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Abstract

Human stem cell-derived models provide the promise of accelerating our understanding of brain 

disorders. But, not knowing whether they possess the ability to mature beyond late mid-fetal 

stages potentially limits their utility. So, we leveraged a directed differentiation protocol to 

comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic 

clock, transcriptomics, as well as RNA-editing, we observe that 3D human cortical organoids 

reach postnatal stages between 250–300 days, a timeline paralleling in vivo development. We 

demonstrate the presence of several known developmental milestones, including switches in the 

histone deacetylase complex and NMDA receptor subunits, which we confirm at the protein and 

physiological levels. These results suggest that important components of an intrinsic in vivo 

developmental program persist in vitro. We further map neurodevelopmental and 

neurodegenerative disease risk genes onto in vitro gene expression trajectories to provide a 

resource and webtool (GECO) to guide disease modeling.

Introduction

The scarcity and inaccessibility of tissue from many developmental stages in patients with 

neurodevelopmental and neurodegenerative disorders highlights the need for advanced in 

vitro models of human brain development and maturation1, 2. Indeed, recent advances make 

it possible to differentiate human pluripotent stem cells, in vitro, into self-organizing, three-

dimensional (3D) cellular ensembles that recapitulate several features of human brain 

development3–5. One advantage of these organoid models is that they can be maintained for 

long periods of time5, 6. However, they have not been comprehensively shown to progress 

beyond stages that are equivalent to mid-fetal cortical development,3, 4, 7, 8 and most 

organoid cultures have not been maintained for prolonged periods of time in vitro3, 4, 7, 9 .

We previously developed a directed method of differentiation of human pluripotent stem 

cells in suspension that does not involve embedding into matrices5. This approach generates 

dorsal forebrain organoids named human cortical spheroid (hCS) with high reliability that 

can be cultured for more than 20 months progressing from neurogenesis to astrogenesis6, 10. 

However, no systematic, unbiased functional analysis has been performed to demonstrate 

maturation matching perinatal or postnatal stages3–5, 7, 8. Reaching these late stages is 

essential to model neurodevelopmental, neuropsychiatric and childhood neurodegenerative 

disorders, as well as for modeling neurodegenerative disorders. Moreover, it is not known 

whether there are intrinsic programs that underlie important physiological transitions during 

development and maturation, such as NMDA isoform shifts and RNA editing, neither of 

which have been studied in 3D or 2D human stem cell-based models to date3–5, 7, 8 .

Here, we leverage the ability to maintain human cortical organoids in long-term cultures and 

perform functional genomic assays to rigorously assess correspondence to in vivo 

developmental progression and maturation. We demonstrate substantial parallels between in 

vitro and in vivo development at the epigenetic and transcriptomic levels, as well as 

preservation of known physiological transitions, including NMDA receptor signaling. By 

mapping risk genes onto gene expression trajectories across development in this system, we 

also provide a searchable resource (GECO, Gene Expression in Cortical Organoids) to 
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facilitate the choice of appropriate in vitro time points for modeling specific brain disease-

causing genes.

Results

We cultured hCS differentiated from 6 hiPSC lines derived from 5 different individuals for 

up to 694 days in vitro (summarized in Extended Data Figure 1a and Supplementary Tables 

1 and 2) using a protocol that yields highly reliable hCS differentiation across experiments 

and cell lines5, 11. In total, we collected 62 samples for RNA sequencing (from 4 individuals, 

5 hiPSC lines) and 50 samples for DNA methylation (from 5 individuals, 6 hiPSC lines) at 

13 time points (Extended Data Figure 1a and Supplementary Tables 1 and 2). Due to the 

challenging nature of these long-term cultures, samples were collected at various time points 

up to the following maximum differentiation day for each line: 0307–1, 280 days; 1205–4, 

587 days; 2242–1, 652 days; 8858–1, 694 days; 8858–3, 652 days; H2096, 371 days.

Methylation and transcriptional maturation of hCS

To assess whether hCS maturation over a long period of in vitro development paralleled in 

vivo development, we first analyzed the epigenetic clock12, which predicts chronological 

age based on the methylation status of CpG islands. We note that the epigenetic clock is 

unable to predict the precise culture age based on in vivo methylation, as the epigenetic 

clock is not calibrated for the tissue, or for the newer array type that we used13, 14. 

Nevertheless, we observed a highly significant, monotonic correlation between the length of 

differentiation of the hCS in vitro and their predicted methylation age (r = +0.76, p = 1.57e
−10; Figure 1a), consistent with continuous and progressive maturation of these cultures over 

time.

To predict culture age more precisely using an independent genome-wide approach, we next 

applied a validated framework that permits unbiased, quantitative statistical comparison of 

gene expression during cortical maturation in vitro to the BrainSpan dataset, which 

represents an in vivo reference for cortical development15–17. To assess the quality of the 

data, we first sought to verify whether the main driver of variance of gene expression in the 

system is the time of in vitro differentiation and not other less relevant covariates (e.g. batch, 

individual or line). Principal component (PC) analysis of gene expression revealed that the 

top five PCs, which together account for 57.1% of variability, were all associated with 

differentiation time (Figure 1b and Extended Data Figure 1b). Hierarchical clustering also 

showed that the samples clustered by differentiation day, not by other covariates (Extended 

Data Figure 1c). Variance partitioning further demonstrated that the largest driver of 

variance was time of differentiation (median variance explained 29.2%), while the median 

value of variance explained for differentiation and cell line was < 0.01% (Extended Data 

Figure 1d). Reproducibility between samples from the same time point was high both 

between individuals (mean Spearman correlation 0.96, range 0.88–0.98) and within 

individuals (mean Spearman correlation 0.95, range 0.88–0.98) similar to what we have 

previously reported11, 18. We note that, as differentiation progressed, this high correlation 

between lines decreased slightly from 0.96 at day 25 (range 0.95–0.98) to 0.92 at day 600 

(range 0.88–0.95) (Figure 1c).
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Cellular stress pathways (i.e. endoplasmic reticulum, glycolysis pathways) have previously 

been proposed to be upregulated during development of in vitro 3D organoids19, 20. We were 

able to detect moderate expression levels of genes in these pathways both in vivo in 

BrainSpan, as well as in vitro (Extended Data Figure 2a–b). We also detected ubiquitous 

expression of genes in these pathways in a large single cell dataset consisting of 40,000 cells 

collected from in vivo developing human cerebral cortex, consistent with the BrainSpan 

results21 (Extended Data Figure 2c). Although we do observe that stress pathway genes are 

expressed at slightly higher levels in vitro than in vivo, they follow a flat trajectory over time 

(Extended Data Figure 2a–b). This is more consistent with a homeostatic state, and the 

absence of progressive stress or dysfunction.

We next compared changes in gene expression during the maturation of hCS to 

transcriptome changes observed in cortical development in vivo in humans16, 17 using 

transition mapping, a quantitative method based on the rank-rank hypergeometric test15. At 

early time points (i.e., prior to 250 days in culture), hCS mapped to prenatal stages (stages 

3–7), consistent with the observed developmental progression in vitro5, 11 (Figure 1d–e). By 

day 250, we started to observe a postnatal signature that became more evident by day 300. 

Between day 250 to day 300, hCS displayed a similar overlap with both prenatal and 

postnatal stages, while after day 300, they showed increasing overlap with postnatal stages 

(stages 8–13) (Figure 1d–e). Based on this analysis, the predicted transition between 

prenatal and postnatal stages occurs around 250–300 days (~8–10 months) of in vitro 

differentiation.

Gene expression and gene network correspondence

Seeing this strong overall correspondence between in vitro and in vivo transcriptomes, we 

next compared known biological processes occurring during the maturation of hCS to those 

occurring during in vivo cortical development. Gene set enrichment of differentially 

expressed genes spanning prenatal stages in vitro (between day 25 and day 200; 1,940 

downregulated genes, 2,122 upregulated genes at FDR<0.05; Extended Data Figure 3a and 

Supplementary Table 3) showed that early embryonic proliferation and developmental 

processes were downregulated, while neuronal and synaptic related genes were upregulated, 

analogous to what was reported in vivo16 (Extended Data Figure 3b and Supplementary 

Table 4). In contrast, in vitro stages that were similar to early postnatal stages (between day 

200 and day 400; 992 downregulated genes, 1,369 upregulated genes at FDR<0.05; 

Extended Data Figure 3a and Supplementary Table 3), showed enrichment for processes 

related to translation and cortical neuronal development, including downregulation of 

forebrain generation of neurons, whereas terms associated with non-neuronal cell 

development and synaptic function (e.g., regulation of long term synaptic potentiation, 

neurotransmitter metabolic process) were upregulated, again corresponding to known in vivo 

processes16 (Extended Data Figure 3b and Supplementary Table 4).

These parallels of in vivo biological processes being preserved in vitro were also observed 

when examining the expression trajectories of markers for the major hCS cell types, 

including progenitors, layer-specific cortical neurons and developing and maturing 

astrocytes (Figure 2a–c). The expression of these cell markers followed trajectories similar 
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to those found in vivo (Extended Data Figure 3c) with radial glia markers peaking earliest, 

followed by neuronal markers and subsequently mature astrocyte markers reaching their 

highest level later, at around 350–400 days, when cultures start to resemble postnatal stages 

(Figure 2a–c and Extended Data Figure 3d). It is important to note that the down regulation 

of neuronal markers at late stages of differentiation, in both the hCS and in vivo, may be due 

to the increase in the proportion of astrocytes, rather than absolute reduction in the 

expression of these genes.

Notably, in agreement with previous reports showing that oligodendrocyte precursor cells 

(OPCs), GABAergic neurons and microglia were not present or present in low proportion in 

hCS11, 22, 23, we found that the expression trajectories of markers for these cells types either 

did not follow cortical in vivo trajectories (i.e., GAD1 and PLP1) or were not detectable 

(i.e., AIF1, ITGAM) in hCS (Extended Data Figure 3e). Markers for neuronal activity were 

only partially preserved in hCS (i.e., NPAS4 and ARC; Extended Data Figure 3f), which is 

likely due to lack of typical physiological inputs.

To provide a more refined view of the trajectories of specific biological processes, we 

leveraged co-expression modules defined from in vivo brain development to directly 

examine the trajectories of in vivo processes in hCS15. These in vivo modules were 

previously annotated based on enrichment for processes associated with specific cell types15 

(Figure 2d). We verified that in vitro modules significantly overlapped with these in vivo 

modules (Extended Data Figure 4). As seen for single genes, the trajectories of these 

modules followed the expected in vivo sequence. Namely, the neuronal modules peaked at 

times matching prenatal stages (100–300 days in vitro; Figure 2e) matching what is seen in 

vivo15, 16. The glial processes were upregulated at early stages (day 25; Figure 2e) 

corresponding to the proliferation of radial glia in vivo16 and then, again, at postnatal stages 

(400–600 days of differentiation; Figure 2e) corresponding to the development and 

maturation of astrocytes in vivo6. Overall, these analyses demonstrate that the in vivo gene 

expression trajectories are paralleled during long-term in vitro hCS differentiation11, 22.

Preservation of RNA editing

RNA editing, a major RNA processing mechanism, is dynamically regulated during in vivo 

brain development24. RNA editing has been shown to display developmental trajectories that 

vary with maturation in vivo and are dependent on neuronal activity25. Recently, disruption 

of RNA editing was suggested to play a role in autism spectrum disorder (ASD), further 

supporting its importance in brain function and dysfunction26. Despite its importance in 

brain development, global patterns of RNA editing have not been explored in hiPSC-derived 

brain organoids.

To assess editing in vivo, we identified two modules of coordinated RNA editing in the in 

vivo BrainSpan data16: BSeditM1 which increased in editing rates during development 

especially in late prenatal and early childhood (stages 6–9) and BSeditM2 which was 

slightly decreased in editing rates during development (Figure 3a). Both in vivo modules 

were moderately preserved in the in vitro data (ZsummaryBSeditM1 = 9.3, ZsummaryBSeditM2 

= 5.3) (Figure 3b), showing preservation of in vivo RNA editing processes in hiPSC-derived 

brain organoids for the first time.
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We next examined the expression of the major RNA editing enzymes and regulators. In vivo, 

ADAR increases postnatally, ADARB1 expression increases prenatally, followed by 

relatively stable expression postnatally, while FXR1 expression decreases prenatally26; these 

followed a similar trend in vitro (Figure 3c). Expression levels of FMR1 increased prenatally 

both in vivo and in hCS. However, the subsequent postnatal increase in expression seen in 

vivo was not observed in hCS (Figure 3c). Immunohistochemistry confirmed the transcript 

level analysis and suggested that FXR1 predominantly localized to ventricular zone areas 

and appeared down-regulated at later stages in neurons (Figure 3d).

To test whether ADAR, ADARB1 and FXR1 potentially drive editing in vitro, we identified 

editing modules in hCS (Figure 3e) and correlated the module eigenvalues with the 

expression of the editing enzymes and regulators. We found that one module, hCSeditM2, 

was significantly correlated with the expression of the editing related genes FXR1 (r = 

−0.32, FDR = 0.04) and ADAR (r = +0.60, FDR = 5.1e−6) (Figure 3f). Interestingly, FXR1 

has previously been shown to inhibit editing by interacting with ADAR26 and this 

interaction regulates RNA editing sites dysregulated in ASD26. hCSeditM2 also significantly 

overlapped with the temporally increasing in vivo module BSeditM1 (OR = 1.8, FDR = 2.3e
−4; Extended Data Figure 5a). The hCSeditM2 module eigengene increased in expression 

over stages matching prenatal in vivo development (before 250 days) and plateaued at stages 

resembling postnatal periods (after 350 days) (Figure 3e), very similar to the trajectory of 

the increasing in vivo module BSeditM1 (Figure 3a).

To further support their potential to regulate RNA editing, we tested whether FMRP and 

FXR1P locally bind to the mRNA in close proximity to the editing sites of the genes in the 

module by integration with enhanced cross-linking and immunoprecipitation (eCLIP) data 

from the FMRP and FXR1P proteins in the adult human brain26. We observed that the 

editing sites that we identified in both the hCS and the BrainSpan modules have highly 

significant proximity to both FMRP and FXR1P binding sites (Figure 3g and Extended Data 

Figure 5b). These results support the claim that FMRP and FXR1P regulate brain-related 

editing modules through proximity mediated interactions26. To investigate whether the target 

editing sites of FMRP or FXR1P were similar between BrainSpan and hCS modules, we 

measured the overlap of editing sites within 1 kb of a CLIP site of FMRP or FXR1P. We 

found that FXR1P targeted editing sites significantly overlapped between BSeditM1 and 

hCSeditM1 (OR = 7.71, FDR = 6.18e−58) and hCSeditM2 (OR = 2.16, FDR = 5.31e−4), 

which also showed a conserved trajectory, increasing over in vitro differentiation time 

(Extended Data Figure 5c). Taken together, the methylation, gene expression and RNA 

editing data, paint a coherent picture, indicating that hCS reach a state of postnatal 

maturation between 250 and 300 days.

Canonical isoform switching in development

To further validate known transitions that occur with development and maturation, we 

assessed isoform switches in specific protein complexes related to histone modifying 

complexes and neurotransmitter signaling that characterize the transition from prenatal to 

postnatal stages of brain development27–29. One canonical switch is in the histone 

deacetylation complex (HDAC), in which the more highly expressed isoform– HDAC2, 
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diminishes and HDAC1 and HDAC11 isoforms increase in expression27, 30 (Figure 4a), 

which plays a role in fate specification and synapse maturation27. Indeed, we observed a 

switch in the HDACs with an increase in HDAC1 and HDAC11 and a concomitant decrease 

in HDAC2 in hCS. We note that while HDAC1 is downregulated postnatally in vivo, it 

remains upregulated in hCS (Figure 4a). We speculate that perhaps cell types not present in 

hCS, or activity-dependent processes that occur in vivo31 may contribute to changes in 

HDAC enzyme expression in vitro at later stages. We also assessed whether these enzymes 

show cell type-specific enrichment, which could contribute to the differences in postnatal 

expression. Using immunohistochemistry, we observed that HDAC2 was expressed in both 

progenitors and neurons, although it appeared more highly expressed in progenitors, 

consistent with its down regulation over time (Figure 4b and Extended Data Figure 6a). 

Additionally, using a mid-fetal single cell dataset21, we found that HDAC1, HDAC2 and 

HDAC11 did not show significant cell type-specific enrichment at that timepoint (Extended 

Data Figure 6b), which is more equivalent to the later time point in vitro (day 131).

Another critical neurodevelopmental switch is the change in the NMDA receptor subunits 

from GRIN2B (also known as NR2B and GluN2B) to GRIN2A (also known as NR2A or 

GluN2A) (Figure 4c)28 and from GRIN2D to GRIN2C29 (Figure 4c). The progressive 

change in subunit expression results in a switch around birth28 and has a profound effect on 

channel function, including how it responds to allosteric modulators32. In vivo, we observed 

the subunit shift at the transcriptional level occurring soon after birth (BrainSpan stage 8; 0–

6 months after birth; Figure 4c). Interestingly, in hCS we observed a switch in NMDA 

receptor subunits at the time when cultures are predicted to transition from prenatal to 

postnatal stages based on their transcriptomic patterns (day 250–300 of differentiation; 

Figure 4c). Using western blotting for GRIN2A and GRIN2B in hCS from day 51 to day 

408, we found that the level of GRIN2A appeared to increase with time and the level of 

GRIN2B seemed to peak at 200–250 days and decreased at later time points (350–400 days; 

Figure 4d–e and Source Data 1). The protein trajectories mirrored the trajectories seen at the 

RNA level (Figure 4c), with the switch between the two subunits occurring between 250 and 

300 days (Figure 4c–e).

This switch that results in a greater contribution of the GRIN2A subunit to the NMDA 

complex is associated with changes in the functional properties of the channel32. To verify 

that this results in physiological changes in hCS neurons, we measured the magnitude of 

NMDA receptor activity at early (days 54–156 of differentiation; GRIN2B predominant) and 

late (days 307–523 days of differentiation; NR2A predominant) developmental time points. 

We performed voltage-clamp recording of neurons in hCS slices while applying pulses of 

NMDA to measure the summation of the NMDA response throughout the cell independent 

of subcellular receptor localization (Figure 4f). We found that the magnitude of NMDA 

responses increased over in vitro time (r = +0.63, p = 6.94e−4; Figure 4g). Importantly, there 

was a significant negative association between the reduction in total NMDA response after 

application of the GRIN2B-specific antagonist ifenprodil (IFN) and the total time of 

differentiation mirroring the reduction seen in the GRIN2B subunit (logit regression B = 

−0.003, p = 1.58e−3) (Figure 4h). This demonstrates that changes observed in hCS at the 

RNA and protein level result in physiological changes that are consistent with the presence 
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of a greater proportion of GRIN2B-enriched NMDA receptors at early compared to later 

developmental time points.

Disease risk gene trajectories

One of the goals of these model systems is to guide a biological understanding of brain 

disorders. We therefore mapped genes associated with autism spectrum disorder (ASD; 

Figure 5a), intellectual disability (ID; Figure 5b) and schizophrenia (SCZ; Figure 5c) onto 

these gene expression data to see if there were specific expression patterns associated with 

subsets of risk genes and whether they were shared between disorders.

We performed unsupervised hierarchical clustering of disorder associated genes based on the 

temporal expression patterns in hCS, which identified clusters representing distinct temporal 

trajectories in each disorder (Figure 5 and Supplementary Table 5). Annotation with gene 

ontology (GO) and a cell type enrichment analyses (Methods) revealed that each of these 

clusters represent different developmental trajectories, as well as specific biological 

processes and cell types (Figure 5).

ASD and SCZ risk genes clustered into 5 developmental trajectories each, whereas ID genes 

formed 4 clusters. We found three trajectory patterns shared across disorders. One trajectory 

seen in ASD-C3, ID-C4 and SCZ-C2 peaked at around 150 days of differentiation (Figure 

5). These clusters were all enriched for both excitatory and inhibitory neuronal genes as well 

as for synaptic related GO terms, such as modulation of chemical synaptic transmission 

(ASD-C3), synapse organization (ID-C4) and calcium ion transmembrane transport (SCZ-

C2) (Figure 5). Another shared trajectory was seen in ASD-C2 and ID-C1, which were 

highly expressed at the peak of neurogenesis (< 150 days) and gliogenesis (> 300 days) 

(Figure 5a–b). These clusters were enriched for progenitor cell type genes (radial glia and 

intermediate progenitors) and for histone modification and covalent chromatin modification 

GO terms, and they were not conserved in SCZ. Although SCZ-C3 showed a similar 

trajectory to ASD-C2 and ID-C1, it was not enriched for any cell type, but was enriched for 

protein translation-related GO terms, such as aminoacyl-tRNA ligase activity (Figure 5c). 

The third shared trajectory peaked in expression at later stages of differentiation (> 250 

days) and was found in ASD-C5, ID-C3, and SCZ-C1. These clusters were all enriched for 

astrocyte genes; however, they did not share common biological processes across disorders, 

indicating that different pathways may be impacted (Figure 5). These three trajectories were 

also seen in genes associated with epilepsy (Extended Data Figure 7a). Most of the epilepsy 

genes (62%) were found in the cluster epilepsy-C3 that peaked at day 150. This cluster was 

enriched for GO terms related to ion channel activity and for excitatory and inhibitory 

neuronal genes. However, a substantial proportion of genes (20%; epilepsy-C2) peaked at 

much later stages of differentiation (> 250 days) and was not enriched for any cell type 

(Extended Data Figure 7a).

We next mapped genes associated with two neurodegenerative disorders: Alzheimer’s 

disease (AD; Figure 6a) and Parkinson’s disease (PD; Figure 6b). We found that the 

majority of clusters (3/4 in AD and 3/4 in PD) showed peak levels of expression at late time 

points (>250 days), corresponding to predicted postnatal stages. One of these late peeking 

clusters in AD (AD-C1) contained the familial Alzheimer’s associated genes APOE, APP 
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and PSEN2, and was associated with amyloid-beta formation, a hallmark of AD (Figure 6a). 

In PD, genes associated with mendelian forms of the disease, such as PRKN, UCHL1, 

SNCA, PARK7, PINK1 and LRRK2, were all found in clusters that peaked later in 

differentiation (>250 days; PD-C1and PD-C2; Figure 6b). Genes associated with two other 

related neurodegenerative diseases–progressive supranuclear palsy (PSP) and frontotemporal 

dementia (FTD), formed two clusters that also peaked late in differentiation (Extended Data 

Figure 7b).

At least one cluster in each disorder peaked in expression at later stages of neural 

differentiation (>250 days), which emphasizes the need for long term maturation to study the 

role of these disease-related genes. These clusters can guide the selection of appropriate time 

points and cell types to model specific disorders with hiPSC-derived neural cultures. Genes 

in some of the clusters, such as ASD-C3, ID-C4, SCZ-C2, epilepsy-C3, AD-C2, and PD-C3, 

could be used in early stage hCS models, whereas genes in clusters ASD-C5, ID-C3, SCZ-

C1 and AD-C1, epilepsy-C2, AD-C1, PD-C2 and FTD/PSP-C1, may require cultures 

beyond 250 days in vitro. To allow detailed comparison between in vivo and hCS gene 

trajectories, we provide a webtool named GECO (Gene Expression in Cortical Organoids), 

which allows the concomitant examination of gene trajectories in hCS and in BrainSpan 

(https://labs.dgsom.ucla.edu/geschwind/files/view/html/GECO.html).

Discussion

We performed multiple independent analyses of functional genomic features to 

comprehensively assess to what extent can in vitro hCS recapitulate in vivo cortical 

maturation. We observe substantial convergence across these different data types, which 

indicates attainment of early postnatal maturation between 250–300 days in vitro. To our 

knowledge, this is the first multi-level demonstration that an in vitro model of human neural 

development has matured sufficiently to acquire some postnatal features. This includes 

several important features of RNA editing and a major physiological transition involving the 

switch in the ratio of NMDA receptor subunits that occurs postnatally in mammals28. Our 

results suggest that hCS mature both at the level of individual cells, as evident by the NMDA 

receptor isoform switch, as well as some aspects of cellular composition, as shown by the 

emergence of upper layer neurons and astrocytes at later stages. It is important to note that 

some changes in gene expression are likely due to changes in cell proportions.

We also show that genes associated with neurodevelopmental and neurodegenerative 

disorders are not monolithic in their expression, but fall into distinct development 

trajectories. These trajectories, include those peaking both before 100 days and after 250 

days (e.g., ASD-C2 and ID-C1), which represent histone modification in progenitor cells; 

those peaking between 100–150 days (e.g., ASD-C3, ID-C4 and SCZ-C2), which represent 

synaptic structure and function in neuronal cell types; and those with late expression 

trajectories, which are related to astrocyte biology (e.g., ASD-C5, ID-C3, and SCZ-C1). 

This timing should be considered when establishing in vitro models of disease. For example, 

mutations in the astrocyte-related gene HEPACAM, which is part of ASD-C5 cluster (Figure 

5a), should be studied at later stages of differentiation (> 250 days), while the consequences 
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of mutations in the neuronal transcription factor MYT1L, which is part of ASD-C3 (Figure 

5a), can likely be probed in early stages of neural differentiation.

The majority of these cluster trajectories follow in vivo trajectories. One exception is the 

neuronal activity dependent clusters (i.e., ASD-C3, SCZ-C2 and epilepsy-C3), which do not 

show strong fidelity at late stages of differentiation (>400 days) likely due to the lack of 

extensive network activity in hCS. We provide the GECO tool to allow detailed comparison 

between in vivo and hCS trajectories. We note that the gene trajectories presented in this 

web tool were derived from a directed hCS differentiation protocol and other differentiation 

protocols and cell lineages from other brain regions may exhibit a different timeline of 

maturation.

One caveat of this study is that culturing hCS for long periods of time is not trivial, leading 

us to collect samples as they became available. This is the reason three lines do not have 

samples from the entire time course. It is also important to note that, after 400 days of 

differentiation, we observed an increase in the variability of the hCS differentiation (Figure 

1c). Reducing this variability will be essential for modeling disease at these very late stages 

of differentiation, as will development of methods to accelerate this process.

Previous studies in brain organoids have suggested that glycolysis and ER stress are highly 

upregulated in these systems, reflecting a state of cell stress19, 20. If this were the case, we 

would expect to see these pathways increasing over time, reflective of progressive cellular 

stress in vitro, since cellular stress is not a homeostatic state33. However, our analysis shows 

that the trajectories of these pathways remain flat during differentiation up to 21 months in 

vitro. Moreover, we were able to detect robust levels of many ER stress and glycolysis genes 

in vivo in the BrainSpan dataset. Our ability to detect more robust in vivo expression of 

genes involved in these stress pathways may be due to higher levels of gene detection in bulk 

RNA sequencing compared to the single cell RNA sequencing data used previously19, 34. 

However, we note that we were also able to detect them at similar levels in another in vivo 

single cell data set from fetal cortex21. Thus, our interpretation of these data is that the 

slightly higher, but relatively constant elevation of these genes involved in glycolysis in vitro 

likely reflects the different, but homeostatic, metabolic state with respect to glucose 

utilization that has been observed across in vitro cell culture systems35, 36.

Our findings also support the interpretation that key features of human corticogenesis are be 

guided by an internal differentiation clock. This is consistent with findings in mouse 

showing that major features of the progression of cortical neurogenesis are governed by 

intrinsic factors and do not require extrinsic signals from other brain regions, observations 

that warrant further study and refinement37, 38. Although reaching later stages of 

development in vitro is currently time consuming (> 250 days), it nevertheless extends the 

value of hiPSC-derived in vitro 3D cultures by providing a platform to study the processes 

occurring during late fetal and early post-natal stages of brain development. The presence of 

continual time-dependent aging in hCS also indicates that these cellular models could be 

used to model epigenetic aspects of aging, which has been shown to capture key biological 

features associated with aging biology39.
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It is important to note that while our model system was able to capture key features of in 

vivo human corticogenesis, some important aspects still require further investigation. 

Alternative splicing plays an important role in neural development40 however detecting 

significant alternative splicing will require a more deeply sequenced and extensive set of in 

vivo and in vitro samples. Another aspect requiring further investigation is on the role of 

cells not born in the dorsal forebrain on the maturation of hCS. For example, ventral 

forebrain-derived GABAergic neurons promote synaptic maturation and network 

maturation31. These effects could be studied in forebrain assembloids, in which we have 

previously shown that GABAergic interneurons migrate and functionally integrate into the 

cortical network22. It will be important to assess how network dynamics mature in the 

presence of GABAergic neurons to establish the excitation-inhibition (E/I) balance, which 

has been linked to neurodevelopmental disorders41. Microglia, which are mesoderm derived, 

also play an important role in the developmental maturation of the cerebral cortex42,, and 

previous studies have shown successful integration of microglia-like cells into human brain 

organoids43. Lastly, strategies to derive oligodendrocytes23 or vascular-forming endothelial 

cells44 in assembloids will also be useful to investigate how they modulate developmental 

trajectories in long term hCS cultures.

Additionally, while we identified preservation of some aspects of RNA editing in hCS this 

process was not complete. For instance, ADRAB2 had a far less dynamic pattern in hCS 

than in vivo. Moreover, while the prenatal expression trajectories of FXR1 and FMR1 in 

hCS were similar to those seen in vivo, hCS at later stages did not track the in vivo 

trajectories. We speculate that this could be related to activity-dependent processes25, 45. For 

example, RNA editing of the AMPA receptor GluA2 (GRIA2 gene) is highly dependent on 

neuronal activity45. Our results suggest that alterations in the balance of the RNA editing 

process may be used as a measure for optimizing and enhancing the functional similarities 

between these 3D in vitro models and in vivo brain development. Another important 

challenge remains to find ways to enhance this maturation speed to further facilitate more 

efficient in vitro modeling, including features that may be dependent on certain forms of 

neuronal activity and aging. This is especially true for modeling neurodegenerative 

disorders. Our approach provides a framework for comprehensive analysis of such features.

Methods

Culture of hiPSC and differentiation into hCS.

All hiPSC lines used in this study were validated using previously described standardized 

methods5, 22, 46. Cultures were maintained mycoplasma free and were periodically tested for 

mycoplasma contamination. A total of 6 hiPSC lines were collected from 5 healthy subjects 

(4 male and 1 female). The hiPSC H20961 line was derived by the Gilad Laboratory 

(University of Chicago). Approval for this study was obtained from the Stanford IRB panel, 

and informed consent was obtained from all subjects. hiPSC were cultured on inactivated 

mouse embryonic fibroblast feeders (EmbryoMax PMEF; Millipore) in DMEM/F12 (1:1, 

Life Technologies, 11330) containing 20% knockout serum (Life Technologies, 10828), 1 

mM non-essential amino acids (Life Technologies, 11140), 1:200 GlutaMax (Life 
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Technologies, 35050), 0.1 mM β-mercaptoethanol (Sigma-Aldrich, M3148), and 10 ng/ml 

FGF2 (R&D Systems, 233-FB) diluted at 0.1% BSA in DPBS (Life Technologies, 14190).

hCS were generated as previously described5. Intact hiPSC cells colonies were lifted using 

0.7 mg/ml dispase and transferred to ultra-low-attachment plastic dishes (Corning) in the 

same hiPSC medium without FGF2 but supplemented with 5 μM dorsomorphin (Sigma-

Aldrich), 10 μM SB-431542 (Tocris) both of which are SMAD inhibitors, and 10 μM 

Y-27632 (EMD Chemicals) which is a ROCK inhibitor. From day 2 (48 hours of 

differentiation), the medium supplemented with dorsomorphin and SB-431542 was changed 

daily. From day six until day 24, neural spheroids were grown in neurobasal-A (Life 

Technologies, 10888) neural medium supplemented with B-27 supplement without vitamin 

A (Life Technologies, 12587), 1:100 GlutaMax (Life Technologies), 1:100 penicillin and 

streptomycin (Life Technologies, 15070) and with 20 ng/ml EGF (R&D Systems, 236-EG) 

and 20 ng/ml FGF2 (R&D Systems, 233-FB). From day 25 to 42, the neural medium was 

supplemented with 20 ng/ml BDNF (Peprotech, 450–02) and 20 ng/ml NT3 (Peprotech, 

450–03) and medium was changed every other day. From day 43 onwards, hCS were 

maintained in unsupplemented neural medium with medium changes every four days. hCS 

of similar diameter were randomly selected for experiments.

RNA-sequencing.

RNA-sequencing was performed as previously described11. Briefly, libraries were prepared 

using Truseq stranded RNA RiboZero Gold (Illumina) and were sequenced using 100-bp 

paired end reads on an Illumina HiSeq 4000. Reads were then mapped to hg38 with 

Gencode v25 annotations using STAR (v2.5.2b)47. Gene expression levels were quantified 

using RSEM (v1.3.0)48. Genes with low levels of expression (less than 10 reads in more 

than 20% of the samples) were removed from the analysis. Outliers were then removed 

using standardized sample network connectivity (Z scores smaller than −3)49. This method 

identified two samples as outliers, both of which were > 600 days. To quantify the technical 

variation in the RNA sequencing we calculated the first five principal components of the 

Picard sequencing metrics (http://broadinstitute.github.io/picard/; v2.5.0). These principal 

components referred to as seqPC1-seqPC5 were then included in the linear model.

To help control for variability between the individuals racial background we used the GATK 

(v3.3) haplotype caller to call SNPs from the aligned reads50. We filtered for sites with 

missing genotypes (> 5%), rare minor allele frequency (< 0.05) and out of Hardy–Weinberg 

equilibrium (< 1e−6)51. Genetic ancestry was inferred by running multi-dimensional scaling 

(MDS) on these high-quality SNPs together with HapMap3.3 (hg38). The first two MDS 

values referred to as ancestryPC1/2 were then included in our linear model. For principal 

component analysis (PCA), as well as to visualize single gene trajectories, gene expression 

was normalized using CQN (without quantile normalization, sqn=FALSE) (v1.28.0) and 

ancestryPC1-2 and SeqPC1-5 were regressed out prior to batch correction using Combat52 

from the sva package (v3.30.0) in R. Single gene trajectories trends lines were fitted using 

the loess method53 from the ggplot2 package54 in R. PCA was calculated using the prcomp 

function in R on scaled normalized and batch corrected counts.
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BrainSpan RNA sequencing data analysis.

The BrainSpan RNA sequencing data16 was used as an in vivo refence for the analysis. To 

quantify the gene expression at each developmental stage the cortical samples were aligned 

to hg38 using Gencode v25 annotations via STAR47. Gene expression we then quantified 

using the union exon model in featureCounts55. We removed low quality samples in which 

the RIN was lower than 8, there were less than 25% coding bases or ribosomal bases made 

up more than 25% of total bases (as called by Picard tools). Genes with low levels of 

expression (less than 10 mapped reads in more than 80% of the samples) in a given 

developmental stage were removed. We retained 196 samples from 24 individuals (9 female 

and 15 male).

Transition mapping.

To compare the in vivo and in vitro changes in gene expression during maturation we used 

transition mapping15 which utilizes a rank-rank hyper geometric test56. To this end both in 

vivo and in vitro gene expression levels were normalized using the trimmed mean of M-

values (TMM) method from the edgeR package57 (v3.24.0). In vitro samples were grouped 

to the closest day 25th day in the first 100 days, closest 50th day in between days 100 and 

400, closest 100 day until day 600 and timepoints above day 600 were included in the 600 

day group resulting in the following groups 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 

450, 500, 600. Fold change was calculated for each differentiation day (in vitro) or 

developmental stage (in vivo) by comparing it to the baseline values of the earliest day in 

vitro (day 25) or earliest stage in vivo (stage 2; 8–10 post conception weeks, PCW16) using 

the limma-voom method58 from the limma package (v3.38.2) in R. To account for multiple 

samples coming from the same individual we used brainID (for the BrainSpan data) or 

IndividualID (for the hCS data) as blocking factors in the model. The linear model used was 

~ 0 + Differentiation day + batch + PC1 + racePC2 + SeqPC1 + SeqPC2 + SeqPC3 + 

SeqPC4 + SeqPC5 for the hCS data and ~ 0 + Period + Ethnicity + PMI + SeqPC1 + 

SeqPC2 for the brain span data. Gene were then ranked by logFC and the rank-rank 

hypergeometric test56 was used to calculate the significance of the overlap of the gene list 

using a step size of 200 genes15

DNA methylation age.

To calculate the DNA methylation (DNAm) age of the samples12 DNA was extracted using 

the AllPrep DNA/RNA/miRNA Universal Kit (Qigen, 80224). Methylation levels were 

measured using the Infinium MethylationEPIC BeadChip Kit (Illumina), normalized using 

the Noob method59 and were then used to calculate DNAmage12. DNAmage was averaged 

over technical replications. We only evaluated clocks that were designed for non-blood 

tissues, i.e. the pan tissue clock12 and the in vitro clock14. We were unable to predict the 

culture age using this methylation age, as these epigenetic clocks are not calibrated for the 

array type13 and those using these arrays do not perform well in brain tissue14. Results were 

similar between the two methods and we present the results of the pan tissue clock.
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Gene set enrichment analysis (GSEA).

Gene set enrichment analysis was performed using the fgsea package (v1.8.0)60 on all genes 

ranked by log fold-change (using limma-voom as described above) at different time points. 

GO gene sets (v7.0) were downloaded from http://software.broadinstitute.org/gsea/msigdb/. 

Sets with less than 30 or more than 500 genes were omitted. p-values were calculated using 

1,000,000 permutations and were corrected using the BH method. Gene sets with FDR < 

0.05 were considered to be significant and the top 3 up and down regulated sets were 

plotted.

Weighted Gene Network Analysis.

To compare trajectories of genes networks between in vivo an in vitro data sets, previously 

described in vivo network modules were used15. To assure that the same networks were 

present in vivo weighted gene network analysis (WGCNA) was performed on the in vitro 

data using a soft power of 12, minimal module size = 100, deep split = 2, cut height for 

creation of modules = 0.9999 and cut height for merging modules of 0.1. The modules were 

then tested for overlap with the in vivo modules using Fisher’s exact test61. To visualize the 

trajectories of the different modules, which overlapped with the in vitro module, the 

normalized average expression was calculated using the moduleEigengenes function from 

the WGCNA package62 (v1.68) in R. The trend line was fitted using the loess method53 

from the ggplot2 package54 in R.

Human tissue.

Human brain tissue was obtained under a protocol approved by the Research Compliance 

Office at Stanford University. PCW21 forebrain tissue was fixed immediately upon arrival.

Immunohistochemistry.

Immunohistochemistry was performed as described22, 63. Briefly, hCS were fixed in 4% 

paraformaldehyde (PFA) for 2 hours at 4°C. Samples were then washed with PBS three 

times, transferred to a 30% sucrose solution and 48–72 hours later, embedded and snap 

frozen in a 30% sucrose and OCT solution (1:1 ratio; Tissue-Tek OCT Compound, 4583, 

Sakura Finetek). 16μm cryosections were obtained using a cryostat (Leica). Human cortical 

tissue was fixed overnight in 4% paraformaldehyde and 30 μm cryosections were made. All 

sections were incubated for 1 hour at room temperature with blocking solution (10% normal 

donkey serum and 0.3% Triton-X in PBS), and then overnight with primary antibodies. The 

following primary antibodies were used: anti-BRN2 (Mouse, 1:500, Millipore, MABD51), 

anti-CTIP2 (Rat, 1:300, Abcam, ab18465), anti-FXR1 (Mouse, 1:50; Santa Cruz, 

sc-374148), anti-GFAP (Rabbit, 1:1,000, Dako, Z0334), anti-GFAP (Rat, 1:1,000, Thermo 

Fisher Scientific, 13–0300), anti-HDAC2 (Mouse, 1:50, Santa Cruz, sc-9959), anti-MAP2 

(1:5,000, Synaptic Systems, 188004), and anti-SOX9 (Goat, 1:500, R&D Systems, AF3075). 

After three PBS washes, sections were incubated with Alexa Fluor secondary antibodies 

(1:1,000, Life Technologies) for 1 hour at room temperature. Nuclei were visualized with 

Hoechst 33258 (Thermo Fisher Scientific, H3569). Glass coverslips were mounted on 

microscopy slides using Aquamount (Thermo Scientific). Images were taken using a SP8 

confocal microscope and processed using ImageJ (Fiji).
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Western blotting.

hCS protein lysates were prepared using RIPA buffer system (Santa Cruz, sc-24948) and 

protein concentrations were quantified using the Bicinchoninic Acid (BCA) assay (Pierce, 

ThermoFisher 23225). 8 μg of protein per sample per lane were loaded and run on a 4–12% 

Bis-Tris PAGE gel (NuPAGE 4–12% Bis-Tris Protein Gel, Invitrogen) and transferred onto a 

PVDF membrane (Immobulin-FL, EMD Millipore). Membranes were blocked with 5% milk 

in PBST for 1 hour at room temperature (RT) and incubated with primary antibodies against 

β-actin (mouse, 1:50,000, Sigma, A5316), synapsin-1 (rabbit, 1:1000, Cell Signaling, 

5297S) overnight at 4°C and antibodies against the NMDA receptor 2A (GRIN2A, rabbit, 

1:1000, Cell Signaling, 4205S), NMDA receptor 2B (GRIN2B, rabbit, 1:1000, Cell 

Signaling, 4207S)) for 72 hours at 4°C. Membranes were washed 3 times with PBST and 

then incubated with near-infrared fluorophore-conjugated species-specific secondary 

antibodies: Goat Anti-Mouse IgG Polyclonal Antibody (IRDye 680RD, 1:10,000, LI-COR 

Biosciences, 926–68070) or Goat Anti-Rabbit IgG Polyclonal Antibody (IRDye 800CW, 

1:10,000, LI-COR Biosciences, 926–32211) for 1 hour at RT. Following secondary antibody 

application, membranes were washed 3 times with PBST, once with PBS, and then imaged 

using a LI-COR Odyssey CLx imaging system (LI-COR). Protein band intensities were 

quantified using Image Studio Lite (LI-COR) with built-in background correction and 

normalization to β-actin controls. One sample showed unexpectedly low levels of synapsin-1 

and was not included in the analyses (Source Data 1).

Measurements of NMDA currents.

hCS were prepared for whole cell recordings as previously described5. Briefly, hCS were 

infected with AAV-hSyn1::GFP two weeks before recording. Slices (200 μm thick) were 

prepared using a Leica VT1200 microtome (Leica) and allowed to recover for one hour 

before recordings at 32°C in bicarbonate buffered artificial cerebrospinal fluid (aCSF) 

containing 126 mM NaCl (Sigma, 59222C), 2.5 mM KCl (Sigma, P3911), 1.25 mM 

NaH2PO4 (Fisher Scientific/Acros Organics, AC424390025), 2 mM MgCl2 (Sigma, 

M8266), 2 mM CaCl2 (Sigma, C4901), 26 mM NaHCO3 (Sigma, S5761) and 10 mM 

glucose (Fisher Scientific/Acros Organics, AC410950010). Whole cell patch clamp 

recordings were performed at room temperature (~22–25°C). Slices were superfused with 

aCSF at a rate of 3 ml/min. Whole cell patch clamp recordings were collected using a 

MultiClamp 700A amplifier (Molecular Devices), Axon Digidata 1550B digitizer 

(Molecular Devices), and Clampex 11.0 software (Molecular Devices). Borosilicate glass 

pipettes (3–5 MΩ) were used to obtain intracellular recordings. Fluorescently labeled 

neurons were randomly selected for patching. Pipettes were filled with internal solution 

containing 120 mM potassium gluconate, 11 mM KCl, 1 mM MgCl2, 1mM CaCl2, 10 mM 

HEPES (Sigma, H4034), 1 mM EGTA (Sigma, E4378), and the pH was adjusted to 7.4. 

NMDA (Sigma, M3262) was applied to the cell using a 2–3 MΩ borosilicate glass pipette 

positioned 25 μm away from the cell body. Pulses (50 ms) of NMDA were produced using a 

Picospritzer II (General Valve Corporation). Cell recording quality was monitored by 

measuring access resistance and cells which deviated by more than 15% during the course of 

the recording were discarded. NR2B containing NMDA receptors were blocked by adding 

ifenprodil tartrate salt (IFN; 10 μM; Sigma, I2892) to aCSF. hCS derived from two cell lines 

(8858–3 and 1205–4) were used for these recordings. One cell was patched per hCS, for a 
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total of 25 neurons from 25 hCS (Supplementary Table 1). Association between the 

proportion of change in amplitude after adding IFN was tested using beta regression64 with a 

logit link function using the betareg package (v3.1–3) in R.

RNA editing identification.

RNA-seq reads were mapped to GRCh37 genome and transcriptome using HISAT265 

(v2.1.0) with parameters accounting for the respective strand specificities of the BrainSpan 

and cortical spheroid datasets. Uniquely mapped reads were retained for further analysis. We 

then used previously developed procedures to identify RNA editing sites26, 66, 67. In brief, 

first we used unmapped reads to find editing sites in hyper-edited regions68. Adenosines in 

unmapped reads were converted into guanosines and aligned with HISAT2 to a modified 

hg19 genome where adenosines were also substituted with guanosines26. These hyper-edited 

reads were then combined with the original uniquely mapped reads. Next, candidate editing 

sites were identified as mismatches between reads and the reference genome. A log-

likelihood test and posterior filters were then applied to eliminate editing sites likely caused 

by sequencing errors and other technical artifacts67. To eliminate rare genomic variants from 

identified RNA editing sites, we filtered for sites found across multiple individuals. 

Specifically, editing sites were required to be found with at least 5 total reads and 2 reads 

edited across 5 unique individuals. In our cortical spheroid dataset, we reduced the 

requirement to 4 unique individuals, due to sample size. A total of 109,487 and 19,046 

editing sites were identified in the BrainSpan and cortical spheroid datasets respectively.

Weighted co-editing network analysis for RNA editing sites.

Modules of RNA editing sites were found using the WGCNA (weighted gene co-expression 

network analysis) package62. To obtain accurate representation of topological overlap, we 

first filtered for editing sites with ≥5 total reads in at least 80% of samples, zero variance or 

too much missing data using the goodSamplesGenes function in the WGCNA package. To 

facilitate finding modules corresponding to developmental time in the BrainSpan dataset we 

required nonzero editing in at least 51% of samples from at least one period. Given the 

limited sample size of our cortical spheroid dataset, this filter was only applied to the 

BrainSpan samples.

For the cortical spheroids we adjusted RNA editing levels to avoid individual modules 

driven by single individuals. For each editing site a linear model was constructed between 

editing level against differential day, individual, and batch. Editing levels were adjusted by 

subtracting out the maximum likelihood beta estimates for individuals and batch. A soft 

threshold power of 10 was used to fit scale-free topology. To preclude modules driven by 

outlier samples, we followed our previous bootstrapping strategy26, 69, 70, where modules 

were obtained using consensus topological overlap from 100 bootstraps. In brief, for each 

bootstrap, samples up to the original sample size were randomly re-sampled with 

replacement. Signed topological overlap matrices were obtained from the corresponding 

matrix of editing sites using TOMsimilarity (adjacency(corFnc = “cor”, type = “signed”, 

power = 10, corOptions = list(method = ‘spearman’, use = “pairwise.complete.obs”), 

TOMType = “signed”). The boot-strapped matrices were then recalibrated from 20,000 
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random matrix entries. The consensus topological overlap matrix was taken as the median 

across all recalibrated boot-strapped matrices.

To find associations of modules with various biological processes, we defined the eigenvalue 

as the first principal component of each module. The time course trajectory of each module 

was determined by plotting each eigenvalue against differentiation day (for cortical 

spheroids) and period (for BrainSpan). Associations between the modules and RNA editing 

enzymes were evaluated by correlating the eigenvalue against adjusted gene expression 

values for established RNA editing enzymes encoded by ADAR1, ADAR2, and ADAR371, 

and against FMR1 and FXR1, that encode for proteins which were recently shown to also 

exhibit RNA editing regulation26. Modules found in BrainSpan samples and cortical 

spheroids were tested for significant overlap of member editing sites using Fisher’s Exact 

test. Only editing sites found in both BrainSpan and cortical spheroids were considered for 

this test.

Enhanced crosslinking and immunoprecipitation (eCLIP) analysis of RNA 

editing sites

To investigate whether RNA editing in modules are targetable by FMRP and FXR1P 

proteins, we obtained eCLIP datasets of FMRP and FXR1P binding sites in postmortem 

human frontal cortex26. Comparison of distances between eCLIP peaks and module editing 

sites was also performed using published methods26. Briefly, for member editing sites within 

each BrainSpan or hCS module, the closest distances from eCLIP peaks compared to the 

null background consisting of distances between peaks and gene-matched random 

adenosines were compared over 10,000 sets of controls. P-values were obtained by 

calculating the area under curve (AUC) of the cumulative distribution of distances of editing 

sites to CLIP peaks in the interval 0–100,00kb. AUC values of the 10,000 sets of controls 

were modeled by a Gaussian distribution, which was then used to calculate a one-sided P-

value for the AUC of the module editing sites. To test overlap of FMRP and FXR1P targeted 

editing sites between hCS and BS modules, an editing was labelled “targetable” if within 

1000 bp of the nearest FMRP or FXR1P CLIP peak. Editing sites residing in genes 

expressed with RPKM < 5 in adult frontal cortex were not coverable by CLIP analysis and 

excluded from analysis. The significance of overlap of targetable editing sites between hCS 

and BS modules was evaluated using Fisher’s Exact Test. Only editing sites found in both 

BrainSpan and hCS were considered for this test.

Mapping of disease genes.

Genes associated with autism spectrum disorder (ASD; https://gene.sfari.org/database/gene-

scoring/), intellectual disability (ID)72, epilepsy21, schizophrenia (SCZ)73, Alzheimer’s 

disease (AD)74, 75, Parkinson’s disease76, 77 (PD) and Progressive Supranuclear Palsy 

(PSP)78 and Frontotemporal Dementia (FTD)79 were analyzed. For the ASD genes only 

high confidence genes (gene score < 2 or syndromic genes) were analyzed. For AD and PD, 

we combined common variants from the genome wide association studies (GWAS) with 

genes associated with rare, familial forms of these diseases. For AD these genes are: APOE, 

APP, PSEN1 and PSEN275. For PD these genes are PINK1, SNCA, LRRK2, PRKN, 
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UCHL1, and PARK777. As there are only a small number of genes associated with the 

neurodegenerative diseases PSP (9 genes) and FTD (13 genes) and they are considered part 

of a frontal lobar degeneration spectrum, these were combined. Genes were clustered by 

their expression in the hCS using hierarchal clustering on the Euclidean distance between 

the genes. Cluster eigengenes were calculated using the moduleEigengenes function from 

the WGCNA package. The gene in each cluster were correlated to the cluster module 

eigengene and the top 5 genes were annotated on the heatmap. GO terms enrichment was 

performed using the enrichGO function from the clusterProfiler package80 (v3.12.0). 

Enrichment was performed on biological process and molecular function GO terms. All 

genes expressed in the hCS were used as background. Cell type enrichment was performed 

using the bootstrap.enrichment.test from the EWCE package81 (v0.99.2) on hCS single cell 

data11 with 100,000 permutations. All genes expressed in both the current dataset and the 

single cell dataset were used as background. This method tests whether a list of genes has a 

higher level of expression in a specific cell type that would be expected by chance.

Statistics

Statistical analyses, including Fisher’s exact test, beta regression, Spearman correlation 

rank-rank hyper-geometric tests, were performed as detailed in legends and methods. As 

these tests do not depend on the distribution being normal, no test for normality was 

performed. No statistical methods were used to pre-determine sample sizes, but our sample 

sizes per time point are similar to those reported in previous publications5, 6, 10. Due to the 

nature of these long-term cultures, collection of samples was not performed blind to the 

differentiation stage.

Reporting summary

Further information on research design is available in the Life Science Reporting Summary 

linked to this article.

Data availability.

Gene expression data and methylation data are available in the Gene Expression Omnibus 

(GEO) under accession numbers GSE150122 and GSE150123. The accompanying GECO 

webtool can be accessed at https://labs.dgsom.ucla.edu/geschwind/files/view/html/

GECO.html. The BrainSpan data are available in the database of Genotypes and Phenotypes 

(dbGaP) under Study Accession phs000755.v2.p1. Single cell data from human fetal 

cerebral cortex can be found at http://geschwindlab.dgsom.ucla.edu/pages/codexviewer and 

at dbGaP under Study accession phs001836. eCLIP data for FXR1 and FMR1are available 

in GEO with accession number GSE107895. Human cortical organoid single cell sequencing 

data are available in GEO with accession number GSE107771.

Code availability

The code and data used in this manuscript can be found at https://github.com/dhglab/

human_cortical_organoid_maturation.
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Extended Data

Extended Data Fig. 1. Data description and quality.
(a) Time points and hiPSC line information for the 62 samples used for RNA sequencing 

(left). Samples were differentiated from 5 cell lines derived from 4 individuals. Time points 

and hiPSC information for the 50 samples used for DNA methylation (right). Samples were 

differentiated from 6 cell lines derived from 5 individuals (see Supplementary Tables 1 and 

2). Two samples (blue) were hybridized in replicate for quality control purposes and their 

values were averaged. Each point represents one sample from a specific cell line (y-axis) and 

differentiation day (x-axis). Full circles represent sample coming from males and rings 

represent samples coming from females. Grey and white background shading show 

aggregation of differentiation days into stages. (b) Principal component analysis (PCA) of 

the expression data. The values represent the adjusted r squared of the PC with the covariates 

indicated. The numbers in brackets on axis titles are the percent of variance explained by the 

PC. The first 5 PCs, which explain 57.1% of the total variance, show high association with 

differentiation day. (c) Dendrogram of hierarchical clustering of samples demonstrating that 

differentiation day but no other covariates (individual, Sex, batch) is driving the clustering of 

samples. (d) Violin plots of the variance explained by each of the covariates for each gene. 

Outlines represent the density of the percent of variance explained. The numbers are the 

median value of percent of explained variance for each variable. Boxplots in d show: center 

– median, lower hinge – 25% quantile, upper hinge – 75% quantile, lower whisker – 
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smallest observation greater than or equal to lower hinge −1.5x interquartile range, upper 

whisker – largest observation less than or equal to upper hinge +1.5x interquartile range. n = 

62 samples from 6 hiPSC lines derived from 5 individuals.

Extended Data Fig. 2. Cell stress in hCS.
(a) Trajectories of metabolic cell stress genes20 hCS (left) and in vivo (right). (b) In vitro 

and in vivo module eigen genes of glycolysis (organoid.Sloan.human.ME.paleturquoise) and 

ER stress (organoid.human.ME.darkred) previously suggested to be upregulated in vitro20. 

Grey areas denote time of shift from prenatal to postnatal gene expression. In (a) and (b) 

shaded grey area around the trajectory represents the 95% confidence interval, vertical grey 

lines represent birth and vertical grey bars denote the shift from prenatal to postnatal gene 
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expression based on matching to in vivo patterns. For in vitro data n = 62 samples from 6 

hiPSC lines derived from 5 individuals and for in vivo data n = 196 from 24 individuals. (c) 

Scatterplot visualization of cells in in developing fetal cortex colored by major cell types22. 

vRG, ventral radial glia; oRG, outer radial glia; CGE, caudal ganglionic eminence; MGE, 

medial ganglionic eminence; OPC, oligodendrocyte precursor cell; IP, intermediate 

progenitors.

Extended Data Fig. 3. Changes in biological processes between early and later stages of 
differentiation.
(a) Number of differentially expressed genes when comparing differentiation day 200 to 

differentiation day 25 (left) and differentiation day 400 to differentiation day 200 (right). 

Red bar represents up-regulated genes and the green bar represents down-regulated genes. 
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(b) Top 3 up- and downregulated GO terms enriched in genes ranked by logFC using gene 

set enrichment analysis, (GSEA; FDR < 0.05). (c) Normalized expression of marker genes in 

vivo for neurons, intermediate progenitors, astrocytes, and radial glia as well as upper and 

deep layer cortical neurons. (d) Scaled expression of fetal and mature astroglial genes7 

during differentiation. A shift between fetal and mature gene sets occurs at ~250 days of 

hCS differentiation. (e) Normalized expression of marker genes for inhibitory neurons and 

oligodendrocyte precursor cells (OPCs) that are not preserved in hCS. (f) Normalized 

expression of activity dependent genes that are not preserved in hCS. In (c), (e) and (f) 

shaded grey area around the trajectory represents the 95% confidence interval, vertical grey 

lines represent birth and vertical grey bars denote the shift from prenatal to postnatal gene 

expression based on matching to in vivo patterns. For in vitro data n = 62 samples from 6 

hiPSC lines derived from 5 individuals and for in vivo data n = 196 from 24 individuals.
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Extended Data Fig. 4. Overlap between hCS and in vivo WGCNA modules.
Overlap of genes in hCS and the BrainSpan in vivo modules. Significant ORs are presented. 

Modules were clustered using complete-linkage hierarchal clustering. Color represents the 

OR of each overlap. In vivo neuronal modules (green) and glial modules (purple) are 

marked.
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Extended Data Fig. 5. Overlap between hCS and in vivo editing modules
(a) Overlap of editing sites in hCS and BrainSpan in vivo modules. Significant ORs are 

presented. (b) Distributions showing the closest distances between editing sites from 

BrainSpan editing modules and FMRP or FXR1P eCLIP peaks (blue). The median of 10,000 

sets of control sites (black) is depicted for comparison. See Methods for details of P-value 

calculation. N, number of editing sites shown. (c) Overlap of editing sites within 1000bp of a 

CLIP site in hCS and BrainSpan in vivo modules. Significant ORs are presented. *** FDR < 

0.005
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Extended Data Fig. 6. Expression of select genes in the in-vivo fetal cortex.
(a) Immunohistochemistry of HDAC2 and the deep layer marker CTIP2 (BCL11B) at post 

conception week 21 (PCW21). CP, cortical plate. Scale bars, 100 μm. The 

Immunohistochemistry experiment was performed once. (b) Scatterplot visualization of cells 

in developing fetal human cerebral cortex colored by major cell types22. vRG, ventral radial 

glia; oRG, outer radial glia; CGE, caudal ganglionic eminence; MGE, medial ganglionic 

eminence; OPC, oligodendrocyte precursor cell, IP, Intermediate progenitors.
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Extended Data Fig. 7. Mapping neurodegenerative and epilepsy disorder genes onto hCS 
differentiation.
Mapping of genes associated with progressive supranuclear palsy (PSP) and frontotemporal 

dementia (FTD) (a), and epilepsy (b) onto hCS differentiation trajectories. The first column 

shows clustering of scaled normalized expression of genes associated with a disorder. Genes 

(in rows) are clustered using hierarchical clustering on the Euclidean distance between 

genes. Samples (columns) are ordered by differentiation day (represented by gray bars) with 

the earliest days on the left and latest time points on the right. The 5 most representative 

genes (highest correlation with the cluster eigengene) are shown. The second column shows 

the cluster eigengenes (first principal component) for the identified gene clusters. Shaded 

grey area around the trajectory line represents the 95% confidence interval. The third 

column shows the top GO terms enriched in the identified clusters. The fourth column shows 

cell types over expressed in either all the genes associated with a disorder (above line) or in 

the genes from the identified clusters. Number and color represent the fold change. 

Significance was tested using a one-sided permutation test with 100,000 permutations. P 

values were corrected for multiple testing using the Benjamini-Hochberg method. * FDR < 

0.05, ** FDR < 0.01, *** FDR < 0.005. n = 62 samples from 6 hiPSC lines derived from 5 

individuals.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Methylation and transcriptional maturation in long-term hCS
(a) The predicted methylation age (DNAmAge) of hCS is monotonically correlated with the 

in vitro differentiation day (r= +0.76, p = 1.57e−10, two-sided Pearson correlation test, n = 

50 from 6 hiPSC lines derived from 5 individuals). Colors denote individual hiPSC lines. 

The shaded grey area represents the 95% confidence interval. (b) Scatter plot of the first two 

principal components (PC) of gene expression data. Color represents differentiation day and 

shape represents the hiPSC line. Numbers in brackets on axis titles are the percent of 

variance explained by the PC. (c) Spearman’s correlation of gene expression between 

samples from the same timepoint which were derived either from different individuals (red) 

or from the same individual (blue) (n = 62 samples from 6 hiPSC lines derived from 5 

individuals).Boxplots show: center – median, lower hinge – 25% quantile, upper hinge – 
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75% quantile, lower whisker – smallest observation greater than or equal to lower hinge 

−1.5x interquartile range, upper whisker – largest observation less than or equal to upper 

hinge +1.5x interquartile range. (d) Transition mapping (TMAP) of gene expression of hCS 

(compared to differentiation day 25) and human primary tissue from the BrainSpan dataset 

(compared to stage 2). (e) BrainSpan stages and corresponding age. PCW – post conception 

weeks, M – months, Y – Years.
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Figure 2. Biological processes and cell type marker changes in long-term hCS
(a) Normalized expression of marker genes for neurons, intermediate progenitors, 

astrocytes, and radial glia as well as upper and deep layer neurons. Neuronal and 

intermediate progenitor markers are initially expressed at high levels and decrease after day 

250. Astrocyte markers increase in expression with time and peak after day 300. Radial glia 

markers decrease in expression as hCS advance in differentiation. (b) 
Immunohistochemistry of progenitors and neuronal markers at day 61 (d61; line 0524–1), 

day 201 (d201; line 8858–1) and day 328 (d328; line 2242–1) showing expression of GFAP 

in ventricular zone (VZ)–like regions and the deep and upper layer markers CTIP2 (also 

known as BCL11B) and BRN2 (also known as POU3F2). (c) Immunohistochemistry for the 

astrocyte markers GFAP and SOX9 at day 200 (d200; line 2242–1) and day 552 (d552; line 
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8858–1). Immunohistochemistry experiments were performed twice with similar results (1–

3 hCS per line from at least 2 hiPSC lines were included). Scale bars, 50 μm (b-c) (d) 

Annotation of groups and GO term annotation of in vivo WGCNA modules performed by 

Stein et al15. (e) Scaled mean expression of neuronal and glial module genes. The neuronal 

modules peaked at ~day 200; the glial modules decreased in expression until about 

differentiation day 150 and then increased in expression to peak around day 500. In (a) and 

(e) the shaded grey area around the trajectory line represents the 95% confidence interval 

and the vertical grey denotes the shift from prenatal to postnatal gene expression based on 

matching to in vivo patterns. In (a) and (e), n = 62 samples from 6 hiPSC lines derived from 

5 individuals
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Figure 3. RNA editing in hCS
(a) Trajectories of in vivo (BrainSpan) RNA editing modules. (b) Preservation scores (Z 

summary) of the in vivo RNA editing modules in hCS. (c) Trajectories of RNA editing 

enzymes in hCS (top) and in vivo from Brain Span (bottom). (d) Immunohistochemistry of 

the RNA editing regulator FXR1 with the glial and neuronal markers GFAP and CTIP2 (also 

known as BCL11B) at day 61 (d61; line 0524–1), at day 131 (d131; line 1205–4), at day 200 

(d203; line1205–4), and at day 328 of differentiation (d328; line 2242–1). VZ - ventricular 

zone. Scale bars, 50 μm. Immunohistochemistry experiments were performed once for d61, 

twice for d131 and d203, and 3 times for d328 (1–3 hCS per line from at least 2 hiPSC lines 

were included) (e) Trajectories of the three hCS RNA editing modules. (f) Correlation of 

module eigenvalues with the expression of the major known RNA editing enzymes and 
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regulators. (g) Distributions showing the closest distances between editing sites from hCS 

editing modules and FMRP or FXR1P eCLIP peaks (blue). The median of 10,000 sets of 

control sites (black) is depicted for comparison. See methods for details of permutation-

based tow sided P-value calculation. N indicates the number of editing sites shown. *FDR, 

0.05, ***FDR < 0.005. In (a), (c) and (e), the shaded grey area around the trajectory 

represents the 95% confidence interval, vertical grey lines represent birth and vertical grey 

bars denote the shift from prenatal to postnatal gene expression based on matching to in vivo 

patterns. In (c) top row and (e), n = 62 samples from 6 hiPSC lines derived from 5 

individuals. In (a) and (c) bottom row, n = 196 from 24 individuals).
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Figure 4. Developmental isoform switches in hCS
(a) Expression trajectories of histone deacetylase (HDAC) subunits. In vivo (right) and in 

vitro (left), HDAC2 expression decreases while the expression of both HDAC1 (top) and 

HDAC11 (bottom) increases. The shaded grey area around the trajectory line represents the 

95% confidence interval. (b) Immunohistochemistry for HDAC2 and deep layer marker 

CTIP2 (also known as BCL11B) at day 61 (d61; line 0524–1) and day 131 (d131; line 1205–

4). VZ, ventricular zone. Scale bars, 50 μm. Immunohistochemistry experiments were 

performed once for d61 or twice for d131 (1–3 hCS per line from at least 2 hiPSC lines were 

included). (c) Expression trajectories of NMDA receptor subunits. In vivo (right) and in vitro 

(left), GRIN2A (NR2A) and GRIN2B (NR2B) (top), as well as GRIN2C (NR2C) and 

GRIN2D (NR2D) (bottom). In (a) and (c), the shaded grey area around the trajectory 

represents the 95% confidence interval, vertical grey lines represent birth and vertical grey 

bars denote the shift from prenatal to postnatal gene expression based on matching to in vivo 

patterns. For in vitro data, n = 62 samples from 6 hiPSC lines derived from 5 individuals; for 
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in vivo data, n = 196 from 24 individuals. (d) Western blots for GRIN2A, GRIN2B, 

Synpsin-1. β-actin was used as a loading control. The images shown were cropped 

(uncropped images are included in Source Data 1). Cell lines used are 1205–4 (samples 1, 2, 

3, 4, 6, 8, 10, 11 and 13) and 0524–1 (samples 5, 7, 9 and 12). Western blot experiments 

were run 3 times with similar results. (e) Quantification of GRIN2A and GRIN2B protein 

levels from (d) (n = 13 from 2 hiPSC lines). (f) Average whole-cell voltage clamp recordings 

of NMDA responses (10 mM NMDA, 50 ms pulse) at early (red, days 54–156) and late 

(black, days 307–523) stages of hCS development. Standard error of the mean (SEM) are 

depicted by the grey and pink lines. Neurons were identified with a fluorescent reporter 

(Syn1::GFP). (g) Increased maximum NMDA response amplitudes over developmental time 

(r = 0.63, p = 6.94e−4). Black line represents the linear fit of the data. (h) Percent reduction 

of maximum NMDA responses by the NR2B-containing NMDA receptor blocker ifenprodil 

(IFN, 10 μM) is significantly reduced with time. Significance was measured using a beta 

regression with logit link function, B = −0.003, p = 1.58e−3. One cell was patched per hCS 

for a total of 25 cells from two hiPSC lines (8858–1, 1205–4).
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Figure 5. Mapping neurodevelopmental and neuropsychiatric disorder genes onto hCS 
differentiation.
Mapping of genes associated with autism spectrum disorder (a), intellectual disability (b) 

and schizophrenia (c) onto hCS differentiation trajectories. The first column shows 

clustering of scaled normalized expression of genes associated with a disorder. Genes (in 

rows) are clustered using hierarchical clustering on the Euclidean distance between genes. 

Samples (columns) are ordered by differentiation day (represented by gray bars) with the 

earliest days on the left and latest time points on the right. The 5 most representative genes 

(highest correlation with the cluster eigengene) are shown. The second column shows the 

cluster eigengenes (first principal component) for the identified gene clusters. The shaded 

grey area around the trajectory line represents the 95% confidence interval. The third 

column shows the top GO-terms enriched in the identified clusters. The fourth column 
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shows cell types over expressed in either all the genes associated with a disorder (above line) 

or in the genes from the identified clusters. Number and color represent the fold change. 

Significance was tested using a one-sided permutation test with 100,000 permutations. P 

values were corrected for multiple testing using the Benjamini-Hochberg method. * FDR < 

0.05, ** FDR < 0.01, *** FDR < 0.005, n = 62 samples from 6 hiPSC lines derived from 5 

individuals.
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Figure 6. Mapping neurodegenerative disorder genes onto hCS differentiation.
Mapping of genes associated with Alzheimer’s disease (a) and Parkinson’s disease (b) onto 

hCS differentiation. The first column shows clustering of scaled normalized expression of 

genes associated with a disorder. Genes (in rows) are clustered using hierarchical clustering 

on the Euclidean distance between genes. Samples (columns) are ordered by differentiation 

day (represented by gray bars) with the earliest days on the left and latest time points on the 

right. The 5 most representative genes (highest correlation with the cluster eigengene) and 

genes associated with familial forms of the disease are shown. *, Familial gene; ^, Familial 

gene that is also a hub gene. The second column is the cluster eigengenes (first principal 

component) for the identified gene clusters. The shaded grey area around the trajectory line 

represents the 95% confidence interval. The third column is the top GO-terms enriched in 

the identified clusters. The fourth column is cell types over expressed in either all the genes 

associated with a disorder (above line) or in the genes from the identified clusters. Number 

and color represent the fold change. Significance was tested using a one-sided permutation 
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test with 100,000 permutations. P values were corrected for multiple testing using the 

Benjamini-Hochberg method. * FDR < 0.05, ** FDR < 0.01, *** FDR < 0.005. n = 62 

samples from 6 hiPSC lines derived from 5 individuals.
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