FDR < 0.1, n = 304; Fig. 2d (right) and Supplementary Table 4c), with 
the former observation confirming previous findings14. Further analysis 
of specific taxonomic associations identified a list of bacteria more 
abundant in individuals who did not use beta-blockers, which can be 
potential targets for remediation strategies if future studies confirm 
a causal link for this association (generalized linear model (GLM), 
standardized β range of 4.3 to 0.78, FDR < 0.1, n = 304, adjusted for age 
and stool moisture; Supplementary Table 5). Additionally, we found 
a link between beta-blocker treatment duration and cardiovascular 
disease history (Wilcoxon test, P < 0.01; Supplementary Table 4d), 
but no associations with long-term dietary patterns, as determined 
by the total Alternative Healthy Eating Index (AHEI) (chi-squared test 
and Kruskal–Wallis test, P > 0.05; Fig. 2e). These results are in line 
with recent reports on the associations of microbiome changes with 
cardiovascular disease and beta-blocker use14,15. Analysis of average 
dumpling intake (1995–2016), a historical covariate with the second-
largest effect size corresponding to an important staple food in this 
region, showed a significant association with Dialister abundance but 
not with enterotype (Spearman’s rho = 0.23, FDR < 0.1, adjusted for age 
and stool moisture, n = 304; Supplementary Table 6). We next looked 
at the change in non-sport physical activity between the years 2005 

exposures to medication and disease5. Isolated events and long-term 
lifestyle choices can permanently alter the microbiome6, yet long-term 
temporal effects have been understudied. While diet only allows future 
microbiome prediction up to 2 d after food consumption7, incomplete 
recovery of the original microbiota following antibiotic exposure even 
after 6 months implies that, when strong enough, perturbation effects 
can last long term8. As host health and lifestyle continuously impact 
the microbiome environment over time, a prospective collection of 
host data is necessary to study the long-term cumulative effects of life 
history, especially for long-lived human hosts.

Here, we capitalized on the community-based north Italian 
Bruneck Study cohort (n = 304 (male, 154; female, 150), age 65–98 
years), which prospectively collected long-term, individualized host 
metadata (that is, food intake, lifestyle, medication, blood chemistry 
and clinical assessments) over 26 years (1990 to 2016) in 5-year inter-
vals4. Fecal samples collected in 2016 from individuals aged 65–98 years 
were subjected to quantitative microbiota profiling (QMP), enabling 
association of current absolute microbiome abundances with historical 
metadata9. Using this unique dataset, we explored (1) the associations 
of historical variables and the current microbiome and (2) the predic-
tive capacity of lifestyle history on the current microbiome.

To first evaluate base explanatory power, we performed quantitative 
investigation of contemporary microbial community covariates using a 
distance-based redundancy analysis (db-RDA) approach as applied previ-
ously1,2. We identified 11 contemporary variables that could significantly 
explain the community variation with 7% nonredundant cumulative 
explanatory power. These analyses confirmed that covariates related 
to transit time (that is, current stool moisture, defecation frequency, 
hard stools and obstipation) contribute significantly to overall varia-
tions (db-RDA, adjusted R2 of 1.5–2.4%, false discovery rate (FDR) < 0.1, 
n = 304; Fig. 1a,b and Supplementary Table 1). We then assessed the 
potential of the extensive array of historical parameters collected dur-
ing previous Bruneck Study evaluations (1990–2016) to explain current 
microbiome variation. Using historical parameters from each year as 
explanatory variables (Supplementary Table 2a), we identified several 
historical variables contributing significantly to a cumulative model 
that also included present variables (Supplementary Table 2b). Over-
all, significant historical variables were mostly linked to beta-blocker 
use, blood parameters and diet (db-RDA, adjusted R2 of 0.60–0.80%, 
FDR < 0.1, n = 304; Supplementary Table 2a). Interestingly, inclusion of 
these significant historical parameters significantly increased the cumu-
lative nonredundant effect size to 8.5% (likelihood ratio test, P < 0.05; 
Supplementary Table 2b), indicating the potential explanatory power 
of long-term historical covariates on the current microbiome.

To better capture long-term lifestyle and health effects, we further 
investigated overall historical trends of variables using the average 
across all years and difference (that is, delta) for continuous variables 
and counts of event occurrence for categorical variables between each 
year and the year 2016. Analysis of averaged covariates revealed that 
only average intake of dumplings (canederli or knödel) from 1995 to 
2016 was significant (db-RDA, adjusted R2 = 0.75%, FDR < 0.1, n = 304; 
Supplementary Table 3a). Given that canederli are traditional foods 
in the northeast region of Italy, this result is likely a proxy for a more 
traditional lifestyle. Covariate analysis of change (delta) in historical 
host parameters identified multiple non-colinear parameters inde-
pendent of the time period covered (db-RDA, adjusted R2 = 0.63–1.11, 
FDR < 0.1, n = 304; Supplementary Table 3b and Fig. 1c). These were 
again analyzed with 11 significant contemporary covariates to cal-
culate nonredundant cumulative effect sizes. Beta-blocker change 
from 1990 to 2016, non-sport physical activity change from 2005 to 
2016, hemoglobin change from 1990 to 2016 and alanine transaminase 
change from 2005 to 2016 were shown to have significant explanatory 
power in addition to contemporary covariates, significantly raising 
the cumulative nonredundant effect size to 8.5% (likelihood-ratio test, 
P < 0.05; Supplementary Table 3c).

http://www.nature.com/nataging
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and 2016. We first identified taxa associated with both physical activ-
ity shifts (that is, the change from the past to the present) and current 
levels of physical activity. Although no genera were associated with 
both variables, butyrate-producing bacteria (that is, Roseburia, Fae-
calibacterium and Butyricicoccus) significantly increased in abundance 
with long-term physical activity (Spearman’s rho = 0.18–0.21, FDR < 0.1, 
adjusted for age and stool moisture, n = 304; Fig. 3b and Supplementary 
Tables 7 and 8). The positive influence of exercise on gut health has 
gained recent attention, with elevated abundance of Roseburia and 
Faecalibacterium reported in fit individuals and those who perform 
regular exercise16–19. To study the effects of changing physical activity, 
we clustered individuals into four categories: those with high activity 
in the past and at present (cluster 1), those with high activity in the past 
and low activity at present (cluster 2), those with low activity in the past 
and high activity at present (cluster 3) and those with low activity in 
the past and at present (cluster 4). Interestingly, individuals who had 
recently increased physical activity as well as those who had consist-
ently maintained high activity exhibited a reduced ratio of (dysbiotic) 
B2 to non-B2 enterotypes. This suggests that physical activity has a 
beneficial role in the gut ecosystem of healthy older adults (pairwise 
chi-squared test, FDR < 0.1, n = 304; Fig. 3a and Supplementary Table 9).

Finally, we studied changes in hemoglobin between 1990 and 2016. 
Analysis of taxonomic association with both current hemoglobin and 
changes showed that another butyrate-producing bacterial genus, 
Coprococcus, was significantly associated with high levels of current 
hemoglobin as well as hemoglobin increase over time (Spearman’s rho 
= 0.19–0.20, FDR < 0.1, adjusted for age and stool moisture, n = 304; 
Fig. 3c and Supplementary Tables 10 and 11). This association could be 
linked to iron levels and/or consumption. For example, Coprococcus 
abundance was found to be lower in rats fed an iron-depleted diet and 
in infants with iron deficiency anemia20,21. At the enterotype level, the 
clustering approach used above did not show a significant association 
(Fig. 3c). Similarly, analysis of changes in alanine aminotransferase 
(ALT) between 2005 and 2016 showed that only the current ALT levels 
were significantly associated with Methanobrevibacter but not with 
enterotypes (Spearman’s rho = −0.18, FDR < 0.1, adjusted for age and 
stool moisture, n = 304; Supplementary Table 12 and Fig. 3d).

Next, we studied the predictive potential of life history on the 
current microbiome, moving from single-parameter models to more 
complex models. We first investigated long-term predictability by 
focusing on the power of the three significant individual historical 
variables from the year 2010 (db-RDA, FDR < 0.1, n = 304; Fig. 1a and 
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Supplementary Table 3d) to predict current enterotypes, but no find-
ings emerged (Kruskal–Wallis test, P > 0.05; Supplementary Table 13).  
Therefore, we sought to use a combination of variables as well as to 
investigate how far back we could use this combined information. To 
this end, we applied a random forest classifier with class balancing, 
feature selection and hyperparameter optimization (see Methods and 
Supplementary Information Fig. 2) to predict the current enterotype 
for each sampling year using only variables that were available across 
all years for parallel comparison. Models derived from a random train-
ing dataset were applied to test data using a k-fold cross-validation 
approach in an inner loop, which was repeated 40 times in an outer loop 
to estimate predictive power and avoid overfitting. Models performed 
well for all enterotypes each year with classification power highest 
for the P and B2 enterotypes (area under the curve (AUC) = 0.75–0.83; 
Fig. 4a). Interestingly, the prediction variables selected for each year 
showed distinct patterns for each enterotype (Fig. 4b, Extended Data 
Fig. 1a and Supplementary Table 14).

Finally, we built a prediction model using variables from all time 
points (Fig. 4a and Supplementary Table 15). As a result, we were able to 
improve the prediction power for all enterotypes based on the past and 
contemporary variables, yielding the best prediction level compared to 
all other years (AUC = 0.78–0.83). Prediction power was mostly found in 
variables from the diet and health categories (Fig. 4b and Extended Data 
Fig. 1b). The proportion of features selected was comparable between 
early (1995–2005) and recent (2010–2015) time points (Fig. 4c), but B1 
and P presented more predictions from the early time points. Overall, 
these results suggest that past lifestyle variables can indeed predict 
the current microbiome.

We performed multiple validations to verify these results. For 
instance, we tested whether suggested historical effects were con-
founded by consistency in lifestyle and diet throughout the years. Over 
the years, autocorrelation analysis of historical variables showed that 
only a few variables, such as vegetable score, liquor and seeds intake, 
shared a strong correlation (correlation coefficient > |0.5|) between 
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the initial year and the first two time points (Extended Data Fig. 2 and 
Supplementary Table 16). Given that the autocorrelation could have 
lagged effects from previous time points, we further carried out a 
linear mixed model with the time points as the predictor and the his-
torical variables as the dependent variables (Supplementary Table 17). 
These results also corroborated the observation that lifestyles and 
dietary patterns vary over the years (likelihood-ratio test, FDR < 0.1) 
and could thus contain relevant and different additional effects over 
contemporary data. Next, we permuted individuals and covariates of 
the residual matrix to study whether the improvement of prediction 
power observed with real historical data is replicated when an equal 
amount of random, but similarly structured, data is added. The results 
showed that, in all cases, predictions on real historical data outperform 
those with random data (Supplementary Table 18). These validations, 
combined with the extensive safety measures implemented in the 
model construction itself, minimize the chances that these models are 

overfitted. Thus, we provide evidence that the current gut microbiome 
is predictable by past variables and that inclusion of such variables 
can increase the variation explained by the current host lifestyle and 
physiology. Nonetheless, further validation in independent cohorts 
with a similar long-term sampling protocol would be warranted to 
confirm these results. Limitations of this study are the current lack of 
replication in similar large-scale long-term follow-up cohorts in other 
populations to assess the generalizability of these results. Additionally, 
use of shotgun metagenomics and meta-metabolomics could enhance 
taxonomic resolution and functional insights.

In conclusion, we show that an individual’s life history has long-
term effects on the assembly of the gut microbiome. We report the pre-
dictability of the current gut microbiome by historical host parameters 
using a quantitative approach. Our results indicate that microbial com-
munity variation can be partly explained by the host’s life history. Spe-
cifically, we found that changes in an individual’s medication history, 
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Fig. 3 | Link of life history with the gut microbiome of older adults. a, Left, 
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indicates pairwise chi-squared test FDR < 0.1. b, Correlation of hemoglobin 
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of hemoglobin (partial correlation, FDR < 0.1). c,d, Comparison of clusters of 
hemoglobin (c) and ALT (d) across the years. Cluster 1, high activity in the past 
and at present; cluster 2, high activity in the past and low activity at present; 
cluster 3, low activity in the past and high activity at present; and cluster 4, low 
activity in the past and at present. All statistical tests used were two sided and 
performed on 304 individuals in the Bruneck Study cohort.
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non-sport physical activity and hemoglobin levels over time were 
linked to the individual’s current microbiome. Further, we assessed 
the prediction potential of the historical metadata over the current 
microbiome composition and could predict an individual’s current 
enterotype based on the combination of past and contemporary host 
parameters. Overall, these results suggest that long-term history of 
host laboratory blood parameters, medication, diet and lifestyle can 
exert significant impacts on the current microbiome, highlighting 
the key variables that are important for maintaining a healthy gut at 
a later life stage.

Methods
Study cohort
The study protocol was approved by the ethics committees of Bolzano 
and Verona by Comitato Etico della Azienda Sanitaria dell’ Alto Adige, 
Provincia Autonoma di Bolzano, and conformed to the Declaration of 
Helsinki. Fecal samples were collected in the Bruneck Study, a prospec-
tive population-based study on the epidemiology and pathogenesis 
of atherosclerosis launched in 1990 in Bruneck in northwest Italy6. 
Bruneck is an urban area located in an alpine region in northern Italy 
(South Tyrol). The genetic background of the population is heterogene-
ous, with sizable segments of the population having either a northern 
Italian or Austro-German background. Population mobility within 
the Bruneck area is low, at 0.2% per year at the time of the study. The 
official population register contains information obtained from the 
national census and is continuously updated regarding births, deaths 
and changes of residence. The study population was recruited as a 
sex- and age-stratified random sample of all inhabitants aged 40–79 
years (125 men and women each in the fifth to eighth decade of life) 
selected using a computer-based random number generator. The 
baseline examination was performed in 1990 ( July to November) with 
follow-up evaluations at 5-year intervals. Of the total sample, 93.6% 
participated in the baseline examination. The study population was 
white. The study has extensive metadata on all individuals since 1990 
with comprehensive evaluations every 5 years up to 2016. The 2016 
evaluation was performed with a 6-month delay in the spring of 2016 
rather than in the autumn of 2015 (as usual) due to delays in ethics 
approval. All study participants provided written informed consent. 
Stool samples (n = 325) were collected at the most recent time point 
during the 2016 evaluation when study participants were 65 to 98 
years old. Metadata collected include anthropometric information, 
each individual’s physician-confirmed medical history and diseases, 
food intake, lifestyle, vascular risk factors, medication and laboratory 
parameters4,22–26. In the survey area, virtually all inhabitants are referred 
to one local hospital that works closely with the general practition-
ers, which allows retrieval of full medical information. Accordingly, 
in this study, information on clinical diseases (current and past) and 
morbidities as well as medication does not rely on the participant’s 
self-report but was validated by medical records and based on standard 
diagnostic criteria.

Dietary intake was evaluated by quinquennial (1995, 2000, 2005, 
2010 and 2015) dietician-administered 118-item food-frequency ques-
tionnaires (FFQs) based on the gold-standard FFQ by Willett and Stamp-
fer27 and adapted to the dietary peculiarities in the survey area22,26. 
Dieticians made use of illustrative photos of foods when exploring 
aphasic patients and of information provided by spouses, caregivers 
and nursing homes. For each item in the FFQ, a common unit or por-
tion size was specified, and we instructed participants to customize 
how often on average they had consumed that amount in the past 
years. The nine response categories ranged from ‘never’ to ‘six or more 
times a day’. We calculated nutritional intake by assigning a weight 
proportional to the frequency of use for each food (once per day equals 
a weight of one), multiplying this weight by the nutrient value for the 
specified size and summing the contribution of all foods. Nutrient com-
position data for foods were based on the US Department of Agriculture 

Nutrient Database (Release 23) (US Department of Agriculture, Agri-
cultural Research Service, 2010, USDA National Nutrient Database for 
Standard Reference, Release 23; http://www.ars.usda.gov/ba/bhnrc/
ndl). We dissected complex foods into component foods using com-
mon recipes. Estimates of nutrient intakes were calorie adjusted. For 
this purpose, we used the residuals obtained by regressing polyamine 
or other nutrient intake on total energy intake26,28. The reproducibility 
and validity of the original FFQ are well documented27 and extend to its 
application in the Bruneck Study, in which it was compared against 9-d 
diet records22,26. The Alternative Healthy Eating Index (AHEI), a measure 
of diet quality, significantly associated with the risk of major chronic 
diseases in a large number of studies, was calculated as described 
previously29. We did not consider the ‘duration of multivitamin use com-
ponent’ because multivitamin supplementation was almost absent in 
our cohort. Accordingly, this index has eight components in our study 
(vegetable score, fruit score, cereal fiber score, alcohol score, meat ratio 
score, nuts and soy score, trans-fat score, polyunsaturated-to-saturated 
fatty acids ratio)29. Physical activity was quantified using the Baecke 
questionnaire30 and the Adult Compendium of Physical Activities to 
rate activity intensities, and the average metabolic-equivalent hours 
per week were calculated using these results (overall and separated 
into sports and non-sport physical activity). Individuals were coded 
as current smokers or non-smokers (including former smokers) with 
assessment of pack-years of smoking25. Alcohol intake was quantified 
in grams per day. BMI was calculated as weight in kilograms divided 
by height squared in meters. Systolic and diastolic blood pressure 
measures were taken after the participant had been sitting for at least 10 
min, and the mean of three independent measurements was calculated. 
Hypertension was defined as systolic blood pressure ≥140 mm Hg, or 
diastolic blood pressure ≥90 mm Hg or the use of antihypertensive 
drugs. Socioeconomic status was defined on a three-category scale 
(low, medium and high) based on information about the occupational 
status and educational level of the person with the highest income in 
the household. Blood samples were taken in the morning hours after 
an overnight fast and 12 h of abstinence from smoking and immediately 
processed or stored at −70 °C. Diabetes mellitus was diagnosed when 
fasting plasma glucose exceeded 126 mg dl-1 or when participants were 
on antidiabetic medication. Laboratory parameters were assessed by 
standard methods in certified laboratories as detailed previously4,22–26. 
All study participants underwent ultrasound and transient elastogra-
phy (Fibroscan, Echosens) examination to evaluate hepatic steatosis 
and liver stiffness. Of 325 individuals, 20 were excluded because of 
missing data for laboratory parameters, liver stiffness, stool features 
and visceral fat thickness. Variables with missing data for fewer than five 
individuals were replaced by the cohort mean or data were otherwise 
removed throughout the analysis (variables removed: muscle mass (%), 
metabolic rate, Bristol stool score, and fat mass (kg)). The FGFP cohort 
used in the present study (n = 2,215) is an expanded version of the first 
round of sampling completed in 2014 (n = 1,106)1,31.

DNA extraction and sequencing
Fecal DNA extraction and sequencing were performed as described 
previously1. Briefly, DNA was extracted from 150–200 mg of the frozen 
samples using the MagAttract PowerMicrobiome DNA/RNA KF kit 
(QIAGEN) following the manufacturer’s instructions. The V4 region 
of 16 S rRNA genes was amplified using the 515 F/806 R primer pair 
and purified using the QIAquick PCR Purification Kit. Sequencing was 
performed using the Illumina MiSeq platform (MiSeq Reagent Kit v2) 
and HiSeq 2500 system (151bp paired-end reads) for the Bruneck Study 
and the FGFP cohorts, respectively.

Microbial load measurement by flow cytometry
Microbial load of the study cohort was measured as described previ-
ously7. Briefly, 200–250 mg of frozen (−80 °C) fecal aliquots was diluted 
in saline solution (0.85% NaCl; VWR International) and filtered using 
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a sterile syringe filter (a pore size of 5 µm; Sartorius Stedim Biotech). 
Next, 1 ml of the microbial cell suspension obtained was stained with 
1 µl of SYBR Green I (1:100 dilution in DMSO; Thermo Fisher Scientific) 
and incubated for 15 min in the dark at 37 °C. The flow cytometry analy-
sis was performed using a C6 Accuri flow cytometer (BD Biosciences) 
according to Prest et al.11. Fluorescence events were monitored using 
the FL1 533/30-nm and FL3 > 670-nm optical detectors. The BD Accuri 
CFlow software was used to gate and separate the microbial fluores-
cence events on the FL1/FL3 density plot from the fecal sample back-
ground. A threshold value of 2,000 was applied on the FL1 channel. 
Based on the exact weight of the aliquots analyzed, cell counts were 
converted to microbial loads per gram of fecal material.

Relative and quantitative microbiome profiling
After demultiplexing with LotuS v1.565 (ref. 32), fastq sequences were 
further processed following the DADA2 microbiome pipeline33. Briefly, 
sequence reads were first filtered and trimmed with the following 
parameters: truncQ=11, truncLen=c(130,200) and trimLeft=c(30, 
30). Filtered reads were denoised using the DADA2 algorithm, which 
infers the sequencing errors. After removing chimeras, an amplicon 
sequence variant table was constructed, and taxonomy was assigned 
using the Ribosomal Database Project (RDP) classifier implemented 
in DADA2 (RDP trainset 16/release 11.5). The ELDERMET cohort data 
(n = 752) were obtained from the Sequence Read Archive under study 
accession number PRJNA283106. The dataset was processed using 
the same DADA2 pipeline following the recommendations for 454 
sequencing technology and using the following filtering and trimming 
parameters: trimLeft=c(15) and truncLen=c(200). For the diversity 
analysis, we only included community-dwelling individuals and the 
first time point (n = 153).

To prepare the QMP table, the relative microbiome profiling (RMP) 
taxonomic table was then corrected for copy number and rarefied to 
even sampling depth by dividing the sequencing depth by the cell count 
and was subsequently multiplied by bacterial cell load to quantify the 
number of bacteria per gram of fecal sample as previously described 
in ref. 9. One participant was further excluded due to low read counts 
during the data conversion. Using this approach, the sequencing data 
became proportional to the microbial loads in the samples. All analysis 
was performed based on QMP unless otherwise noted.

Fecal moisture content
Moisture content was determined as the percentage of mass loss after 
lyophilization from 200–300 mg of frozen aliquots of non-homoge-
nized fecal material (−80 °C). Lyophilization was performed for 2 d.

Fecal calprotectin measurement
Fecal calprotectin concentrations were determined using the fCAL 
ELISA kit (Bühlmann) on frozen fecal material (−80 °C). The level of 
calprotectin was corrected for the amount of fecal samples used.

Microbiome and statistical analysis
Statistical and microbiome analyses were performed in R (version 
3.6.0)34 using the phyloseq35, vegan36, pairwiseAdonis37, rcompanion38, 
CoDaSeq39, DirichletMultinomial40, lm.beta41 and ppcor42 packages. 
Past lifestyle and dietary patterns were tested by autocorrelation (func-
tion ‘acf’) and a linear mixed model followed by the likelihood-ratio test:

Nullmodel ∶ dietary habit or lifestyle ∼ (1|participant)

Alternativemodel ∶ dietary habit or lifestyle ∼ time + (1|participant)

For the microbiota associations with any host parameters, taxa 
found in less than 20% of the population were excluded for noise reduc-
tion and alleviation of multiple-testing correction. Comparison of two 
groups was performed using the Wilcoxon rank-sum test, and Kruskal–
Wallis test was used when analyzing more than two groups followed 

by post hoc Dunn’s test. Count data were analyzed by Fisher’s exact 
test. Taxonomic associations with host parameters were determined 
by partial correlation to adjust for confounders using the R package 
ppcor43. All statistical tests used were two sided. All statistical tests were 
followed by multiple-testing correction using the Benjamini–Hochberg 
method when testing more than two features. Data distribution was 
assumed to be normal, but if this was not the case, nonparametric 
testing or data transformation was applied.

Analysis of community variations using the current and past vari-
ables. The explanatory power of cohort covariates and their com-
bined effect size for the microbial community variation was evaluated 
as described previously1. Briefly, distance-based RDA (db-RDA) was 
performed on the genus level using the Bray–Curtis dissimilarity as 
implemented in vegan36. Covariates (FDR < 0.1) found in this step were 
entered for forward stepwise model selection to measure their cumula-
tive effect sizes. Before the analysis, the collinearity of variables was 
assessed by using Spearman’s rank correlation and the Wilcoxon rank-
sum test for continuous and binary variables, respectively. One of the 
collinear variables was removed based on its representativeness and the 
explanatory power of its effect size of > |0.8| (Supplementary Table 20).  
To assess the effect of past events or host parameter shifts on the cur-
rent microbiome variation, different approaches were performed for 
continuous and binary variables (infection, medication and smoking). 
For continuous variables, variable shifts between each time point 
and the year 2016 were calculated by subtracting the values. History 
of the categorical binary variables was determined by summing the 
event that occurred between the two time points. Smoking was taken 
as smoking history if the individuals were current smokers at the time 
point. Comparison of past and present nonredundant effect size was 
performed by likelihood-ratio test.

Associations of the past with the current microbiome. Enterotyping 
based on the DMM approach was performed as described by Holmes 
et al.43 on a genus-abundance RMP matrix using the R package Dir-
ichletMultinomial41 and the FGFP cohort (n = 2,215) as a background 
dataset. Evaluation of model fit was performed using the Bayesian 
information criterion (BIC) where the best model fit was found at four 
Dirichlet components. Taxonomic association analysis after adjust-
ing for age and stool moisture was performed by fitting a GLM (link 
= logit). Beta-blocker treatment and hemoglobin clusters were used 
as binary dependent variables and genera were used as independent 
variables. Standardized β coefficients were calculated using the R 
package lm.beta41. Significant associations of deconfounded genera 
with the host parameters were tested by performing likelihood-ratio 
tests. Clustering of individuals was carried out by categorizing them as 
high or low based on the median values measured in the first time point. 
Multiple linear regression was performed on non-sport physical activ-
ity, hemoglobin and alanine transaminase, regressing out the effect of 
age, sex and BMI. Before the regression, physical activity and alanine 
transaminase were transformed by inverse normal transformation to 
fit a normal distribution.

Prediction of the current microbiome based on life history
To construct a microbiome prediction model, a random forest classifier  
(R package caret44) was trained by setting the historical metadata as the 
predictor variables and the enterotype as the response variable. Here, the 
historical covariates were corrected for time effects by retrieving residuals 
from autocorrelative models (that is, dependent variables ~ year) for each 
individual. Enterotype prediction was carried out for each time point and 
all years together to determine the most predictive variables regardless 
of the time points. We followed a nested cross-validation approximation, 
which includes data balancing, feature selection and hyperparameter 
optimization to eliminate redundant variables, simplify the model and 
improve the model’s performance. The outer loop was subjected to 40 
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rounds of k-fold cross-validation, while the inner loop was subjected to 5 
rounds. Splitting the training dataset into training and validation datasets 
allowed for data balancing, feature selection and hyperparameter adjust-
ment in the inner loop (Supplementary Information Fig. 2). The param-
eters that maximized the Matthews correlation coefficient (MCC), using 
function ‘mcc’ (R package mltools)45, and AUC values, using function ‘roc’ 
(R package pROC)46, were selected to train and test on the 40 partitions of  
the outer loop.

Data balancing. Due to the dataset’s imbalance property with the 
Prevotella enterotype showing the largest imbalance, a permuted 
covariate may be as good a predictor as the true historical data when 
one or more classes have meager proportions compared to the other 
classes. The enterotype distribution in the Bruneck cohort (B1 = 34.4%, 
B2 = 24.6%, P = 13.44% and R = 27.5%) was in the range of moderately 
(7:3) to highly (8:2 or 9:1) imbalanced. Enterotype data balancing was 
carried out using the synthetic minority over-sampling technique 
(SMOTE47) (R package DMwR48), the function ‘ROSE’ (R package ROSE49) 
and the down- and upsampling methods (R package caret44). To avoid 
overfitting due to the small sample proportion in the training partition, 
downsampling was skipped when the sample size was less than that in 
the first quartile (77 samples). As a result, four datasets were created, 
each of which was balanced independently. These datasets were further 
used for feature selection and hyperparameter tuning.

Feature selection. Feature selection was performed using recursive 
feature elimination (RFE)44. The RFE algorithm performs iterative mod-
eling for feature selection. At each iteration, the top-ranked predictors 
are retained, and the model is reevaluated, with the best model being 
determined by the highest accuracy. This analysis was carried out using 
the function ‘rfe’ in the caret R package with the following parameters: 
functions=rfFuncs, method=‘cv’, metric=‘kappa’ and Number=10. The 
number of features selected from each iteration was set to be selected 
from one-quarter of the available covariates in the dataset. Cohen’s 
kappa metric was used as a selection criterion, given that it has a better 
performance than the accuracy score in imbalanced datasets. Feature 
selection was performed for each of the four previously balanced 
datasets (Supplementary Information Fig. 2).

Hyperparameter optimization. Once feature selection was performed, 
a random forest classifier was implemented for each of the four pre-
viously balanced datasets with its respective selected feature. Each 
model was tuned using a grid search optimization strategy (mtry=1:15 
and ntree=1000 with 10 repetitions) using the caret R package44 func-
tions ‘trainControl’ and ‘train’. The optimal parameters were the ones 
that had an AUC of > 0.7 and maximized the MCC, an index for an  
imbalanced dataset that incorporates all information from the confu-
sion matrix.

Model performance. The model’s performance was assessed by apply-
ing the best parameters and features for each round to the remaining 
40 rounds (functions ‘trainControl’, ‘train’ and ‘predict’; R package 
caret44). The model parameters and features that maximized the AUC 
and the mean MCC of the 40 rounds of k-fold cross-validation were 
selected as the best model. Random forest feature importance was 
estimated using the mean decrease in accuracy implemented in the 
caret package44 (function ‘varImp’).

Assessment of the effect of additional features. To verify that the 
prediction based on covariates with data for all years was not solely due 
to increasing the size of the feature pool from which the model could 
select, we evaluated the effect of additional data features by adding 
an increasing numbers of randomly selected additional features (10%, 
25%, 50%, 75% and 100% of the entire historical dataset) to the 2016 data. 
By comparing the mean AUCs of prediction models with and without 

feature selection, we observed that the additional number of features 
was not associated with greater prediction power (Spearman’s correla-
tion, P > 0.05 (Extended Data Fig. 3a,b); of note, with feature selection, 
a smaller number of features enters the model compared to the initial 
input). AUC values were significantly improved with the feature selec-
tion approach, even with a lower number of features entering the model 
compared to the one without the feature selection (Wilcoxon rank-sum 
test, P < 0.0001; Extended Data Fig. 3c). Within the feature selection 
prediction models, a greater number of initial input features did not 
significantly increase the number of features entering into the predic-
tion model (Spearman’s rho = 0.048; P = 0.771; Extended Data Fig. 3d).

Statistics and reproducibility
We used all survival data from the Bruneck cohort since its inception 
in 1990; therefore, no statistical method was used to predetermine the 
sample size. Of 325 individuals, 20 were excluded due to missing data 
for laboratory parameters such as liver stiffness, stool features and 
visceral fat thickness. Missing data less than five was replaced by the 
cohort mean or otherwise removed throughout the analysis. To verify 
that the improvement in explanatory power was not due to an extra 
number of data features, we carried out the prediction analysis with 
randomly permuted historical covariates. The investigators were not 
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Raw 16S data are available through managed access at the European 
Genome-Phenome Archive (https://ega-archive.org) under accession 
number EGAS00001004453. Data are available under controlled access 
for participant privacy reasons. They are available in accordance and 
in consent with ethical permission through managed access subject 
to a data use agreement with the FGFP and organized via principal 
investigator J.R. Derived species abundance counts and transformed 
microbial trait data can be found in Supplementary Table 19. Bruneck 
host metadata from this study are available in accordance and in con-
sent with ethical permission through managed access and organized 
via principal investigator H.T. as follows: upon data request by email 
to herbert.tilg@i-med.ac.at, the Bruneck data, access committee will 
evaluate access permission, which will be granted upon signature of 
a data use agreement and material transfer agreement between the 
governing legal entities.

Code availability
The custom script for the prediction analysis is available at https://
github.com/raeslab/Enterotype-prediction-based-on-the-life-history.

References
1.	 Falony, G. et al. Population-level analysis of gut microbiome 

variation. Science 352, 560–564 (2016).
2.	 Valles-Colomer, M. et al. The neuroactive potential of the human 

gut microbiota in quality of life and depression. Nat. Microbiol. 4, 
623–632 (2019).

3.	 Vieira-Silva, S. et al. Statin therapy is associated with lower 
prevalence of gut microbiota dysbiosis. Nature 581, 310–315 
(2020).

4.	 Kiechl, S. & Willeit, J. In a nutshell: findings from the Bruneck 
study. Gerontology 65, 9–19 (2019).

5.	 Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: 
from association to modulation. Cell 172, 1198–1215 (2018).

6.	 Johnson, A. J. et al. Daily sampling reveals personalized diet–
microbiome associations in humans. Cell Host Microbe 25, 
789–802 (2019).

http://www.nature.com/nataging
https://ega-archive.org
https://ega-archive.org/studies/EGAS00001004453
https://github.com/raeslab/Enterotype-prediction-based-on-the-life-history
https://github.com/raeslab/Enterotype-prediction-based-on-the-life-history


Nature Aging | Volume 2 | October 2022 | 885–895  894

Letter https://doi.org/10.1038/s43587-022-00286-w

7.	 Palleja, A. et al. Recovery of gut microbiota of healthy adults 
following antibiotic exposure. Nat. Microbiol. 3, 1255–1265  
(2018).

8.	 Falony, G., Vieira-Silva, S. & Raes, J. Richness and ecosystem 
development across faecal snapshots of the gut microbiota. Nat. 
Microbiol. 3, 526–528 (2018).

9.	 Vandeputte, D. et al. Quantitative microbiome profiling links gut 
community variation to microbial load. Nature 551, 507–511 (2017).

10.	 Arumugam, M. et al. Enterotypes of the human gut microbiome. 
Nature 473, 174–180 (2011).

11.	 Ding, T. & Schloss, P. D. Dynamics and associations of microbial 
community types across the human body. Nature 509, 357–360 
(2014).

12.	 Wu, G. D. et al. Linking long-term dietary patterns with gut 
microbial enterotypes. Science 334, 105–108 (2011).

13.	 Vieira-Silva, S. et al. Quantitative microbiome profiling 
disentangles inflammation- and bile duct obstruction-associated 
microbiota alterations across PSC/IBD diagnoses. Nat. Microbiol. 
4, 1826–1831 (2019).

14.	 Forslund, S. K. et al. Combinatorial, additive and dose-dependent 
drug–microbiome associations. Nature 600, 500–505 (2021).

15.	 Fromentin, S. et al. Microbiome and metabolome features of the 
cardiometabolic disease spectrum. Nat. Med. 28, 303–314 (2022).

16.	 Monda, V. et al. Exercise modifies the gut microbiota with positive 
health effects. Oxid. Med. Cell. Longev. 2017, 3831972–3831972 
(2017).

17.	 Codella, R., Luzi, L. & Terruzzi, I. Exercise has the guts: how 
physical activity may positively modulate gut microbiota in 
chronic and immune-based diseases. Digest. Liver Dis. 50, 
331–341 (2018).

18.	 Estaki, M. et al. Cardiorespiratory fitness as a predictor of 
intestinal microbial diversity and distinct metagenomic functions. 
Microbiome 4, 42 (2016).

19.	 Bressa, C. et al. Differences in gut microbiota profile between 
women with active lifestyle and sedentary women. PLoS ONE 12, 
e0171352–e0171352 (2017).

20.	 Dostal, A. et al. Iron supplementation promotes gut microbiota 
metabolic activity but not colitis markers in human gut 
microbiota-associated rats. Br. J. Nutr. 111, 2135–2145 (2014).

21.	 McClorry, S. et al. Anemia in infancy is associated with alterations 
in systemic metabolism and microbial structure and function in a 
sex-specific manner: an observational study. Am. J. Clin. Nutr. 108, 
1238–1248 (2018).

22.	 Eisenberg, T. et al. Cardioprotection and lifespan extension by the 
natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

23.	 Kiechl, S. et al. Blockade of receptor activator of nuclear 
factor-κB (RANKL) signaling improves hepatic insulin resistance 
and prevents development of diabetes mellitus. Nat. Med. 19, 
358–363 (2013).

24.	 Kiechl, S. et al. Toll-like receptor 4 polymorphisms and 
atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

25.	 Kiechl, S. et al. Active and passive smoking, chronic infections, 
and the risk of carotid atherosclerosis: prospective results from 
the Bruneck Study. Stroke 33, 2170–2176 (2002).

26.	 Kiechl, S. et al. Higher spermidine intake is linked to lower 
mortality: a prospective population-based study. Am. J. Clin. Nutr. 
108, 371–380 (2018).

27.	 Willett, W. C. et al. Reproducibility and validity of a 
semiquantitative food frequency questionnaire. Am. J. Epidemiol. 
122, 51–65 (1985).

28.	 Willett, W. & Stampfer, M. J. Total energy intake: implications for 
epidemiologic analyses. Am. J. Epidemiol. 124, 17–27 (1986).

29.	 McCullough, M. L. et al. Diet quality and major chronic disease 
risk in men and women: moving toward improved dietary 
guidance. Am. J. Clin. Nutr. 76, 1261–1271 (2002).

30.	 Baecke, J. A., Burema, J. & Frijters, J. E. A short questionnaire for 
the measurement of habitual physical activity in epidemiological 
studies. Am. J. Clin. Nutr. 36, 936–942 (1982).

31.	 Hughes, D. A. et al. Genome-wide associations of human gut 
microbiome variation and implications for causal inference 
analyses. Nat. Microbiol. 5, 1079–1087 (2020).

32.	 Hildebrand, F., Tadeo, R., Voigt, A. Y., Bork, P. & Raes, J. LotuS: an 
efficient and user-friendly OTU processing pipeline. Microbiome 
2, 30–30 (2014).

33.	 Callahan, B. J. et al. DADA2: high-resolution sample inference 
from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

34.	 R Core Team. R: A Language and Environment for Statistical 
Computing (R Foundation for Statistical Computing, 2019).

35.	 McMurdie, P. J. & Holmes, S. phyloseq: an R package for 
reproducible interactive analysis and graphics of microbiome 
census data. PLoS ONE 8, e61217 (2013).

36.	 Dixon, P. VEGAN, a package of R functions for community 
ecology. J. Veget. Sci. 14, 927–930 (2003).

37.	 Martinez, A. pairwiseAdonis: Pairwise Multilevel Comparison 
Using Adonis. R package version 0.4 edn (2017).

38.	 Mangiafico, S. rcompanion: Functions to Support Extension 
Education Program Evaluation. R package version 2.4.6 edn 
(2021).

39.	 Gloor, G. B. & Reid, G. Compositional analysis: a valid approach 
to analyze microbiome high-throughput sequencing data. Can. J. 
Microbiol. 62, 692–703 (2016).

40.	 Morgan, M. DirichletMultinomial: Mirichlet-Multinomial Mixture 
Model Machine Learning for Microbiome data. R package version 
1.26.0. (2019).

41.	 Behrendt, S. Add Standardized Regression Coefficients to lm-
Objects. R package version 1.5-1 (2015).

42.	 Kim, S. ppcor: an R package for a fast calculation to semi-partial 
correlation coefficients. Commun. Stat. Appl. Methods 22, 
665–674 (2015).

43.	 Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: 
generative models for microbial metagenomics. PLoS ONE 7, 
e30126 (2012).

44.	 Ambroise, C. & McLachlan, G. J. Selection bias in gene extraction 
on the basis of microarray gene-expression data. Proc. Natl Acad. 
Sci. USA 99, 6562–6566 (2002).

45.	 Gorman, B. Machine Learning Tools. v0.3.5 edn (2018).
46.	 Robin, X. et al. pROC: an open-source package for R and S+ to 

analyze and compare ROC curves. BMC Bioinf. 12, 77 (2011).
47.	 Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. 

SMOTE: synthetic minority over-sampling technique. J. Artif. Intel. 
Res. 16, 321–357 (2002).

48.	 Torgo L. Data Mining with R, Learning with Case Studies. (CRC 
Press, 2010).

49.	 Lunardon, N., Menardi, G. & Torelli, N. ROSE: a package for binary 
imbalanced learning. R J. 6, 79 (2014).

Acknowledgements
We would like to thank all study participants for their valuable 
contribution and L. Castellanos and D. Calderón Castellanos for 
their discussion on the prediction model and cross-validation. The 
Bruneck Study is supported by the ‘Pustertaler Verein zur Vorbeugung 
von Herz-und Hirngefässerkrankungen’, the ‘Gesundheitsbezirk 
Bruneck’ and the ‘Sanitätsbetrieb Südtirol’, province of Bolzano, Italy, 
and received support from the excellence initiative (Competence 
Centers for Excellent Technologies (COMET)) of the Austrian Research 
Promotion Agency FFG: ‘Research Center of Excellence in Vascular 
Ageing’ (K-Project no. 843536 and K-Centre 868624) funded by 
the Austrian Ministry for Transport, Innovation and Technology, the 
Austrian Ministry for Digital and Economic Affairs and the federal 
states of Tyrol (via Standortagentur), Salzburg and Vienna (via Vienna 

http://www.nature.com/nataging


Nature Aging | Volume 2 | October 2022 | 885–895  895

Letter https://doi.org/10.1038/s43587-022-00286-w

Business Agency). This work was co-funded by Vlaams Instituut 
voor Biotechnologie (VIB), the Rega Institute for Medical Research, 
Katholieke Universiteit (KU) Leuven and the FWO/F.R.S.-FNRS under 
the Excellence of Science (EOS) program (MiQuant/30770923). The 
development of QMP analysis was funded by a KU Leuven CREA grant. 
J.V.C. was supported by a postdoctoral fellowship from the Research 
Foundation Flanders (FWO Vlaanderen-1236321N). A.G. was supported 
by an EMBO postdoctoral fellowship (349–2019).

Author contributions
H.T., S.K., J.S., J.V.C., A.G. and J.R. conceived the study objectives and 
study design. H.T., F.G., M.W., M.N., C.L., P.S., G.R., J.W., P.W., R.P. and 
S.K. coordinated recruitment and sample collection. L.D. assisted in 
project coordination. L.R. carried out fecal microbial DNA extraction 
and sequencing. Fecal moisture, calprotectin and cell counts were 
measured by J.S. Data preprocessing was done by S.P. and J.S. 
Statistical analyses were designed and executed by J.S., J.V.C. and 
J.C.L. The draft manuscript was prepared by J.S., A.G., J.V.C. and J.R. 
and revised by all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains 
supplementary material available at  
https://doi.org/10.1038/s43587-022-00286-w.

Correspondence and requests for materials should be addressed to 
Herbert Tilg or Jeroen Raes.

Peer review information Nature Aging thanks the anonymous 
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

http://www.nature.com/nataging
https://doi.org/10.1038/s43587-022-00286-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Aging

Letter https://doi.org/10.1038/s43587-022-00286-w

Extended Data Fig. 1 | Prediction of current microbiome using life history. (a) Variables selected for enterotypes in the analysis of individual years and (b) all years 
combined. All statistical tests were performed on 304 subjects in the Bruneck Study cohort.
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Extended Data Fig. 2 | Changes in dietary habits and lifestyles across the years. Each dot indicates average value of the year. All statistical tests were performed on 
304 subjects in the Bruneck Study cohort.

http://www.nature.com/nataging


Nature Aging

Letter https://doi.org/10.1038/s43587-022-00286-w

Extended Data Fig. 3 | Evaluation of number of data features in modeling. 
(a) Relationship between number of features and AUC values in prediction 
models (a) with and (b) without feature selection. (c) Comparison of mean AUC 
and number of features between predictions with or without feature selection 
(Wilcoxon rank-sum test, p < 0.0001 for both). (d) Number of features entered 

in prediction models with feature selection (Spearman rho = 0.048; p−value 
= 0.771). Boxes represent the 25th percentile, median, and 75th percentile. 
Whiskers represent the lowest and highest values of the data. The grey bands 
represent the 95% confidence interval. All analyses were performed on 304 
subjects in the Bruneck Study cohort.
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