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Long-term microdystrophin gene therapy is
effective in a canine model of Duchenne muscular
dystrophy
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Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by

mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and

recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here

we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine

microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical

symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy

(GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb

musculature and significant amelioration of histological and functional parameters. Systemic

intravenous administration without immunosuppression results in significant and sustained levels

of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No

toxicity or adverse immune consequences of vector administration are observed. These studies

indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and

pave the way towards clinical trials of rAAV–microdystrophin gene therapy in DMD patients.
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D
uchenne muscular dystrophy (DMD) is an X-linked
inherited disease affecting B1:5,000 male births, leading
to a highly debilitating and ultimately life-limiting

muscle-wasting condition. DMD is caused by mutations in the
gene coding for dystrophin, a cytoskeletal protein that is critical
to the stability and function of myofibres in skeletal and cardiac
muscle1,2. Dystrophin establishes a mechanical link between
cytoskeletal actin and the extracellular matrix in muscle fibres
through the dystrophin-associated protein complex, and when
dystrophin is absent the mechanical and signalling functions of
the costamer are compromised3. DMD-affected boys develop
muscle weakness during the first years of life, and although
palliative treatments are available (essentially physiotherapy,
assisted ventilation and glucocorticoids) they become
wheelchair-bound generally before the age of 15 years. Serious,
life-threatening muscle wasting and respiratory and cardiac
complications arise in late teens, and patients rarely survive
into their fourth decade4,5.

Gene transfer therapy to restore dystrophin expression is
considered a promising approach for the treatment of DMD.
Recombinant adeno-associated virus (rAAV) vectors are parti-
cularly efficient in transducing skeletal muscle fibres and
cardiomyocytes when packaged with the appropriate capsid6–11,
and allow long-term in vivo transgene expression12,13. However,
the full-length dystrophin complementary DNA (cDNA) is
B14 kb in length and greatly exceeds the packaging capacity of
a single rAAV vector. Shortened transgenes, coding for partially
functional microdystrophins (MDs) that contain essential
domains of the dystrophin protein, have however been
generated to be compatible with rAAV vectors14,15. The
principle of using MDs as therapeutic transgenes arose from
the concept that Becker muscular dystrophy patients exhibiting
natural in-frame deletions/mutations in their DMD gene exhibit a
milder dystrophinopathy14,16. Several studies have shown body-
wide expression and therapeutic efficacy of MDs in mdx mice
following a single systemic administration of rAAV-MD
vectors17–19. In particular, a MD variant, termed MD1, was
optimized for mRNA stability and translation efficiency20, and
packaged in rAAV vectors under the control of the synthetic,
muscle- and cardiac-restricted promoter Spc5.12 (ref. 21).
Intramuscular and systemic administration of rAAV-Spc5.12-
MD1 vectors was previously shown to induce high levels of MD1
expression and complete rescue of muscle mass, specific force and
resistance to eccentric contraction in mdx mice20,22,23.
Intramuscular injection of a rAAV-Spc5.12-MD1 vector in a
canine model of DMD resulted in sustained levels of MD1
expression in the injected muscles24. The golden retriever
muscular dystrophy (GRMD) model is considered a highly
valuable preclinical platform to test gene therapy strategies25,26.
However, most of the published studies used immunosuppressive
regimens, and were not designed to demonstrate functional
improvements after treatment27–32.

Here, we show for the first time the long-term therapeutic
potential of locoregional (LR) and systemic intravascular (IV)
administration of rAAV2/8-Spc12-cMD1 vector in GRMD dogs,
in the absence of any immunosuppression. Both procedures are
well tolerated, and expression of the canine MD1 (cMD1)
significantly reduces the physiological decline in muscle strength
of treated limbs and stabilizes clinical parameters in the treated
animals, in the absence of toxicity and of deleterious humoral or
cell-mediated immune responses against the transgene product.
Importantly, gene expression and clinical benefit are sustained
over time, up to 24 months after vector injection. This study,
carried out in a large animal model of DMD, paves the way
to clinical translation of rAAV-MD1 gene therapy in DMD
patients.

Results
Study design. We tested the administration of a rAAV2/8 vector
encoding a sequence-optimized cMD1 cDNA driven by the
synthetic muscle- and heart-specific Spc5.12 promoter (rAAV2/8-
Spc5.12-cMD1) injected via LR or systemic IV routes in male
GRMD dogs. The study design is summarized in Table 1. First,
four GRMD dogs (3.5 to 4 months old) were injected in one
forelimb via LR transvenous infusion as previously described33,
using a single administration of 1� 1013 vector genome
(vg) kg� 1 of the therapeutic vector. The contralateral untreated
forelimb in the LR-treated dogs acted as controls, and three
control GRMD dogs were also included and received the vehicle
only (Table 1). Age-matched wild-type (WT) animals were also
enrolled as additional controls for nuclear magnetic resonance
(NMR) and muscle strength evaluations. We set the total injected
volume at 20% of the limb volume to match the injection protocol
recently reported in patients with neuromuscular diseases34,35.
Injected dogs were followed for 3 months and then euthanised. In
a second part of the study, eight GRMD dogs (2 to 2.5 months
old) were treated systemically by peripheral vein injection with
two different doses of the therapeutic vector: the first group of 5
dogs (IV-A) received a single dose of 1� 1014 vg kg� 1 of rAAV2/
8-Spc5.12-cMD1 while the second group of 3 dogs (IV-B)
received a single lower dose of 2� 1013 vg kg� 1 (Table 1). At the
time of manuscript submission, we were able to follow 2 high-
dose individuals (dogs IV1 and IV2) up to 2 years after vector
injection and the 6 other individuals B8 months after therapy.
Nine supplemental untreated GRMD dogs were also included and
followed in parallel of these IV-treated dogs (Table 1), and
supplemental healthy dogs were also used as controls.
Importantly, no animal received immunosuppression at any
stage, and they were randomized to the different groups (group
IV-A, group IV-B or controls IV) with no phenotypic selection. It
should be noted however that the appearance of severe muscle
weakness, dysphagia and respiratory abnormalities before the age
of 2 months (which occur in o5% of the global number of
GRMD dogs of our colony) were considered as exclusion criteria
for the study. Animals and biopsy samples were recoded in
neutral fashion, and functional, histological and molecular
analyses were performed in a blinded manner for both the LR
and the systemic treatment studies.

rAAV2/8-Spc5.12-cMD1 vector has good safety profile.
Administration of rAAV2/8-Spc5.12-cMD1, both LR and sys-
temic, was uneventful in all animals. Blood tests including elec-
trolytes, kidney and liver function parameters and complete
haematology counts remained unchanged in the hours, days and
weeks after vector delivery (Supplementary Data 1 and 2). No
evidence of vector-induced toxicity was observed in any of the
treated dogs. Of note, dog IV5 suffered a treatment-unrelated
accidental fracture of the left forelimb B2 months after rAAV
injection. This fracture was surgically repaired and the dog
entirely recovered his motor ability at o2 months after the
accident. Overall, the rAAV2/8-Spc5.12-cMD1 showed an
excellent safety profile in both LR and systemically treated ani-
mals at any injected dose.

Efficient cMD1 expression after LR administration. The four
LR-injected dogs were euthanised 3 months after vector injection.
Skeletal muscles of each forelimb, as well as skeletal muscles at
distance (total of 46 muscles) and several major organs were
sampled after killing and used to evaluate cMD1 expression and
vector genome copies per diploid genome (vg dg� 1). cMD1
expression was evaluated by both immunoperoxidase staining
and western blot. Figure 1a shows representative staining
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obtained in different muscles of dog LR1, sampled in the non-
injected and injected forelimbs, below or above the tourniquet
used to isolate the limb during the injection. MD1 was con-
sistently expressed at high levels in muscle groups of the trans-
duced forelimb, averaging 51%, 59%, 49% and 43% cMD1-
positive fibres in dogs LR1 to LR4, respectively (Table 2). As
observed in a previous study with a different rAAV2/8 vector33,
shedding of the vector after release of the tourniquet also induced
significant transduction in the contralateral limb and in distant
muscle groups, with an average of 10%, 10%, 11% and 7% cMD1-
positive fibres in dogs LR1 to LR4, respectively. In particular,
significant transduction was observed in the diaphragm of dogs
LR1 and LR3, with 13% and 18% of cMD1-positive fibres,
respectively (Table 2). Immunolabelling data correlated
proportionately with the detection of the B138 kDa cMD1
protein band by western-blot analysis (Fig. 1b) and of the cMD1
mRNA by reverse transcription quantitative PCR (RT-Q-PCR) in
the same skeletal muscles samples (Supplementary Fig. 1). As
shown in Supplementary Fig. 2, the percentage of cMD1-positive
fibres and vector copy numbers, determined by Q-PCR analysis
on the same muscle samples of the injected limbs, led to the direct
correlation of B50% of cMD1-positive fibres being detected with
the presence of 1 vg dg� 1. Only low levels of cMD1 mRNA were
detected in major organs (liver, spleen and lymph nodes) despite
the presence of high vg dg� 1 values, confirming the muscle-
restricted activity of the Spc5.12 promoter (Supplementary
Fig. 1).

Expression of cMD1 improves muscle histopathology. Absence
of dystrophin protein in both DMD patients and GRMD dogs
results in cycles of muscle degeneration and regeneration that

over time cause muscle tissue remodelling and replacement of
muscle fibres by fibrotic tissue36,37. To investigate the effect of
cMD1 expression on muscle pathology, we compared muscle
regeneration and fibrosis in extensor carpi radialis and flexor carpi
ulnaris muscles, sampled at the time of killing in both injected
and noninjected forelimbs of each GRMD dog injected by the LR
route either with the rAAV2/8-Spc5.12-cMD1 vector (n¼ 4 dogs)
or with buffer (n¼ 3 dogs). In the four treated dogs, myofibre
turnover (regeneration) and collagen deposition (fibrosis) were
reduced in muscles of injected limbs compared with contralateral
limbs (Fig. 2a). Since muscles of the noninjected limb were also
transduced, although to a lesser extent, we correlated histological
improvements with gene transfer efficiency, clustering the
muscles in 3 groups based on the percentage of cMD1-positive
fibres (that is, r12%, between 13 and 45% and between 46 and
90%). Muscles of treated limbs exhibiting 446% of cMD1-
positive fibres showed a trend towards a decrease in myofibre
regeneration and of endomysial fibrosis (Fig. 2b). In addition, a
significant decrease of total fibrosis was observed in muscles
harbouring 446% of cMD1-positive fibres compared with
muscles with r12% of cMD1-positive fibres (Po0.05, Kruskal–
Wallis test, Fig. 2b).

Proton 1H-NMR imaging and phosphorous 31P-NMR spectro-
scopy analysis of treated and untreated forelimbs were performed
just before killing in two dogs, LR1 and LR2. Dogs LR3 and LR4
were considered ineligible for the anaesthesia required for the
exam due to a treatment-unrelated bronchopneumonia and were
excluded from this analysis. The most relevant 1H-NMR imaging
indices, relying on T2, T1 and proton density-weighted image
signal intensities (T2w, T1w, proton density (PD))38, were
calculated on three different muscles (extensor carpi radialis
brevis, extensor carpi radialis longus and flexor carpi ulnaris). In

Table 1 | Characteristics of the different GRMD dogs of this study.

Group Dog Mode of delivery Injected product and dose Injected rAAV batch Age at inclusion/ injection Follow-up duration after

inclusion/injection

Group LR1 Locoregional rAAV2/8-Spc5.12- A.12005.PSR 4 Months 3 Months

LR LR2 transvenous cMD1 A.12005.PSR 4 Months 3 Months

LR3 perfusion 1� 1013 vg kg� 1 A.12005.PSR 3.5 Months 3 Months

LR4 A.12005.PSR 3.5 Months 3 Months

Controls LR C1 Locoregional Buffer NA 3.5 Months 3 Months

LR LR C2 transvenous NA 4 Months 3 Months

LR C3 perfusion NA 3.5 Months 3 Months

Group IV1 Intravenous rAAV2/8-Spc5.12- A.12005.PSR 2 Months 24 Months

IV-A IV2 cMD1 A.12005.PSR 2.5 Months 24 Months

IV3 1� 1014 vg kg� 1 A.12005.PSR 2 Months 7.5 Months

IV4 A.12005.PSR 2.5 Months 8.5 Months

IV5* A.12005.PSR 2 Months 8 Months

Group IV6 Intravenous rAAV2/8-Spc5.12- A.12005.PSR 2 Months 8.5 Months

IV-B IV7 cMD1 A.12005.PSR 2 Months 8.5 Months

IV8 2� 1013 vg kg� 1 14D0332 2.5 Months 6.5 Months

Controls IV C1 NA NA NA 1.5 Months 3 Months

IV IV C2 (untreated) NA 3 Months 4.5 Months

IV C3 NA 3 Months 4.5 Months

IV C4 NA 3.5 Months 9 Months

IV C5 NA 3 Months 4 Months

IV C6 NA 3 Months 23 Months

IV C7 NA 2 Months 3 Months

IV C8 NA 2.5 Months 4.5 Months

IV C9 NA 2 Months 7 Months

NA, not applicable.

*At 2 months post injection, accidental fracture of the left forelimb.
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31P spectroscopy, signals were measured from the two extensor
carpi radialis muscles. Visual assessment of 1H-NMR images in
the muscles of the two analysed dogs showed altered magnetic
resonance properties indicating a reduction of edema,
inflammation, necrosis and cell damage. Indeed, muscle signals
were less hyperintense on T2-weighted images and more
homogeneous within and between muscles (Fig. 3a). We also
observed a reversion in abnormal levels of phosphocreatine,
inorganic phosphate and phosphodiesters in 31P-NMR spectra in
the injected forelimbs of treated dogs, reflecting improved

sarcolemmal membrane stability and muscle tissue
metabolism39 (Fig. 3b). Finally, most imaging indices showed
an improvement in the injected compared with the noninjected
forelimbs, with a decrease of the fat-saturated T2w/T1w 1H-NMR
imaging index, and the 31P-NMR spectroscopic Pi/gATP index to
levels close to or within normal ranges of healthy dogs (Fig. 3c,d).
Taken together, histology, NMR imaging and spectroscopy
analysis confirmed a significant reduction of the dystrophic
pathology in muscles of forelimbs injected with the rAAV2/8-
Spc5.12-cMD1 vector.
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Figure 1 | Analysis of cMD1 expression by immunostaining and western-blot in muscles of GRMD dogs injected with rAAV2/8-Spc512-cMD1 by the

LR route. (a) Dystrophin immunostaining (NCL-DYSB) on transverse sections of muscle samples. Representative results are presented for healthy (WT)

and untreated GRMD dogs and for four different muscles of dog LR1 sampled at the time of killing (non injected and injected forelimb, below and above the

tourniquet). Scale bar, 100mm. (b) Western-blot analysis of total proteins (50 mg) extracted from muscles samples. Representative results for the same

muscles as in a are shown. GRMD myoblasts transduced with the rAAV2/8-Spc5.12-cMD1 vector were used as positive control. The blot was stained with

MANEX-1011C to reveal the presence of the 427 kDa dystrophin protein (WT dog) and the 138 kDa cMD1 protein, with an anti-GAPDH antibody as a

loading control. The level of cMD1-positive fibres detected by immunostaining from the same muscle samples are indicated under each panel.
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Expression of cMD1 improves muscle strength. The effect of
cMD1 expression on the functionality of the injected forelimb of
all the LR-treated dogs was evaluated by measuring the extension
strength of the wrist. We evaluated both forelimbs of the 4
injected GRMD dogs before LR treatment at 45 and at 90 days
after buffer or rAAV2/8-Spc5.12-cMD1 injection. Seven age-
matched WT golden retriever dogs were also evaluated in both
forelimbs. At each time point, the maximal torque was measured
and normalized by the animal’s weight. As shown in Fig. 4a, a
clear difference was observed between the extension strength in
forelimbs of WT and of untreated GRMD animals. Injection of
rAAV2/8-Spc5.12-cMD1 significantly improved the muscle
extension strength in the injected forelimbs compared with the
noninjected ones as well as with those of untreated GRMD dogs,
and normalized the values to the WT level at day þ 90. In the
treated animals, the extension strength change between day 0
(before injection) and day þ 90 was significantly higher in the
injected forelimb than in the noninjected forelimb (Po0.05,
Kruskal–Wallis test, Fig. 4b). These results highlight the func-
tionality of cMD1 in maintaining and eventually increasing
muscle strength in dystrophin-deficient treated limbs.

Body-wide expression of cMD1 improves pathology in GRMD
dogs. Prompted by the encouraging results obtained in the LR
delivery study, we then systemically administered the rAAV2/8-
Spc5.12-cMD1 vector by a single intravascular injection in two
groups of GRMD dogs: the first (IV-A, high dose, n¼ 5) received
a dose of 1� 1014 vg kg� 1 and the second (IV-B, low dose, n¼ 3)
received a dose of 2� 1013 vg kg� 1. The age of the animals at
treatment was B2 months (Table 1). We report here the ongoing
follow-up of the IV-injected animals at more than 2 years post
vector administration in two dogs (dogs IV1–2) and at B7 to 8
months post injection in six further dogs (dogs IV3–8). Surgical
biopsies were performed in different skeletal muscles before the
treatment, and at 3.5, 8 and 14 months after vector injection.
Representative cMD1 immunostaining and western-blot of sev-
eral skeletal muscle biopsy specimens obtained from IV-A- and
IV-B-treated GRMD dogs are presented in Fig. 5. Levels of
cMD1-positive fibres and vg dg� 1 values are plotted in
Supplementary Fig. 3. All dogs in the IV-A group (high dose)
exhibited significant levels of cMD1-positive fibres (20 to 80%)
and vector transduction levels between 1 and 6 vg dg� 1 in the
various muscular biopsies. As an example, dog IV2 showed in the
different biopsied muscles an average of 67%, 57% and 40%
cMD1-positive fibres, respectively at 3.5, 8 and 14 months post

injection, with vector copy numbers around 4, 1 and 1 vg dg� 1 in
the same muscle samples (Fig. 5a and Supplementary Fig. 3). As
muscles were biopsied at different time points, and as tissue
transduction could be heterogeneous even within a same muscle,
we cannot stringently compare these data overtime. However, a
clear and statistically significant (Po0.001 or 0.01, Mann–-
Whitney test) dose reduction effect was observed in dogs of the
IV-B group (low dose) that showed on average o10% of cMD1-
positive fibres and no more than 0.1 vg dg� 1 observed in muscle
biopsies obtained at 3.5 and 8 months post injection
(Supplementary Fig. 3). Immunolabelling and vg dg� 1 data
correlated proportionately with the detection of the B138 kDa
cMD1 protein band by western-blot analysis. Of note, the levels
of cMD1 protein detected in some skeletal muscles of dogs of the
IV-A group reached at least 50% of the normal level of native
dystrophin found in WT dogs (Fig. 5b). Regeneration and total
fibrosis were also evaluated in muscle biopsies obtained at 3.5
months post injection and showed a significant correlation with
the levels of cMD1-positive fibres, as observed in the LR
administration study (Supplementary Fig. 4).

Overall, these data indicate that systemic delivery of rAAV2/8-
Spc5.12 results in generalized and stable skeletal muscle
transduction and cMD1 expression, accompanied by a significant
attenuation of the dystrophic pathology in GRMD dogs.

Body-wide expression of cMD1 improves clinical phenotype.
Long-term expression of cMD1 in the skeletal muscle of dogs in
the IV-A (high dose) group correlated with a significant
improvement in a range of clinical parameters compared with
untreated GRMD dogs. These dogs remained ambulant and
clinically robust with some displaying prolonged survival with
good clinical status up to 2 years of age. Even dog IV-5, who
suffered an accidental fracture of the left forelimb B2 months
after rAAV injection, entirely recovered his motor ability o2
months after the accident. Supplementary Movie 1 shows repre-
sentative dogs from each group, that is, untreated, IV-A and IV-B
at various times after treatment.

To quantify clinical improvement following systemic admin-
istration of rAAV2/8-Spc5.12-cMD1, a global clinical score was
determined on a weekly basis by evaluating different parameters
related to the GRMD pathology40. In the clinical scoring scheme,
100% represents a healthy WT golden retriever. As shown in
Fig. 6a, untreated GRMD dogs and GRMD dogs in the low-dose
treatment group rapidly deteriorated during the first 6- to 12-
month period, at the end of which the majority (8 out of 9) of the

Table 2 | Levels of cMD1-positives fibres found after immunostaining analysis (NCL-DYSB) within the muscles of GRMD dogs

injected by the LR route.

Dog Injected forelimb

(n¼ 13 muscles)

Noninjected forelimb

(n¼ 13 muscles)

Other muscles

at distance

(n¼ 17 muscles)

Heart Diaphragm

Mean of

cMD1þ

fibres

CV Mean of cMD1þ fibres

for the group

CV for the

group

Mean of

cMD1þ fibres

Mean of

cMD1þ fibres

Mean of

cMD1þ

fibres

Mean of

cMD1þ fibres

LR1 51% 54% 50% 47% 3% 10% o0.5% 13%

LR2 59% 30% 1% 10% o0.5% o0.5%

LR3 49% 58% 3% 11% o0.5% 18%

LR4 43% 49% 1% 7% o0.5% 1%

LR C1 o0.5% NA o0.5% NA o0.5% o0.5% o0.5% o0.5%

LR C2 o0.5% NA o0.5% o0.5% o0.5% o0.5%

LR C3 o0.5% NA o0.5% o0.5% o0.5% o0.5%

CV, coefficient of variation.

For the complete list of muscles and tissues sampled at the time of killing, see Supplementary Table 2 in ref. 33.
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untreated GRMD dogs were subjected to veterinarian-instructed
killing. Indeed, even if a lifespan of B3 years was described in
some GRMD colonies26, most untreated GRMD dogs of our
colony show a rapid disease progression down to a clinical score
of 30% at B1 year of age with death rapidly occurring after this
point. A certain degree of variability among dogs may be
observed, as previously reported26 and as observed in our study
with in particular one untreated control animal (out of the 9
included in the study—dog IV C6) stabilized at a clinical score of

B50% up to 26 months of age (Fig. 6a). Dogs in the high-dose
group progressed much less rapidly than the majority of the
untreated GRMD dogs, stabilizing in two cases at 450% (IV1)
and 480% (IV2) at 42 years of age. Of note, even if dog IV1
exhibited the same clinical score (450%) than one of the
untreated GRMD dogs (dog IV C6), histological evaluations of
muscle biopsies performed at 2 years of age in these 2 dogs
showed a clear difference between these 2 animals in terms of
pathological muscular pattern, with dystrophic features being
numerous in the muscles of the untreated GRMD dog but highly
reduced in the muscles of dog IV1 (Supplementary Fig. 5).
Moreover, statistical evaluation of clinical scores at the 6 and 9
months time point showed significantly (Po0.01, Kruskal–Wallis
test) higher scores in high-dose treated animals compared with
untreated control animals (Fig. 6b). Notably, among the clinical
parameters evaluated, the mean age of appearance of the
characteristic dysfunctions in digestive (dysphagia) and
respiratory (abdominal breathing) activities was substantially
delayed in the high-dose group (Supplementary Table 1). Of note,
none of our GRMD dogs (treated or untreated) carried the
recently described mutation in the Jagged1 gene (Supplementary
Fig. 6) that can be responsible for a milder phenotype and a
normal lifespan in GRMD dogs despite the complete absence of
dystrophin41.

In addition to clinical score parameters, we objectively
evaluated the gait quality of the dogs on a bimonthly basis using
the previously described Locometrix system42,43. For this study
supplemental retrospective control data were assembled from
groups of WT golden retrievers and untreated GRMD dogs.
Figure 7 shows the evolution of the mean global gait index with
95% confidence intervals in healthy control dogs, untreated
GRMD dogs and GRMD dogs injected systemically with rAAV2/
8-Spc5.12-cMD1 at low dose or at high dose up to B7 months
post injection. Dogs in the IV-A group showed a significantly
higher gait index compared with untreated GRMD dogs, and an
evolution towards a pattern very close to that of the wild-type
golden retriever dogs. IV1 and IV2 dogs were evaluated until
E1.5 year after injection and maintained a stable gait score
(Supplementary Fig. 7). In line with the evolution of their clinical
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Figure 2 | Improvement of pathological pattern in the cMD1-expressing

muscles. After killing, two muscles (the flexor carpi ulnaris muscle and the

extensor carpi radialis muscle) in each forelimb of each GRMD dog injected

by the LR route either with the rAAV2/8-Spc5.12-cMD1 vector (n¼4 dogs

and 16 muscles analysed) or with buffer (n¼ 3 dogs and 12 muscles

analysed) were analysed. Myofibre regeneration was evaluated by

immunohistochemical staining of myofibres using an antibody specific for

developmental myosin heavy chain isoform. Total and endomysial fibrosis

were evaluated by immunohistochemical detection of Collagen I.

(a) Regeneration and fibrosis immunostaining on transverse sections of

muscle samples. Representative results are presented for two muscles of

dog LR1 (noninjected forelimb and injected forelimb). The levels of cMD1-

positive fibres detected by immunostaining from the same muscle samples

are indicated above each panel. Scale bar, 100 mm. (b) Regeneration, total

fibrosis and endomysial fibrosis quantification in the total of 28 muscles

analysed in the GRMD dogs injected by the LR route, either with the

rAAV2/8-Spc5.12-cMD1 vector or with buffer was done using an automatic

measurement of the percentage of the labelled area after selection of

regions of interest. Analyses were done according to the percentage of

cMD1-positive fibres of each muscle: o12% (n¼ 20, empty symbols),

between 30 and 45% (n¼4, grey full symbols) and between 46 and 90%

(n¼4, black full symbols). Each point represents the data obtained in one

muscle, and the horizontal bars represent the mean of the values obtained

for each group *Po0.05 (nonparametric Kruskal–Wallis test with post hoc

multiple comparison Dunn’s test).
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score, dogs of the IV-B group showed a transient improvement of
the gait index that was not maintained at later time points
(Fig. 7).

These data demonstrate that systemic delivery of
rAAV2/8-Spc5.12-cMD1 substantially ameliorates the clinical
manifestations and improves gait parameters of GRMD dogs.

Evaluation of immune responses after vector delivery. We
monitored humoral (presence of immunoglobulin G (IgG)

antibodies in the serum) and cellular (specific interferon-g (IFN-
g) secretion from peripheral blood mononuclear cells (PBMCs))
immune responses against the cMD1 protein in the GRMD dogs
injected by LR or systemic IV route of administration (Table 3).
We detected a transient humoral response against the cMD1
protein as soon as 1 or 2 months post injection in 3 out of 4 LR-
injected and in 3 out of 8 IV-injected dogs, the latter all being
injected with the high vector dose. In all dogs, anti-cMD1 IgG
appear between 1 and 2 months after vector injection and then
declined to undetectable levels at 8 months after vector injection
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Figure 3 | NMR imaging and spectroscopy analyses of muscles of GRMD dogs injected with rAAV2/8-Spc5.12-cMD1 by the LR route.

(a) Representative example of transverse fat-saturated T2-weighted NMR image of the two forelimbs obtained in dog LR2. At 3 months after injection,

signal muscle intensities were decreased and more homogeneous in the injected forelimb (**) compared with the noninjected one. (b) Representative

example of 31P-NMR spectra of the injected (blue curve) and noninjected forelimb (red curve) of the same dog (LR2). Phosphocreatine (PCr) was increased

and inorganic phosphates (Pi) and phosphodiesters (PDE) were decreased relative to ATP in the injected forelimb compared with the noninjected forelimb.

(c) NMR imaging fat-saturated (FS) T2w/T1w muscle signal ratio obtained from three different muscles (ECR (extensor carpi radialis brevis), ECRl (extensor

carpi radialis longus) and FCU (flexor carpi ulnaris)). The values of this index in the injected forelimb (red closed symbols) were decreased compared with the

values obtained in the noninjected forelimb (open red symbols) or in untreated GRMD dogs (yellow symbols), and they were closer to the healthy dog

(WT) indices (black symbols). (d) NMR spectroscopy Pi/gATP muscle signal ratios of the injected (red closed symbols) and noninjected forelimbs (open

red symbols) as compared with untreated GRMD (yellow symbols) and healthy (WT) controls (black symbols).
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(except for the IV4 dog for which IgG were still detectable at this
time point—Table 3) without obvious or gross deleterious con-
sequences. The transient nature of the anti-MD1 humoral
immune response is shown as an example for the IV2 dog in
Supplementary Fig. 8. T-cell responses directed against the cMD1
protein were assessed by IFN-g enzyme-linked immunospot
(ELISPOT) using stimulated PBMCs collected at different time
points post injection. None of the injected dogs exhibited
detectable levels of IFN-g response above the threshold of posi-
tivity at any time point (Table 3). Dogs IV1 and IV2 maintained
negative IgG and IFN-g responses up to 2 years after injection
(Table 3). We analysed anti-AAV8 capsid humoral and cellular
immune responses in the four dogs injected via the LR route. As
expected, and in line with previous studies33, we detected elevated
and persistent IgG and neutralizing antibody levels to the AAV8
capsid in the serum of the four injected dogs (Supplementary
Fig. 9), but no anti-capsid reactive T cells as measured by IFNg
ELISPOT (Supplementary Table 2).

Overall, these data suggest that LR or systemic administrations
of rAAV2/8-Spc5.12-cMD1 vector elicit no detrimental humoral
or cytotoxic immune responses in GRMD dogs despite the lack of
immunosuppression.

Discussion
Here, we show for the first time the effective, long-term and safe
delivery of a microdystrophin transgene in the GRMD dog model
of DMD by both LR and systemic administration of a rAAV2/8
vector and in the absence of preventive immunosuppression. In
both studies, we utilized a sequence-optimized MD1 gene under
the control of a skeletal muscle and heart-specific transcriptional
regulatory element delivered in ‘GMP-like’ grade rAAV2/8
vectors. We initially tested the LR delivery of rAAV2/8-
Spc5.12-cMD1 and observed high levels of cMD1þ fibres,

averaging 50% in the muscles of the treated limb. These data
correlated with cMD1 expression levels detected by western blot
and RT-Q-PCR mRNA assays. Overall, high-level expression of
the optimized cMD1 cassette combined with a LR route of
delivery was associated with significant histological and func-
tional amelioration in the injected limb, despite the reduced size
of the protein and the absence of known functional domains, such
as the neuronal nitric oxide synthase binding and relocalization
domain44.

To our knowledge this is the first time a gene therapy based on
rAAV-MD gene delivery by LR isolated limb perfusion and
without immunosuppression has been performed in young adult
GRMD dogs, showing clear prevention of degeneration/regenera-
tion, fibrosis, magnetic resonance imaging and NMR changes and
loss in muscle strength.

We and others previously showed the successful implementa-
tion of the LR delivery route by administration to GRMD dogs of
rAAV2/8 vectors expressing exon-skipping antisense RNA
sequences under the control of the U7snRNA promoter
(rAAV2/8-U7snRNA-E6/E8)33,45. Interestingly, while both
vectors were manufactured using an identical protocol,
expression of a microdystrophin protein from the rAAV2/8-
Spc5.12-cMD1 vector restored a higher number of phenotypically
corrected fibres at comparable vg dg� 1 values with respect to the
exon-skipping vector that restores the synthesis of an almost full-
length dystrophin protein. This may be explained by the stronger
activity of the synthetic Spc5.12 promoter or by the overall higher
efficiency of a gene replacement (one step event) compared with
the splicing correction approach (two-step event).

We next evaluated the therapeutic effect of rAAV2/8-Spc5.12-
cMD1 vector after systemic transvenous delivery in juvenile
GRMD dogs, again in the absence of immunosuppression. We
focused our investigations on relevant clinical outcomes, similarly
to what would be applied in a phase I/II clinical trial in DMD
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Figure 5 | Analysis of cMD1 expression by immunostaining and western-blot in muscular biopsies of GRMD dogs injected with rAAV2/8-Spc512-

cMD1 by the IV route. (a–c) Dystrophin immunostaining (NCL-DYSB) on transverse sections of muscle samples. Representative results are presented for

two treated GRMD dogs injected with different doses of the rAAV2/8-Spc5.12-cMD1 vector by the IV route: dog IV2, injected with 1� 1014 vg kg� 1 (a) and

dog IV7, injected with 2� 1013 vg kg� 1 (b). A healthy (WT) dog is also presented as control (c). For the treated dogs, different muscle samples were

obtained after surgical biopsies performed before injection, at 3.5 months post injection, at 8 months post injection and at 14 months post injection (only

for Dog IV2 for this latter time point). The level of cMD1-positive fibres is indicated above each panel, as well as the number of vector genomes per diploid

genomes detected by qPCR in the same muscle sample. Scale bar, 100 mm. (d) Western blot analysis of total proteins (50 mg) extracted from muscles

samples. Representative results are presented for two other treated GRMD dogs, injected with different doses of the rAAV2/8-Spc5.12-cMD1 vector by the

IV route: dog IV4, injected with 1� 1014 vg kg� 1 and dog IV6, injected with 2� 1013 vg kg� 1. Then, 50mg of total proteins extracted from GRMD myoblasts

transduced with the rAAV2/8-Spc5.12-cMD1 vector were used as positive control, as well as 25 to 75mg of total proteins extracted from a skeletal muscle

of a WTdog. The blot was stained with MANEX-1011C to reveal the presence of the 427 kDa dystrophin protein (WTdog) and the 138 kDa cMD1 protein,

with an anti-GAPDH antibody as a loading control. The level of cMD1-positive fibres detected by immunostaining as well as the number of vector genomes

per diploid genomes detected by qPCR from the same muscle samples are indicated under each panel.
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patients. These included evaluation of the clinical status as well as
of the gait of the animals, while biodistribution and expression of
the transgene analyses were limited to iterative muscle biopsies
over time. We observed a dose-dependent and significant
stabilization, even improvement, of clinical parameters and of
gait scores, with 2� 1013 vg kg� 1 being under-dosed, whereas
1� 1014 vg kg� 1 was effective, but still presenting heterogeneity
among treated dogs. Nevertheless, this is the first demonstration
of a long-term generalized clinical improvement of ‘Jagged1-
negative’ GRMD dogs41 (up to 2 years of age for 2 dogs at the
time of manuscript submission) after systemic administration of a
rAAV2/8-MD vector. Unfortunately, since the emergence of
cardiac pathology is very rare and with a late onset (over 1 year of
age) in the untreated GRMD dogs of our colony, we have been
unable to evaluate the impact of MD1 gene therapy on the cardiac
function of the treated GRMD dogs by using conventional
echocardiography, two-dimensional (2D) colour tissue Doppler
imaging or even speckle tracking imaging (Supplementary
Fig. 10). The recently described DMDmdx rat model, which

presents cardiac hypertrophy followed by a dilated
cardiomyopathy similar to the one observed in DMD
patients46, should allow a better evaluation of the impact of
rAAV2/8-Spc5.12-MD1 treatment on the dystrophin-deficient
cardiac pathology.

Only a handful of studies addressed so far the issue of body-
wide systemic gene therapy in dystrophic dogs. A rAAV2/9 vector
carrying a human sequence-optimized microdystrophin construct
driven by the ubiquitous cytomegalovirus (CMV) promoter was
injected intravenously in three 4-day-old dystrophic dog
neonates47. In this study, the early inflammatory side effects
observed in the pelvic region were likely linked to the use of the
ubiquitous CMV promoter and/or to the expression of a non-
species-specific human protein that may have induced a strong
immune response in the muscles. No immune suppression was
used in these dogs as animals treated soon after birth were
expected to mount a less robust response due to the relatively
immature nature of their immune system48. In another study32,
dystrophic dog fetuses were transduced intra-amniotically to
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investigate the therapeutic effects of a rAAV vector expressing
microdystrophin under conditions of immune tolerance. At 6
weeks after birth, rAAV2/9-CMV-microdystrophin was
reinjected into the jugular vein of one of the dystrophic dog to
induce systemic expression of MD. Gait and cardiac function
improvement was observed in the treated dogs, suggesting that
administration of a rAAV-microdystrophin vector after in utero
tolerization could induce successful long-term transgene
expression. A recent study49 in two 2-month-old DMD dogs
used a tyrosine engineered modified rAAV9 capsid as the vehicle
to deliver a canine sequence-optimized flag-tagged
microdystrophin construct driven by a CMV promoter.
Animals were euthanised at 4 months post injection, and
sustained immunosuppression (cyclosporine Aþmycophenolate
mofetil) was applied. Although high doses (up to 5–
6� 1014 vg kg� 1) were systemically injected, an average of only
25% of MD-positive fibres were found in this limited cohort and
no functional or histopathological improvements were reported.

Unlike rodents, dog immunity shares many common features
with its human counterpart with a full development before birth,
although the maturity of the immune system completes after
birth50. An important observation of our study, in view of clinical
translation, was the lack of systemic adverse effects and anti-
cMD1 T-cell immune responses at the highest, efficacious dose of
cMD1 vector, associated with long-term persisting transgene
expression despite the occasional and transient detection of anti-
cMD1 IgGs in most of the dogs. Importantly, the transient

humoral immune response was apparently without serious
consequences in the transduced muscles or in peripheral
organs. In fact, the detection of humoral immunity against a
transgene product is not systematically associated with
immunotoxicity in gene therapy protocols. The same type of
non-deleterious humoral immune response has already been
shown in haemophilia dogs following LR rAAV vector delivery
without affecting factor IX transgene expression in animals51.
This lack of deleterious adverse inflammatory and immunological
reactions to the cMD1 transgene product may be due to several
factors. Unlike intramuscular injection, LR and systemic
transvenous infusion routes are associated with a lack of
immunotoxicity as previously described for other
transgenes33,51–53. It was also previously demonstrated in a
mouse model of limb-girdle muscular dystrophy-2D that the use
of a muscle-specific synthetic promoter, such as the Spc5.12
promoter21 used to restrict transgene expression in the present
study, can lead to long-lasting transgene expression, whereas
immune rejection was observed when the transgene is driven by
the ubiquitous CMV promoter54. Furthermore, the presence of
natural dystrophin ‘revertant fibres’ in GRMD dogs (as in the
majority of DMD patients55) could be a powerful tolerogenic
factor. Moreover, while we did observe a humoral (IgM, IgG and
NAB) immune response to AAV8 capsid in the treated dogs,
there was no detectable cellular immune response against
proteins of the AAV8 capsid, in line with our previous
studies33. The lack of detectable T-cell responses may be the
result of rAAV2/8 vector produced in GMP (good manufacturing
practices)-compliant baculovirus-insect Sf9 cell factories that may
be effective in tackling adjuvant or proinflammatory effects of
vector-associated or mammalian cell by-products observed in
rAAV lots generated by standard co-transfection protocols in 293
cells56,57. However, it is important to note that in current and
ongoing rAAV vector gene therapy trials in humans, low-level
and variable transient hepatoxicity has been reported to be
associated with cellular immune responses to AAV components
and to be controlled by corticosteroid immunosuppression58. In
the case of DMD, corticosteroid therapy has become the standard
of care. It is thus likely that any future MD gene therapy clinical
trial will recruit patients already taking and continuing to take
corticosteroids, and thus already immunosuppressed. We would
also point out that seropositivity to AAV8 arising from exposure
to WT AAV8 virus or to a recombinant gene delivery vector
will most likely preclude subjects from subsequent rAAV8-
mediated gene therapy. Powerful physical (for example,
plasmapheresis) and/or drug-induced immunosuppressive
regimens are being investigated to potentially enable
administration of rAAV gene therapy vectors in the presence of
preexisting AAV antibodies59.

In conclusion, our data support the overall safety and
therapeutic efficacy in GRMD dogs of both LR and systemic
transvenous infusion of rAAV2/8-Spc512-cMD1, paving the way
for human clinical trials for either upper limb or whole body
delivery in a manner potentially therapeutic for any DMD
patients irrespective of their mutation genotype.

Methods
Vector design and production. Our vector contained a species-specific codon and
mRNA sequence-optimized canine microdystrophin cDNA, that is, cMD1: DR4–
23/DCT, that was placed under the control of muscle and cardiac synthetic Spc5.12
promoter24. Two rAAV2/8-Spc5.12-cMD1 vector batches were produced using the
Sf9/baculovirus expression vector system adapted for the rAAV8 (ref. 33). Briefly,
Sf9 cells were cultured in serum-free insect cell medium (Sf-900 II SFM medium,
Life Technologies) at 27 �C using 50 l of disposable bioreactors (Sartorius). After
achieving the cell concentration of 1 million cells per ml, Rep2-Cap8 and ITR-
Spc5.12-cMD1 baculoviruses were used for the co-transduction. Cells were left
growing and then lysed to release vectors into the supernatant. The lysate was
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Figure 7 | Improved gait quality of GRMD dogs injected with rAAV2/8-

Spc5.12-cMD1 by the IV route. The global gait quality was determined

twice a month using Locometrix and analysed by a discriminant analysis of

seven accelerometric variables. The curves represent the evolution of the

mean gait index with 95% confident intervals (shaded areas) in healthy

dogs (n¼ 9, including animals from retrospective cohorts, green curve),

untreated GRMD dogs (n¼ 25, including animals from retrospective

cohorts, red curve) and GRMD dogs injected intravenously with rAAV2/8-

Spc5.12-cMD1 at 2� 1013 vg kg� 1 (n¼ 3, light grey curve) or

1� 1014 vg kg� 1 (n¼ 5, dark grey curve). F1 and F2 represent the two axes

used to plot data during discriminant analysis. An additional axis

corresponding to the age in months was also calculated and represented.

The discriminant analysis (see details in the Methods section) allows a

statistical evaluation to test the probability that the gait of the treated

animals was similar (P40.95) to those of healthy dogs or of untreated

GRMD dogs. The result of this statistical evaluation was represented as a

colour code, using a green plot when the gait was found similar to those of

healthy dogs, a red plot when similar to those of untreated GRMD dogs and

yellow when the gait was considered as intermediate between healthy and

untreated GRMD dogs.
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clarified on a 0.45 mm glass fibre frontal filter (Pall) and then purified using
immunoaffinity chromatography column (AVB Sepharose HP, GE Healthcare).
Finally, the vector was concentrated and formulated in Ringer-lactate solution
(Baxter), sterile filtered, aliquoted and frozen at o� 70 �C. Finally, several quality
controls tests (physical titre, infectious titre, level of endotoxin, purity, sterility, pH,
osmolality and in vitro functionality on GRMD myoblasts) were performed on
each batch of vector before administration to dogs.

Animals and vector delivery protocols. A total of 12 affected male GRMD dogs
were injected with the rAAV2/8-Spc5.12-cMD1 vector, with 4 being injected via LR
transvenous perfusion of one forelimb and 8 being injected via the IV route. In
addition, 12 supplemental age matched male GRMD dogs were included as dys-
trophin-negative controls, with 3 being injected via LR transvenous perfusion of
one forelimb with Ringer-lactate solution and 9 being untreated and followed in
parallel of the IV-treated dogs (Table 1). Ten age-matched male healthy (that is,
non dystrophic) golden retriever dogs were used as controls. At the time of
manuscript submission, all GRMD dogs except dogs IV1 and IV2 have been
euthanised by intravenous injection of pentobarbital sodium (Dolethals, Veto-
quinol) in accordance with approved protocols.

Dogs were all obtained from the Centre d’Elevage du Domaine des Souches
(Mezilles, France) or from the Boisbonne Center for Gene Therapy (ONIRIS,
Atlantic Gene Therapies, Nantes, France), two breeding centres of the same colony.
They were handled and housed in the Boisbonne Center for Gene Therapy. The
institutional animal care and use committee of the Région des Pays de la Loire
(University of Angers, France) as well as the French Ministry for National
Education, Higher Education and Research approved the protocols (authorization
no. 2011.31 for LR-injected animals and authorization no. 00815.02 for IV-injected
animals). The protocol was performed without any immunosuppression regimen.

For LR transvenous injection, AAV8 seronegative animals were injected at the
age of 3–4 months. Dogs were initially anaesthetized with ketamine (Imalgene
1,000, Merial) and diazepam (Valium, Roche) and then maintained under an
inhalational mixture of isoflurane (Vetflurane, Virbac) and oxygen. Morphine was
used as analgesic. Cephalic vein of anaesthetized dogs was cannulated with a
20-gauge catheter (B-Braun) and the forelimb was exsanguinated using an Esmarch
bandage (Microtek Medical) and applying a pneumatic tourniquet (Dessillon-
Dutrillaux) that was placed above the elbow of the dog and inflated to 310mmHg
to prevent blood circulation in the limb. After removal of the Esmarch bandage, the
solution (rAAV diluted in Ringer-lactate solution or Ringer-lactate solution alone
for the control limbs) was perfused. Dogs were injected with a volume
corresponding to 20% of the limb volume at a fixed flow rate of 10mlmin� 1 using
a volumetric pump (Fresenius Vial). The venous pressure at the level of the
catheter was monitored during the whole procedure. Once perfusion was complete,
the tourniquet was left in place for 15min and finally released.

For systemic administration, AAV8 seronegative animals were injected at the
age of 2 months by direct IV injection in a cannulated cephalic vein at a fixed flow
rate of 3mlmin� 1. Prior injection, the rAAV vector was diluted in Ringer-lactate
solution to obtain a fixed total volume corresponding to 5ml of perfusate per kg of
animal.

For surgical muscular biopsies, anaesthesia was induced with ketamine
(Imalgene 1,000, Merial) in combination with diazepam (Valium, Roche) and was
maintained using an inhalational mixture of isoflurane (Vetflurane, Virbac) and
oxygen. Analgesia was performed with morphine. To limit discomfort of the
animal due to preinjection surgical biopsy, meloxicam (Metacam, Boehringer-
Ingelheim) was administered on the day of injection and for the following 2 days.

Immunostaining of cMD1-positive fibres. Muscles samples were snap-frozen in
isopentane cooled in liquid nitrogen and stored at o� 70 �C until processing.

Dystrophin-positive fibres were numbered in a blinded manner on serial transverse
sections after immunohistochemical revelation of dystrophin using a mouse
monoclonal anti-dystrophin antibody (Novocastra NCL-DYS-B, clone 34C5, 1:50,
Leica). Goat anti-mouse biotinylated IgG (1:300, Dako) was used as secondary
antibody, diluted in 5% dog serum in phosphate-buffered saline (PBS). The sec-
tions were then incubated with streptavidin/horseradish peroxidase (HRP) (1:300,
Dako) and then revealed using 3,30-diaminobenzidine (DAB, Dako). Although
dystrophin-positive fibres in positive samples were scattered all along the muscle
samples as individual or more often as clustered fibres, a minimum of 3 micro-
scopic fields at intermediate magnification were randomly chosen to finally observe
a minimum of 250 fibres (intraobserver variation coefficient was below 5%). All
measurements were performed using Nikon’s NIS-Elements software (Nikon).
Statistical analyses were performed using the nonparametric Mann–Whitney test.
A difference was considered to be significant at *Po0.05, **Po0.01 or
***Po0.001.

Western blot analysis. For each muscle sample, total proteins were extracted
from snap-frozen muscle samples using RIPA buffer (Tris 10mM pH 7.5; NaCl
150mM; EDTA 1mM; NP40 1%; sodium deoxycholate 0.5%; SDS 0.1%) con-
taining protease inhibitor cocktail (Sigma-Aldrich). Protein extracts at 50 mg were
loaded on a NuPAGE Novex 3–8% Tris Acetate gel and analysed using the
NuPAGE large protein blotting kit (Thermo Fisher Scientific). Membranes were
blocked in 5% skim milk, 1% NP40 (Sigma-Aldrich) in TBST (Tris-buffered saline,
0.1% Tween-20) and hybridized with an anti-dystrophin antibody specific for
exons 10 and 11 of the dystrophin protein (1:100, MANEX 1011C, clone 4F9—
monoclonal antibody obtained from the MDA monoclonal antibody resource—
ref. 60) and with a secondary anti-mouse IgG HRP-conjugated antibody (1:2,000,
Dako). For protein loading control, the same membrane was also hybridized with
an anti-canine GAPDH antibody (1:10,000, Clinisciences) and with a secondary
anti-goat IgG HRP-conjugated antibody (1:2,000, Dako). Immunoblots were
visualized by ECL Chemiluminescent analysis system (Thermo Fisher Scientific).
All uncropped western blots included on the study are reported in Supplementary
Fig. 11.

Vector biodistribution analysis. Vector copy numbers in the muscular biopsies
were determined in a blinded manner. Genomic DNA was extracted using Gentra
Puregene kit (Qiagen) and TissueLyser II (Qiagen). Q-PCR analyses were con-
ducted on a StepOne Plus (Life Technologies) using 50 ng of gDNA in duplicate.
Reactions were performed in a final volume of 25 ml containing template DNA,
Premix Ex taq (Ozyme), 0.3 ml of ROX reference dye (Ozyme), 0.4 mmol l� 1 of
each primer (Thermo Fisher Scientific) and 0.2 mmol l� 1 of Taqman probe
(Thermo Fisher Scientific). Vector copy numbers were determined using primers
and probe specifically designed to amplify the cMD1 transgene (forward: 50-
CCAACAAAGTGCCCTACTACATC-30 ; reverse: 50-GGTTGTGCTGGTCCAGG
GCGT-30 ; probe: 50-FAM-CCGAGCTGTACCAGAGCCTGGCC-TAMRA-30).
Primers and probe designed to amplify the canine b-glucuronidase gene (forward:
50-ACGCTGATTGCTCACACCAA-30 ; reverse: 50-CCCCAGGTCTGCTTCA-
TAGTTG-30 ; probe: 50-FAM-CCCGGCCCGTGACCTTTGTGA-TAMRA-30) were
used to determine the endogenous gDNA copy numbers. For each sample, Ct
values were compared with those of different dilutions of linearized standard
plasmids (containing either the cMD1 expression cassettes or the canine b-glu-
curonidase gene). The sensitivity of our test was 0.002 vg dg� 1. Statistical analyses
were performed using a nonparametric Mann–Whitney test. A difference was
considered to be significant at *Po0.05, **Po0.01 or ***Po0.001.

cMD1 mRNA-level analysis. Total RNA was extracted from muscles with TRIzol
reagent (Thermo Fisher Scientific) and treated with RNAse-free DNAse I from the

Table 3 | Anti-cMD1-specific circulating IgG antibodies and anti-cMD1 specific IFN-g secretion from PBMCs of GRMD dogs

injected with rAAV2/8-Spc5.12-cMD1 by the LR or the IV route.

Group Dog Circulating anti-cMD1 IgG IFN-c secretion by PBMCs with cMD1 peptides

Bef.
inj.

M
þ 1

M
þ 2

M
þ 3

M
þ4

M
þ8

M
þ 12

M
þ 22

Bef.
inj.

M
þ 1

M
þ 2

M
þ 3

M
þ4

M
þ 5

M
þ6

M
þ 7

M
þ8

M
þ9

M
þ 11

M
þ 12

M
þ 14

M
þ 16

M
þ 18

M
þ 20

M
þ 21

M
þ23

Group LR LR1 � þ þ � NA NA NA NA � � � � NA NA NA NA NA NA NA NA NA NA NA NA NA NA
1� 1013 vg kg� 1 LR2 � þ þ � NA NA NA NA � � � � NA NA NA NA NA NA NA NA NA NA NA NA NA NA

LR3 � þ � � NA NA NA NA � � � � NA NA NA NA NA NA NA NA NA NA NA NA NA NA
LR4 � � � � NA NA NA NA � � � � NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Group IV-A IV1 � � þ � � � � � � � � � � � � � � � � � � � � � � �

1� 1014 vg kg� 1 IV2 � þ þ þ þ � � � � � � � � � � � � � � � � � � � � �

IV3 � � � � � � NA NA � � � � � � � � � NA NA NA NA NA NA NA NA NA
IV4 � þ þ þ þ þ NA NA � � � � � � � � � NA NA NA NA NA NA NA NA NA
IV5 � � � � � � NA NA � � � � � � � � � NA NA NA NA NA NA NA NA NA

Group IV-B IV6 � � � � � � NA NA � � � � � � � � � NA NA NA NA NA NA NA NA NA
2� 1013 vg kg� 1 IV7 � � � � � � NA NA � � � � � � � � � NA NA NA NA NA NA NA NA NA

IV8 � � � � � � NA NA � � � � � � � � � NA NA NA NA NA NA NA NA NA

Bef. inj., before injection; M, month; þ , detection of circulating anti-cMD1 IgG antibodies; � , no detection of circulating anti-cMD1 IgG antibodies or no detection of IFN-g secretion by PBMCs; NA, not

applicable.
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TURBO DNA-free kit (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Then, 500ng of this RNA was reverse transcribed using random primers
(Thermo Fisher Scientific) and M-MLV reverse transcriptase (Thermo Fisher Sci-
entific). Q-PCR analysis was then performed in a blinded manner using the same
cMD1-specific primers and probe than for the detection of transgenic DNA. As an
internal control, RPL32 dog ribosomal RNA was used to normalize the mRNA
concentration (forward: 50-TGGTTACAGGAGCAACAAGAA-30 ; reverse: 50- GCA-
CATCAGCAGCACTTCA-30 ; probe: 50-FAM-TGCTGCCCAGTGGCTTCTGG-
TAMRA-30). For each RNA sample, Ct values were compared with those obtained
with different dilutions of standard plasmids (containing either the cMD1 expression
cassette or the canine RPL32 dog ribosomal gene). Results were expressed in relative
quantities (RQ): RQ¼ 2�DCt

¼ 2� (Ct target�Ct endogenous control). For each RNA
sample, the absence of DNA contamination was also confirmed by analysis of ‘cDNA-
liked samples’ obtained without addition of reverse transcriptase in the reaction mix.

Histomorphological analysis. Regeneration was evaluated after immunohisto-
chemical detection of myofibres with an antibody specific of a developmental
Myosin Heavy Chain isoform (1:20, Novocastra NCL-MHCd, clone RNMy2/9D2,
Leica). Goat anti-mouse biotinylated IgG and DAB were used to reveal the signal as
for the dystrophin staining. The percentages of labelled areas were measured after
manual threshold on all muscle cross-sections (reproducibility coefficient: 17%).
Total and endomysial fibrosis were evaluated after immunohistochemical detection
of Collagen I (1:500, clone I-8H5, MP Biomedicals). Again, goat anti-mouse bio-
tinylated IgG and DAB were used to reveal the staining. The endomysial areas were
selected by the operator, the threshold level was selected and an automatic mea-
surement of the percentage of the labelled area was done. Twenty fields were
randomly chosen to finally evaluate the level of endomysial fibrosis in each muscle
(reproducibility coefficients: 1% with � 10 magnification for total fibrosis and 7%
with � 20 magnification for endomysial fibrosis). All measurements were auto-
matically performed and in a blinded manner using Nikon’s NIS-Elements soft-
ware (Nikon). Statistical analyses were performed using the nonparametric
Kruskal–Wallis test and post hoc multiple comparison using Dunn’s test. A dif-
ference was considered to be significant at *Po0.05, **Po0.01 or ***Po0.001.

NMR imaging and spectroscopy analysis. This assessment was done in a blinded
fashion, that is, the operator was not aware of the injected versus the noninjected
forelimb. NMR imaging was performed at 3-tesla in a Siemens Magnetom Trio
TIM imager/spectrometer (Siemens) in the injected forelimb and in the non-
injected contralateral forelimb of each LR-injected GRMD dog. Ten significant
quantitative indices were calculated from the 1H-NMR signal of three different
muscles (extensor carpi radialis brevis, extensor carpi radialis longus and flexor
carpi ulnaris). The most relevant NMR imaging indices relying on T2, T1 and
proton density-weighted image signal intensities (T2w, T1w, PD), that is, the T2w/
PD and T2w/T1w ratios, the T2w heterogeneity and the maximum relative
enhancement after intravenous bolus injection of Gadolinium chelate, were ana-
lysed. All indices from the muscles of the injected forelimb were compared with
those of the noninjected forelimb, and to reference data collected in untreated
GRMD and healthy dogs. The 31P spectroscopy was realized at 4-tesla in a 46-cm
free bore magnet (Magnex Scientific) interfaced to a Bruker Biospec spectrometer
(Bruker Medical Gmbh), with a 2 cm diameter coil-collecting signal from the two
extensor carpi radialis muscles. Signals were measured from the two extensor carpi
radialis muscles. Phosphocreatine, the b-phosphate of ATP, phosphomono and
phosphodiesters and two resonances of inorganic phosphate were measured on 31P
spectra from which 7 ratios and the pH values for both inorganic phosphate
resonances were calculated.

Strength assessment. This assessment was performed in a blinded fashion, that
is, the operator was not aware of the injected versus the noninjected forelimb, and
using a specific torque measurement device built around interchangeable torque-
meters with a nominal scale of either 2 or 20Nm (Scaime)33. The flexion and
extension strengths of the wrist of both forelimbs were measured for each LR-
injected GRMD dog and for untreated GRMD and healthy control dogs. Dogs were
maintained under anaesthesia using Propofol (Rapinovet, Schering-Plough) to
limit peripheral muscle relaxation. Two thin insulated needles (28G, TECA, Viasys
Healthcare) were used to directly stimulate the nerve of the carpal flexors and
extensors. Either the median and ulnar common nerve branches or the radial nerve
were stimulated with trains generated during 500ms at supramaximal intensity and
various stimulation frequencies (5, 10, 20, 25, 50, 100, 133 and 200Hz). Biphasic
stimuli with a total duration of 1ms were used and 30 s rest periods were waited
between contractions. The maximal torque detected over all the elicited tetanic
contractions was used to measure the maximal strength of the dogs for each muscle
function (flexion and extension) and each side (injected and control). Three
measurement sessions were performed all along the protocol. For each
measurement session, the maximal extension torque was expressed related to the
animal weight in nm kg� 1. Statistical analyses were performed using the
nonparametric Kruskal–Wallis test and post hoc multiple comparison using Dunn’s
test. A difference was considered to be significant at *Po0.05, **Po0.01 or
***Po0.001.

Clinical follow-up. The general clinical status of the systematically injected GRMD
dogs was evaluated by a clinical grading done weekly after injection by the same
doctor of veterinary medicine. Examination was blinded at the beginning of the
study, up to when the difference between treated and untreated dogs became
apparent. This evaluation includes 11 locomotion criteria and 6 items related to the
general health status (including dysphagia, ptyalism, global activity and breath-
ing)40. Each item was scored from 0 to 2, with 0 corresponding to the absence of
symptoms and 2 to maximum severity. The global clinical score was expressed as
the percentage of the maximum clinical score (defined as 100% for a healthy dog)
and a tendency curve (mobile means order 3) was built to represent the clinical
score evolution. The clinical score evolution obtained in our injected dogs was
compared with the clinical score evolution of several nontreated GRMD dogs.
Statistical analyses were performed using the nonparametric Kruskal–Wallis test
and post hoc multiple comparison using Dunn’s test. A difference was considered
to be significant at *Po0.05, **Po0.01 or ***Po0.001.

DNA sequence analysis of the Jagged1 gene. Genomic DNA obtained from
muscle samples of all untreated GRMD dogs and of the 8 GRMD dogs injected by
the intravenous route with the rAAV2/8-Spc5.12-cMD1 vector was extracted using
Gentra Puregene kit (Qiagen) and TissueLyser II (Qiagen). Then, 100 ng of
genomic DNA was amplified by PCR using GoTaq DNA polymerase (Promega)
and the following primers, specific of the promoter region of the canine Jagged1
gene: forward 50-ACCCAACCTTTTCTGCACTC-30 and reverse 50-CAT-
AGCCAAGGTCGAAGGAA-30 , with a 55 �C annealing temperature and 35 cycles.
PCR products (253 bp) were migrated on an agarose gel, purified using Nucleospin
Gel and PCR Clean-Up kit (Macherey Nagel) and finally sequenced on each strand
by Beckman Coulter Genomics, with the same primers as those used for PCR
amplification.

Gait analysis. Gait characteristics were acquired in a blinded fashion twice a
month in all systemically injected GRMD dogs using Locometrix, a three-dimen-
sional (3D) accelerometric device composed of three orthogonally positioned
accelerometers. This construction allows the recording of the accelerations along
the dorsoventral, craniocaudal and mediolateral axes of the dogs. It has been shown
that 3D accelerometry measurements allow quantitatively describing gait impair-
ment and its progression in GRMD dogs42,43. In the present study, for each test,
seven gait variables were calculated: the stride frequency; the stride regularity; the
total power of accelerations; the relative components of the total power along the
three axes of the space; and the stride length normalized by the height at withers.
We established a new method using discriminant analysis and these seven variables
plus the age of the dogs (in days) to evaluate dog gait. Briefly, we built a global gait
index model using reference data collected during a previous 3D accelerometer
study of disease progression (retrospective data)42,43 and during this study, with a
total of 25 untreated GRMD and 9 normal dogs61. This discriminant analysis
allows a statistical evaluation to test the probability that the gait of the treated
animals was similar (P40.95) to those of healthy dogs or of untreated GRMD
dogs. When the gait was found to be different from both healthy and untreated
GRMD dogs, it was considered as intermediate.

Follow-up of the immune responses. The analysis of anti-cMD1 IgG was per-
formed in a blinded manner by a western-blot protocol. For this study protein
cellular extracts obtained from 293 cells not transfected or transfected by a pCMV-
cMD1 plasmid were used instead of protein muscular extracts. Proteins were
loaded on a NuPAGE Novex 3–8% Tris Acetate gel and analysed using the
NuPAGE large protein blotting kit (Thermo Fisher Scientific) and then transferred
to a Hybond ECL nitrocellulose membrane (Thermo Fisher Scientific). Membranes
were blocked overnight and then incubated for 2 h at room temperature with sera
from injected dogs (dilution 1:500). Peroxidase-conjugated rabbit anti-dog IgG
antibody (1:5,000, Jackson ImmunoResearch) followed by enhanced chemilumi-
nescence detection (Pierce) were used for detection. MANEX 1011C antibody
(1:100, monoclonal antibody obtained from the MDA monoclonal antibody
resource60) revealed with a peroxidase-conjugated goat anti-mouse IgG antibody
(1:2,000, Dako) was used as a positive control. Uncropped western blots are
reported in Supplementary Fig. 11.

The levels of circulating anti-AAV8 total IgG and IgM were determined using
specific enzyme linked immunosorbent assays (ELISAs). The rAAV8 particles were
diluted in coating buffer (0.1M carbonate buffer, pH 9.5) to a final concentration of
2� 1010 vgml� 1. Then, 50ml was added to each well of a 96-well Nunc Maxisorp
immunoplate (Thermo Fisher Scientific). At the same time, proteins corresponding
to contaminants purified during the steps of rAAV production, but in the absence
of viral particle formation, were diluted in the same buffer and seeded, in parallel,
in different wells in the same immunoplate at a concentration of 3.4 mgml� 1. This
amount of protein corresponds to an amount of contaminant protein equivalent to
that seeded in the AAV wells and the signal obtained at the end corresponds to the
nonspecific signal that was removed from the signal obtained with the same serum
in the corresponding AAV wells. Plates were then incubated overnight at 4 �C. The
next day, plates were washed three times with blocking buffer (6% nonfat milk
buffer in PBS) and then blocked with blocking buffer for 2 h at room temperature.
Plates were again washed three times with wash buffer (0.05% Tween-20 in PBS)
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and then incubated with heat-inactivated serum diluted from 1:3 to 1:7,290 (or
more diluted if necessary) for 1 h at 37 �C. After three washes, purified antibodies
specific for IgG or IgM (Sigma Aldrich) were added and incubated for 1 h at room
temperature. After incubation the plates were washed three times with wash buffer.
HRP-conjugated sheep anti-mouse antibody (GE Healthcare) was added and
incubated for 1 h at room temperature. Last, plates were washed three times with
wash buffer and revealed with tetramethylbenzidine substrate solution (BD
Biosciences) for 30min in the dark. The reaction was stopped with H2SO4 solution
and measurements were made at 450 nm. The results are expressed as arbitrary
optical density (OD) units using a colourimetric amplification system based on
peroxidase. The AAV-specific signal was reported as the OD from AAV-coated
ELISA after removal of the OD obtained on contaminant protein ELISA, a
nonspecific signal (OD AAV-OD nonspecific signal).

The levels of circulating anti-AAV8 NAF were determined as follows. On day 1,
48-well plates were seeded with 5� 104 Huh7 cells per well for 24 h. On day 2,
recombinant AAV8-CMV-Luciferase (AAV-CMV-Luc) was diluted in Dulbecco’s
modified Eagle’s medium (Thermo Fisher Scientific) supplemented with 10% fetal
calf serum (Hyclone) and incubated with a 10-fold dilution, and then twofold serial
dilutions (1:2 to 1:400 or more diluted if necessary) of heat-inactivated serum
samples for 1 h at 37 �C. Subsequently, the serum–vector mixtures corresponding
to 1� 105 vg per cell were added to cells plated on day 1 and incubated in
Dulbecco’s modified Eagle’s medium/10% fetal calf serum for 48 h at 37 �C and 5%
CO2. Each mix was performed in duplicate. Cells were then washed in PBS and
lysed for 10min in 0.2% Triton lysis buffer at 4 �C. The lysate was transferred to
96-well plates and then the luciferase activity was read with a luminometer
(VICTOR2, PerkinElmer Life Sciences). Transduction efficiency was measured as
relative light units per second per well and normalized per amount of protein per
well expressed as optical density. The neutralizing titre was reported as the highest
serum dilution that inhibited the rAAV transduction byZ50% compared with the
control without serum and correlated with the amount of protein quantified in
each well after cell lysis by the Bradford assay.

Cellular immune responses against cMD1 were evaluated in a blinded manner
with an IFN-g ELISPOT assay using frozen PBMCs and an overlapping peptide
library covering the sequence of the cMD1 protein (Pepscreen, Sigma). The library
included 238 synthetic peptides of 15 amino acids overlapping on 10mers that
were divided in 3 pools to stimulate thawed PBMCs. The threshold of positivity
was determined as minimum of 50 spot-forming cells per 106 cells and4to 3 times
the number of spots recorded with nonactivated cells.

Cellular immune responses against AAV8 were also evaluated with an IFN-g
ELISPOT assay using frozen PBMCs incubated in the presence of lentiviral vectors
encoding the AAV8 VP1 capsid protein. The functionality of the lentiviral vectors
was checked by RT-PCR analysis on transduced human PBMCs. ELISPOT results
were based on spot-forming units/106 cells. Samples were considered positive if the
number of spots was 1.5 times (cutoff based on mean ratio of negative donors
±3 s.d.) larger than the corresponding control obtained from an empty lentiviral
vector. Assays were scored if the number of spots under stimulation was410 spots
per 2� 105 cells or 410,000 spots per 106 cells for the phorbol myristate acetate/
ionomycin control.

Assessment of cardiac function. Cardiac function of GRMD dogs injected with
rAAV82/8-Spc5.12-cMD1 by the IV route was evaluated monthly using conven-
tional echocardiography, 2D colour tissue Doppler imaging and speckle tracking
imaging, a sensitive approach allowing the detection of contractility defects.
Untreated GRMD dogs were used as references. Conventional echocardiography
and 2D colour tissue Doppler imaging were performed on conscious dogs in
standing position monitored with a continuous electrocardiography using a Vivid 7
ultrasound unit equipped with 5–7.5 and 2–5MHz phased-array transducers
(GE, Waukesha, WI, USA) according to the recommendations from the American
College of Veterinary Internal Medicine62. All data were transferred for offline
analysis using a specific software (Echo Pac 5.4, GE) by two examiners who were
unaware of the clinical status of the dogs. Several parameters were measured for the
assessment of myocardial contractility. For conventional parameters, left
ventricular (LV) dimensions, posterior wall and interventricular septal wall
thicknesses were measured and left ventricular fractional shortening and ejection
fraction (Teichholz method) were calculated. Pulsed Doppler of the mitral valve
inflow was used to measure the ratio of early to late diastolic flow velocity). Radial
myocardial velocities were measured by tissue Doppler imaging at the LV posterior
wall on a short-axis view at the level of the papillary muscles and at the basal
portion of the LV septal and lateral walls on an apical four-chamber view. Global
circumferential strain was obtained from averaged measures of segmental strains
by speckle tacking imaging in each of six predefined segments on a short-axis view.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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