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Abstract In this paper, we propose a new method to forecast the drift of objects in near coastal
ocean on a period of several weeks. The proposed approach consists in estimating the probability
of events linked to the drift using Monte Carlo simulations. It couples an averaging method which
permits to decrease the computational cost and a statistical method in order to take into account
the variability of meteorological loading factors.
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1 Introduction

Drift of things in the ocean is potentially dangerous for human activities and marine ecosystems.
For instance, drifting containers may cause serious accidents in the event of collision with ships and
oil spills may have very negative impacts especially in coastal areas. In this paper, we investigate a
new method to forecast the drift of an object in near coastal ocean on a period of several weeks.

The motion of a drifting object on the sea surface is the net result of a number of forces acting
upon it (water currents due to tide wave, atmospheric wind, wave motion, wave induced currents,
gravitational force and buoyancy force). It is possible to estimate the drift trajectory given infor-
mation on the local wind, the surface current, and the shape and the buoyancy of the object. For
instance, in order to estimate the position of lost containers, the safety-and-rescue services generally
use short-term meteorological forecasts as forcing of an hydrodynamic model of drift (see Daniel et

al. [5]). It is usual in such problems to consider several possible buoyancy and drift properties for
the object since these features are not known precisely in most cases. An uncertainty on the initial
conditions (position and time) may also be taken into account (see Hackett et al. [13]).

Since we are interested in longer periods of time in the present study, we cannot directly use
meteorological forecasts to estimate the object trajectory. Then the drift forecast has to be led out
in terms of probability. This will be done using a Monte Carlo method, which makes it possible
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to estimate the probability of some scenarios linked to the object’s trajectory, like the probability
of being in a given point at a given time or the probability of running aground in given areas,
for example. It consists in computing the object trajectories corresponding to a large number of
meteorological time series representative of the climatology on the considered area. Because of the
variability of the meteorological conditions, it is necessary to compute a large number of trajectories
in order to get reliable estimates of the quantities of interest. Hence we are faced with two problems.

At first, as the existing data sets describe the meteorological conditions only on the few last
decades, it is necessary to be able to simulate new realistic meteorological time-series. For this, we
have used stochastic models. More precisely, it is assumed that these time series can be decomposed
as the sum of two components, the first one that describes the meteorological conditions at a synoptic
scale and the second one that represents fluctuations at the smaller scale. Then, the synoptic
component is simulated with a non-parametric resampling algorithm proposed by Monbet, Ailliot
and Prevosto [15], and the short-term component with an Autoregressive model.

Secondly, we have to compute the corresponding object trajectories, which oscillate with tide,
in a reasonable computational time. Indeed, the trajectory of a drifting object submitted to tide
wave currents and currents generated by other meteorological factors, is essentially composed by a
trend and oscillations due to the tide, which have a small period with respect to the time period of
interest (several weeks). Due to these high frequency oscillations, the numerical integration of the
considered system is generally time consuming. So that it is convenient to split the estimation of the
displacement of the object in two steps: first, we calculate the trend which is of low computational
cost thanks to the lack of oscillations and then we reconstruct the oscillation around the trend.
For this, we apply the Averaging Method developed by Frénod [7] in order to identify the averaged
fields governing the trend and the oscillating operators allowing the reconstruction of the real object
trajectory from the trend. As far as we know, this method has never been used before in the
metocean field.

In order to check the validity of the proposed methodology, we consider a situation with deter-
ministic currents and negligible wave effects and we study a simplified model where the acceleration
of the floating object is equal to the sum of the acceleration of the water (due to the wave tide and a
perturbation of smaller order which represents other water currents) and the difference between the
wind speed and the object velocity. This model is described more precisely in the second section.
Then, in the third section, we present the basic ideas of the Averaging Method and we compare
computational cost of this method with the one which consists in integrating the real trajectory
directly. In Section 4, we validate our method using numerical experiments. First, the models of the
meteorological forcing fields (tide wave, perturbation and wind) are specified. Then, the accuracy
of the Averaging Method is checked on the basis of numerical comparisons. Finally, in Section 5 the
methodology is illustrated with an example in which the probability of running aground is estimated
for an academic domain.

2 Model

The model on which we shall implement the method evoked above is a very simplified model for large
time drift in ocean, above continental shelf in strong tide zone, of an almost completely submerged
object submitted to wind. This model is extracted from exhaustive scaling analysis for large time
floating object drift which we shall present in a forthcoming paper.

In short, the evolution of the position X(t) = X(t;x,v) ∈ R2 and the velocity V(t) = V(t;x,v)
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∈ R2 of the considered object, having x and v as initial position and velocity, is given by:

dX

dt
= V, (2.1)

dV

dt
=

d

dt

[

m(t,X))
]

+ Λ(w(t,X) − V) =
∂m

∂t
(t,X) +

(

∇m(t,X)
)

V + Λ(w(t,X) − V), (2.2)

where m ≡ m(t,x) is the ocean velocity field and w ≡ w(t,x) the wind velocity field. ∇m stands
for the Jacobian matrix of m. This equation says nothing but that the object is submitted to the
sea water acceleration and to the wind force quantified by a constant Λ.

The time scale t on which we want to observe the drift phenomenon is about 3 months and the
object is submitted to tide oscillations whose period T is about 12.5 hours. Then a small parameter

ε appears in our problem: the ratio T
t

tide period on observation time scale. The magnitude of ε is
about 1/200. We consider that the velocity measurement of the object, wind and water are all done
with the same unit: v. The observation length scale l, which has to be the characteristic length
of continental shelf, is about several hundred kilometers. This length has to be compared with the
characteristic distance Tv the water covers during a tide period, which is of some kilometers. It

seems then reasonable to consider that the ratio Tv
l

is also about ε.

Having those scale considerations at hand, we introduce the following rescaled variables t′, x′

and v′ expressing time, position and velocity in unit t, l and v

t = tt′,x = lx′ and v = vv′, (2.3)

the rescaled trajectory (X′(t′;x′,v′), V′(t′;x′,v′)) defined by

lX′(t′;x′,v′) = X(tt′; lx′, vv′), vV′(t′;x′,v′) = V(tt′; lx′, vv′), (2.4)

and the rescaled fields m′ and w′ defined by

vm′(t′,x′) = m(tt′, lx′), vw′(t′,x′) = w(tt′, lx′). (2.5)

We consider that the sea velocity writes

m′(t′,x′) = M(t′,
t

T
t′,x′) + εN(t′,

t

T
t′,x′) = M(t′,

t′

ε
,x′) + εN(t′,

t′

ε
,x′), (2.6)

where M(t′, t′

ε ,x′) ∈ R2 is the rescaled sea water velocity exclusively due to the tide wave. It
is supposed to be regular. Considering its dependency with respect to the oscillating time vari-

able, we suppose that θ′ 7→ M(t′, θ′,x′) is a 1−periodic function satisfying

∫

� M(t′, θ′,x′) dθ′ = 0

where

∫

� M(t′, θ′,x′) dθ′ =

∫ 1

0

M(t′, θ′,x′) dθ′. The field εN(t′, t′

ε ,x′), where N(t′, θ′,x′) is also

1−periodic in θ′, is the sea water velocity perturbation induced by meteorological factors. As con-
cerns the wind velocity field, we consider that w′ also involves two time scales, i.e.,

w′(t′,x′) = W(t′,
t′

ε
,x′). (2.7)

Nonetheless, wind time series bring out as unrealistic considering a periodic dependency of W(t′, θ′,x′)
with respect to θ′. In practice, we only consider that, for any t′ and x′, it admits an average value
∫

� W(t′, θ′,x′) dθ′ which actual definition is discussed later on.

Finally, we may deduce the equation satisfied by the rescaled trajectory and involving the rescaled
fields. Removing the ′, this equation, which is the model on which we shall implement our method,
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reads:

dX

dt
= V, (2.8)

dV

dt
=

1

ε

∂M

∂θ
(t,

t

ε
,X) +

∂M

∂t
(t,

t

ε
,X) +

∂N

∂θ
(t,

t

ε
,X) +

(

∇M(t,
t

ε
,X)

)

V + W(t,
t

ε
,X) − V

+ε
(∂N

∂t
(t,

t

ε
,X) +

(

∇N(t,
t

ε
,X)

)

V
)

.

(2.9)

Notice that system (2.8)-(2.9) is rescaled, and that, in it, every variable and field characteristic scale
is of order 1.

Clearly, the model under consideration is too simplistic to be used for operational applications.
Nevertheless, it contains most of the physical ingredients of drift of object in the ocean: joint action
of sea and wind, two time scales, possibility of using not so unrealistic sea velocity fields. Moreover,
it seems to be relatively straightforward to incorporate a realistic sea velocity in it, with a tide period
that weakly evolves with time and to apply it in a real geographical geometry. Hence, the validity
of the methodology we present in this paper is not limited by the simplifications we consider.

3 Asymptotic analysis

Having the goal of using the Monte Carlo Method to estimate the probability of events linked to
the trajectory of the drifting object in mind, we need to compute the object trajectory for a large
number of wind conditions. The solution (X,V) contains 1

ε−frequency oscillations. Then, solving
(2.8)-(2.9) directly by numerical methods forces the use of a very small time step. For instance, if
the explicit Euler scheme is used, since the characteristic size of the left hand side of (2.9) and of
its gradient are about 1

ε and the size of its time derivative is about 1
ε2 , the classical error estimate

yields, for a time step ∆t small enough, an error about

∆t

ε

(

1 +
∆t

ε

)
1

∆t

∼
∆t

ε
e

1

ε . (3.1)

Hence, if we want to obtain a precision about ε2 a time step ∆t about ε3e−
1

ε is needed. This is
really too small for operational applications. Hence we shall write an expansion of (X,V) and find
non oscillating equations satisfied by the terms of this expansion. This way, the previously evoked
constraint imposed on the time step vanishes.

It is an easy game to see that system (2.8)-(2.9) enters the framework of an oscillatory-singularly
perturbed dynamical system

d

dt





X

V



 = a(t,
t

ε
,X,V) + εa1(t,

t

ε
,X,V) +

1

ε
b(t,

t

ε
,X,V), (3.2)

very close to the one studied by Frénod [7] which originates from gyrokinetic plasma questions (see
also Poincaré [17], Krylov and Bogoliubov [14], Bogoliubov and Mitropolsky [3], Sanders and Verhulst
[19], Schochet [20], Frénod and Sonnendrücker [9, 10, 11], Frénod and Watbled [12] and Frénod,
Raviart and Sonnendrücker [8] for presentations of methods allowing to remove time oscillations).
With very little changes we may apply the results it contains to deduce that

X(t) = X0(t,
t

ε
) + εX1(t,

t

ε
) + . . . , V(t) = V0(t,

t

ε
) + εV1(t,

t

ε
) + . . . , (3.3)
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where oscillating functions X0, V0, X1 and V1 are linked to non oscillating functions Y0, U0, Y1

and U1 by

X0(t, θ) = Y0(t), (3.4)

V0(t, θ) = M(t, θ,Y0(t)) + U0(t), (3.5)

and

X1(t, θ) = Y1(t) +

∫ θ

0

M(t, σ,Y0(t)) dσ, (3.6)

V1(t, θ) = {∇M(t, θ,Y0(t))}{Y1(t) +

∫ θ

0

M(t, σ,Y0(t)) dσ}

+ U1(t) + N(t, θ,Y0(t)) − N(t, 0,Y0(t)) +

∫ θ

0

(

W(t, σ,Y0(t)) −

∫

� W(t, ς,Y0(t)) dς
)

dσ

−

∫ θ

0

M(t, σ,Y0(t)) dσ.

(3.7)

Then Y0, U0, Y1 and U1 are the solution to

dY0

dt
= U0, (3.8)

dU0

dt
=

∫

� W(t, θ,Y0) dθ − U0, (3.9)

dY1

dt
=

∫

� {∇M(t, θ,Y0)}{

∫ θ

0

M(t, σ,Y0) dσ} dθ

+ U1 +

∫

� N(t, θ,Y0) dθ − N(t, 0,Y0) +

∫

�

∫ θ

0

(

W(t, σ,Y0) −

∫

� W(t, ς,Y0) dς
)

dσ dθ

−

∫

�

∫ θ

0

M(t, σ,Y0) dσdθ −
{

∫

�

∫ θ

0

∇M(t, σ,y0) dσdθ
}

{U0} −

∫

�

∫ θ

0

∂M

∂t
(t, σ,y0) dσdθ,

(3.10)

dU1

dt
=

{

∫

� ∇W(t, θ,Y0)dθ
}

{Y1} +

∫

�
{

∇W(t, θ,Y0)
}{

∫ θ

0

M(t, σ,Y0) dσ
}

dθ

−
{

∫

� {∇M(t, θ,Y0)}{

∫ θ

0

M(t, σ,Y0) dσ}dθ + U1 +

∫

� N(t, θ,Y0) dθ − N(t, 0,Y0)

+

∫

� (

∫ θ

0

W(t, σ,Y0) dσ − θ

∫

� W(t, σ,Y0) dσ) dθ −

∫

�

∫ θ

0

M(t, σ,Y0) dσdθ
}

+
{

∇N(t, 0,Y0)

−

∫

� ∇
(

∫ θ

0

W(·, σ, ·) dσ − θ

∫

� W(·, σ, ·) dσ
)

(t,Y0) dθ +

∫

�

∫ θ

0

M(t, σ,Y0) dσdθ
}

{U0}

+
∂N

∂t
(t, 0,Y0) −

∫

�

∂
(

∫ θ

0

W(·, σ, ·) dσ − θ

∫

� W(·, σ, ·) dσ
)

∂t
(t,Y0) dθ

+

∫

�

∫ θ

0

∂M

∂t
(t, σ,Y0) dσdθ,

(3.11)
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equipped with initial conditions Y0(0) = x, U0(0) = v, Y1(0) = 0 and U1(0) = 0.

As said previously, this result may be inferred from [7]. It may also be deduced by expanding
fields and functions in (2.8) and (2.9) in a correct way. This is done formally in the Appendix.

Equations (3.4) and (3.5) mean that the order 0 trajectory does not oscillate and that the 0 order
velocity is the tide velocity added with a non oscillating velocity U0 which is generated by wind.
Wind acts on U0 only through its averaged value. This is translated in (3.9). By the way, notice that
since the average value of M is 0, equations (3.8)-(3.9) only involve the average wind. As concerns

order 1 terms, the situation is more complex. First since
∫ θ

0
M(t, σ,Y0(t)) dσ may be interpreted as

the position of a sea water particle placed in Y0(t) at the beginning of a tide cycle (θ = 0), equation
(3.6) means that the order 1 position is this water particle position plus a non oscillating function
Y1(t). Regarding the terms (3.7) contains, the first one describes the way the space variation of the
tide velocity acts, the second one is the non oscillating part of the velocity. The third and fourth terms
quantify the action of the sea velocity perturbation. Concerning the next term, we need to remember
that the action of the averaged value of the wind velocity is taken into account in order 0 equation
(3.9). Then we notice that W(t, σ,Y0(t)) −

∫

� W(t, ς,Y0(t)) quantifies the wind action around its

averaged value at each time of a tide cycle. Hence
∫ θ

0

(

W(t, σ,Y0(t)) −
∫

� W(t, ς,Y0(t))) dς
)

dσ is

the cumulated action of the wind around its averaged value. This quantity acts at order 1. The
last term of (3.7) can be interpreted as the previous one recalling that the mean value of the sea
velocity is 0. It is hard to give intuitive explanations for the evolution equations (3.10)-(3.11). We
only notice that they involve mean value of non-linear interactions between fields which quantify the
mean joint action of sea and wind. This non intuitive quantification is made possible thanks to the
asymptotic analysis presented in [7] and in the Appendix.

The characteristic size of the right hand sides in (3.8)-(3.11) are 1. Hence, to get the same
precision about ε2, with the same Euler scheme using (3.3)-(3.11) to compute (X,V), in place of
using (2.8)-(2.9) as evoked in the beginning of this section, the needed time step ∆t is about ε2.

Comparing this with the value ε3e−
1

ε found in the beginning of the section, despite the heavy form
of (3.8)-(3.11), this is an appreciable gain even more so given that our probabilistic forecast method
needs numbers of simulations for numbers of wind time series.

Concerning the validity of the expansion (3.3), if W(t, θ,x) was a regular function, periodic with
respect to θ, asymptotic expansion (3.3) could be rigorously justified, applying [7], by the following
inequality

sup
t∈[0,1]

‖X(t) − X0(t,
t

ε
)‖ ≤ cε, sup

t∈[0,1]

‖X(t) − X0(t,
t

ε
) − εX1(t,

t

ε
)‖ ≤ cε2, (3.12)

sup
t∈[0,1]

‖V(t) − V0(t,
t

ε
)‖ ≤ cε, sup

t∈[0,1]

‖V(t) − V0(t,
t

ε
) − εV1(t,

t

ε
)‖ ≤ cε2, (3.13)

which would be true for ε small enough and for a constant c independent of ε, where ‖ · ‖ stands for
the Euclidean norm in R2.

As we cannot consider the wind time series to have this form, we will estimate the error using
numerical experiments. This is done in the next section: several realistic wind time series are
simulated using a method described in Monbet et al. [15] and the corresponding error is calculated
for each of them. For this, we have to decide how the average values are to be computed. If the way

is clear for fields linked to M or N, for which we simply take
∫

� dθ =
∫ 1

0
dθ, the situation is more

obscure for wind linked fields. For them, we will take as averaged value at time t the mean value on
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the interval centered in t and with length p, i.e.

∫

� W(t, θ,x) dθ =
1

p

∫ t+p/2

t−p/2

W(s,
s

ε
,x) ds, (3.14)

for a parameter p that has to be adjusted experimentally. As concerns the integrals in θ of the wind
linked fields, they have to be replaced by integrals respecting V1(t,

t
ε ) = U1(t) when t

ε is an integer,
which is a constraint imposed by the Averaging Method. Hence, we replace

(∫ θ

0

W(t, σ,x) dσ

)

|θ= t

ε

by

∫ t

ε[ t

ε
]

W(s,
s

ε
,x) ds, (3.15)

where [ t
ε ] stands for the integer part of t

ε . Those choices have also to be experimentally validated.

4 Numerical validation

We begin this section by introducing the sea velocity fields and briefly presenting the stochastic
method used to generate the wind time series. Then, the expansion (3.3) is validated by numerical
experiments. More precisely, several wind time series are generated. Then, for each of them,
we compute the real trajectory using (2.8)-(2.9) and compare it to the trajectory obtained with
expansion (3.3) and the following equations.

4.1 Metocean fields

Let us first describe the metocean fields that have been used in our numerical experiments. Regarding
the rescaled ocean velocity induced by the tide wave and its perturbation, we have chosen the
following simple parametric fields:

M(t, θ,x) = (2 + sin(6πt)) x1





sin(2πθ) + 1
4 sin(4πθ)

1
2 sin(2πθ)



 , (4.1)

N(t, θ,x) = (2 + cos(6πt)) x2





sin(2πθ)

sin(2πθ)



 , (4.2)

where x1 and x2 are the first and second components of x.

The trajectories associated with the field





sin(2πθ) + 1
4 sin(4πθ)

1
2 sin(2πθ)



 are non circular loops which

remind those we can observe in Nihoul [16] or Salomon and Breton [18]. The velocity field M is
this simple vector field modulated by a time and position dependency in order to see the influence
of time derivative and gradient on the object trajectory. N is also a simple field which gradient is
orthogonal to the one of M.

In order to simulate realistic wind time series, we have assumed that they can be decomposed as
the sum of two components, e.g W(t, t

ε ,x) = WLt(t,x) + Wst(
t
ε ,x) where

• WLt(t,x) represents the wind evolution at a synoptic-scale, e.g at the scale of the high- and
low-pressure systems. The typical dimension of these systems ranges approximately from
1000km and 2500km and their duration is a couple of days to at most a couple of weeks.

• Wst(
t
ε ,x) represents the small scale evolution of the wind (e.g mesoscale and microscale winds).

This scale includes phenomena such as thunderstorms, squall lines, land and sea breezes...
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Such a decomposition is discussed more precisely by Breckling (see Breckling [4] and [1]). Dif-
ferent methods have been proposed in the literature to simulate realistic wind time-series at the
synoptic scale (see Monbet, Ailliot and Prevosto [15] and references therein). In this study, we have
first assumed that the wind WLt(t, x) is homogeneous in space; i.e. WLt(t, x) = WLt(t) for all x and
t, what seems realistic according the size of the domain which is supposed to be about some hundred
kilometers. Then, we have used a non-parametric resampling method to simulate the process WLt(t),
namely the Local Grid Bootstrap algorithm proposed by Monbet, Ailliot and Prevosto [15]. This
method has already been validated on various datasets, and it was found that it can successfully be
used to simulate realistic wind time series. In the present study, it has been calibrated on a dataset
which describes the wind condition during the summer at a point of coordinates (46.25N, 1.67W ),
located near the French Atlantic coast. It describes the synoptic wind conditions during the last 20
years recorded every ∆t1 = 6 hours.

Then, in order to simulate the small scale variations, we have used an Autoregressive model.
More precisely, for simplicity reasons, we have first assumed that this field is homogeneous in space.
This assumption is unrealistic and could be refined later on. Then, we have assumed that, for
k ∈ N∗,

Wst(k∆t2) = aWst((k − 1)∆t2) + E(k∆t2) (4.3)

where {E(k∆t2)}k∈N∗ denotes a zero-mean Gaussian white noise with covariance matrix σ2I2. In
practice, we have simulated this small-scale component with a time-step ∆t2 = ε/100. This consists
in giving the wind value every 4 min approximately, and the parameters a and σ have been chosen
such that the process Wst has a memory of a few hours and such that the standard deviation of its
marginal distribution represents approximately 10% of the one of the process W.

Finally, the procedure described above makes it possible to simulate the processes WLt(t) and
Wst(

t
ε ) for t ∈ k∆t1 and t

ε ∈ k∆t2, respectively. The values of these processes for other values of t
have been calculated by linear extrapolation. An example of simulated wind time-series is given in
Figure 2.

4.2 Numerical results

In order to validate the asymptotic expansion given in the previous section, we have computed the
solutions of (2.8)-(2.9) and of (3.3)-(3.11) for N = 100 artificial wind time series. Let us denote

X̂i, V̂i, X̂0
i , V̂0

i , X̂1
i , V̂1

i , for i ∈ {1, ..., N}, the corresponding numerical approximations of X, V,
X0, V0, X1 and V1, respectively. We have tested different algorithms to solve these ODEs, and
the best results have been obtained with an explicit Runge-Kutta (4,5) formula. In practice, we
have used the Maltlab’s function ode45 which is based on an explicit Runge-Kutta (4,5) formula,
the Dormand-Prince pair [6]. In the numerical results given hereafter, we have used ε = 1/50. This
choice makes it possible to compute the solutions of the system (2.8)-(2.9) with a good precision in
a reasonable computational time, and permits also easier graphics representations. We have used
xi = (1, 1) and vi = (0, 0) as initial values.

In Table 1, the norms of error in object position and velocity for order 0 and 1 expansions are
given. Let us discuss more precisely the results obtained with ε = 1/50. It shows that the asymptotic
expansions obtained with p = ε/10 (corresponding to an interval of 40 min), p = ε/2 (corresponding
to an interval of 6h15min) and p = ε (corresponding to an interval of 12h30min) are about 5ε2

worth, and close to each other. For comparison, we also compute the solution to system (3.3)-(3.11)
when the wind is null, and we also found an error equal to 0.0022 ≈ 5ε2. For p = 4ε (corresponding
to an interval of 2 days), the error is significantly higher. As concerns the computational coast,
it decreases as p increases, so that a good compromise seems to use ε/2 ≤ p ≤ ε; i.e. the wind
at a synoptic scale. Such a value of p permits to compute the solutions of the system (3.3)-(3.11)
with a good precision in a computational time significantly lower than the one corresponding to the
system (2.8)-(2.9). For instance, if an Euler scheme is used, the exact system (2.8)-(2.9) requires
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ε = 1
50 Speed (order 0) Speed (order 1) Position (order 0) Position (order 1)

p = ε
10 0.1115 [0.1115,0.1116] 0.0460 [0.0454,0.0467] 0.0174 [0.0173,0.0174] 0.0023 [0.0021,0.0029]

p = ε
2 0.1118 [0.1113,0.1134] 0.0460 [0.0448,0.0473] 0.0174 [0.0173,0.0174] 0.0024 [0.0021,0.0032]

p = ε 0.1125 [0.1108,0.1168] 0.0460 [0.0441,0.0488] 0.0173 [0.0171,0.0174] 0.0026 [0.0020,0.0047]

p = 4ε 0.1192 [0.1102,0.1280] 0.0542 [0.0438,0.0691] 0.0174 [0.0166,0.0196] 0.0065 [0.0024,0.0144]

W ≡ 0 0.1115 0.0096 0.0174 0.0022

Table 1: Mean value, minimum and maximum values (mean [min, max]) of the errors

supt∈[0,1] ‖V̂i(t) − V̂0
i (t)‖ (second column), supt∈[0,1] ‖V̂i(t) − V̂0

i (t) − εV̂1
i (t)‖ (third column),

supt∈[0,1] ‖X̂i(t) − X̂0
i (t)‖ (forth column) and supt∈[0,1] ‖X̂i(t) − X̂0

i (t) − εX̂1
i (t)‖ (fifth column) for

different values of p. The last line for ε = 1
50 gives the error for a zero wind field.

about 1000 more iterations than the approximate system (3.3)-(3.11) to achieve the same accuracy.
And, for the problem considered in this paper, an iteration of the exact system is 20 less expensive
in terms of computational time. But this last remark is not general since the computational time
highly depends on the nature of the tide and current fields M and N : here they are modeled by a
quite simple analytical formula.

In Figure 1, we have plotted the object trajectory associated with the wind time series shown on
the top of Figure 2, using p = ε/2. More precisely, the solid line represent X̂ computed by directly

solving (2.8)-(2.9). The dashed line represents the average trajectory Ŷ0 + εŶ1 obtained solving

(3.8) and (3.10). We can see that this averaged trajectory follows nicely the trend of X̂. Then

reconstructing X̂0 and X̂1 using (3.4) and (3.6), we have represented the trajectory X̂0 + εX̂1 in

dotted line. The superimposition with X̂ seems to be almost perfect. In order to go further in the
result analysis, we turn to Figure 2. On the top of this figure, we have shown the wind as a function
of time. The second figure represents, in dashed line, the average trajectory of the position of the
first component and, in solid line, the first component of the trajectory itself. We can see on this
trajectory not only the long term trend but also the two time periodic phenomena in game: tide
oscillations (rapid oscillations) and tide coefficient amplitude (modulated amplitude). Finally, the
last plot exhibit ε2−order error (here ε = 1/50 = 2. 10−2, then 10−3 = 2.5 ε2). Moreover, we can
see that this error function is a periodic function with modulated amplitude. This spurs us thinking
that we could improve the accuracy of the reconstructed trajectory, if it is needed, considering the
next terms in the expansion of X and V. Figure 3 shows the first component of the average wind,
the average velocity (dashed line) and the velocity itself (solid line). The third plot shows the error
on the velocity. This figure permits to visualize the action of the wind on the averaged velocity,
which first increases and then decreases.

For comparison purpose, the norms of the error on object position and velocity for order 0 and
1 expansions are also given for ε = 1/100 and ε = 1/25 in Table 2. The errors are proportional to ε
as it was expected from the theory.

5 Application: long term forecast of an object’s drift with
Monte Carlo Method

In the previous section, we have shown that the expansion of the trajectories of an object in near
coastal ocean submitted to wind makes it possible for us to compute quickly good approximation

9
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Figure 1: Example of object’s trajectory (two-dimensional phase plane plot). Solid line: X̂, Dotted

line: X̂0 + εX̂1, Dashed line: Ŷ0 + εŶ1. ε = 1/50, p = ε/2.
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Figure 2: Example of object’s trajectory (time series plot)(Top: zonal wind first component, Second:

first component of zonal object position (Solid line: X̂, Dashed line: Ŷ0 + εŶ1), Third: zonal error

‖X̂ − X̂0 − εX̂1‖). ε = 1/50, p = ε/2
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Figure 3: Example of object’s speed (time series plot)(Top: smoothed zonal wind component (p =

ε/2), Second: first component of zonal object’s speed (Solid line: V̂, Dashed line: Û0 +εÛ1), Third:

zonal error ‖V̂ − V̂0 − εV̂1‖). ε = 1/50, p = ε/2
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ε = 1
100 Speed (order 0) Speed (order 1) Position (order 0) Position (order 1)

p = ε
10 0.0557 [0.0557,0.0557] 0.0292 [0.0270,0.0358] 0.0086 [0.0085,0.0086] 0.0011 [ 0.0011,0.0014]

p = ε
2 0.0558 [0.0554,0.0563] 0.0294 [0.0270,0.0362] 0.0086 [0.0085,0.0086] 0.0012 [0.0010,0.0015]

p = ε 0.0560 [0.0552,0.0574] 0.0296 [0.0273,0.0363] 0.0085 [0.0084,0.0086] 0.0013 [0.0010,0.0020]

p = 4ε 0.0595 [0.0552,0.680] 0.0355 [0.0304,0.0516] 0.0086 [0.0082,0.0098] 0.0026 [0.0010,0.0072]

ε = 1
25 Speed (order 0) Speed (order 1) Position (order 0) Position (order 1)

p = ε
10 0.2254 [0.2249, 0.2257] 0.1143 [0.1022 ,0.1418] 0.0358 [0.0358,0.0359] 0.0046 [0.0040,0.0057]

p = ε
2 0.2254 [0.2226,0.2277] 0.1142 [0.1017,0.1410] 0.0358 [0.0357,0.0359] 0.0045 [0.0039,0.0058]

p = ε 0.2257 [0.2201,0.2310] 0.1142 [0.1011,0.1379] 0.0358 [0.0356,0.0360] 0.0044 [0.0037,0.0069]

Table 2: Mean value, minimum and maximum values (mean [min, max]) of the errors

supt∈[0,1] ‖V̂i(t) − V̂0
i (t)‖ (second column), supt∈[0,1] ‖V̂i(t) − V̂0

i (t) − εV̂1
i (t)‖ (third column),

supt∈[0,1] ‖X̂i(t) − X̂0
i (t)‖ (forth column) and supt∈[0,1] ‖X̂i(t) − X̂0

i (t) − εX̂1
i (t)‖ (fifth column) for

different values of p.

of this trajectory. It is then possible to make this computation for a large number of synthetic
wind time series, and thus deduce the probability of a given scenario (this may be the probability
of presence in a given area, of collision or of running aground, for example).

As an example, in this section we compute a running aground probability. More precisely, we
have fixed an arbitrary coast line, e.g. the circle of center (1, 1) and radius 0.3 and we have focused
on the running aground of the object on this coast. We have generated one thousand wind time
series with the same stochastic model as in the previous section and have also used the same sea
velocity fields. We have computed the thousand associated trajectory. For this, we have used the
method described in the previous sections, based on asymptotic expansion (3.3). The methodology
is illustrated in Figure 4 where one hundred of the thousand trajectories are drawn. Proceeding this
way, we have obtained enough trajectories to get reliable estimates of the quantities of interest. First
we can deduce an estimation of the probability of running aground by calculating the percentage of
trajectories that reach the circle in the time interval [0, 1]. We found 64.3%. Then we can estimate
the probability that the object runs aground in a given area. The obtained results are shown in
Figure 5. On the left, we have plotted a wind rose which shows the joint repartition of direction
and intensity. The length of each bar is proportional to the proportion of wind having a direction
around the direction the bar indicates. The bars are then shared into four subbars which lengths are
proportional to the proportion of wind having the corresponding magnitude. We can see that the
wind is generally blowing from the north. The second histogram must be read in the following way.
The length of each bar is proportional to the proportion of trajectories that run aground around the
point of the coast which is in the bar direction. We then see that the proportion of running aground
trajectories has a maximum around the South-South-West of the coast line.

6 Conclusion

In this paper, we have explored a method to make probabilistic forecasts of long term drift, in
near coastal ocean, of object submitted to tide and wind. The method is based on generating a
large number of realistic wind time series and, for each of them, to compute the associated object
trajectory. The probabilities of trajectory linked events may then be estimated using this large
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Figure 4: Object’s trajectory corresponding to 100 synthetic wind time series and corresponding
running aground points(*)
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Figure 5: Repartition of the wind (left) and of the running aground points (right)
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number of trajectory realizations. In order to achieve this goal, we have used a method proposed by
Monbet, Ailliot and Prevosto [15] to generate realistic wind time series and the Averaging Method
based on an asymptotic expansion of trajectory of Frénod [7] to remove tide oscillations and compute
quickly the object’s trajectory. This method has allowed us to compute the probability for an object
to run aground on an academic domain.

The quality of the results are good enough for us to contemplate going further in exploring
this new methodology. Among the things to do in order to achieve the objective of computing
operationally events probabilities in real coastal areas we wish to broach the following.

First, we will present a complete scale analysis of a coupled system Shallow Water Equations -
Newton Principle modeling the joint running of ocean and drifting object. The aim is to identify
several regimes under interest such as “storm regime in coastal zone” or “stillness above continental
shelf” and so on, and the corresponding equations. This would give a way to compute the sea
velocity fields M and N, M being exclusively due to tide wave and N to meteorological factors.
Notice also that N could be divided into two parts: one linked to pressure variations and another
linked to wind. Those aspects would then have to be incorporated in a software in order to access
the fields M and N. Then we shall study the abilities of the method presented in the present paper
to fit to pseudo-periodic fields M and N. We are optimistic because the method already works
well with pseudo-periodic wind fields. The realism of the synthetic wind time series used as input
of the numerical model could also be improved. In particular, the space-time model proposed by
Ailliot, Monbet and Prevosto [2] could be used to simulate non-homogeneous wind fields. Finally,
the method could be implemented on real coastal areas.

A Appendix : Computations leading (3.4) - (3.11)

In this Appendix we formally lead the asymptotic expansion that gives equations (3.4) - (3.11).
First, if we define Y(t) and U(t) so that

X(t) = Y(t), (A.1)

V(t) = M(t,
t

ε
,Y(t)) + U(t), (A.2)

and inserting those in (2.8) and (2.9), we deduce

dY

dt
= M(t,

t

ε
,Y) + U, (A.3)

dU

dt
=

∂N

∂θ
(t,

t

ε
,Y) + ε

∂N

∂t
(t,

t

ε
,Y) + ε

(

∇N(t,
t

ε
,Y)

)(

M(t,
t

ε
,Y) + U

)

+W(t,
t

ε
,Y) − M(t,

t

ε
,Y) − U.

(A.4)

Then, we assume that Y and U may be expanded in the following way:

Y(t) = Y0(t) + ε(Y1(t) + A1(t,
t

ε
,Y0(t))) + ε(Y2(t) + A2(t,

t

ε
,Y0(t),Y1(t))) + · · · , (A.5)

U(t) = U0(t) + ε(U1(t) + B1(t,
t

ε
,Y0(t))) + ε(U2(t) + B2(t,

t

ε
,Y0(t),Y1(t))) + · · · , (A.6)

for functions A0(t, θ,Y0), A1(t, θ,Y0,Y1), B0(t, θ,Y0) and B1(t, θ,Y0,Y1) being 1− periodic with
respect to θ to be defined latter. Using those asymptotic expansions in (A.1) and (A.2) yields (3.4)
and (3.5). Using again (A.5) and (A.6) in (A.3) and (A.4), expanding every functions using a Taylor
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expansion yields

dY0

dt
+ ε

dY1

dt
+ ε

∂A1

∂t
(Y0) +

∂A1

∂θ
(Y0) + ε

(

∇A1(Y0)
)(dY0

dt

)

+ ε
∂A2

∂θ
(Y0,Y1) + · · · ,

= M(Y0) + ε
(

∇M(Y0)
)(

Y1 + A1(Y0)
)

+ U0 + ε(U1 + B1(Y0)) + · · · (A.7)

dU0

dt
+ ε

dU1

dt
+ ε

∂B1

∂t
(Y0) +

∂B1

∂θ
(Y0) + ε

(

∇B1(Y0)
)(dY0

dt

)

+ ε
∂B2

∂θ
(Y0,Y1) + · · ·

=
∂N

∂θ
(Y0) + ε

(∂∇N

∂θ
(Y0)

)(

Y1 + A1(Y0)
)

+ ε
dN

dt
(Y0) + ε

(

∇N(Y0)
)(

M(Y0) + U0
)

+ W(Y0) + ε
(

∇W(Y0)
)(

Y1 + A1(Y0)
)

− M(Y0) − ε
(

∇M(Y0)
)(

Y1 + A1(Y0)
)

− U0 − ε(U1 + B1(Y0)) + · · · , (A.8)

where + · · · contains every terms being of order greater than 1 in ε.
Identifying the terms of order 0 in ε gives

dY0

dt
+

∂A1

∂θ
(Y0) = M(Y0) + U0, (A.9)

dU0

dt
+

∂B1

∂θ
(Y0) =

∂N

∂θ
(Y0) + W(Y0) − M(Y0) − U0. (A.10)

Integrating those equations with respect to θ from 0 to 1, we obtain (3.8) and (3.9). Once this is
done, equations (A.9) and (A.10) yield

A1(t, θ,Y0) =

∫ θ

0

M(t, σ,Y0(t)) dσ, (A.11)

B1(t, θ,Y0) = U1(t) + N(t, θ,Y0(t)) − N(t, 0,Y0(t))

+

∫ θ

0

(

W(t, σ,Y0(t)) −

∫

� W(t, ς,Y0(t)) dς
)

dσ −

∫ θ

0

M(t, σ,Y0(t)) dσ,
(A.12)

and then (3.6) and (3.7).
Looking now at the terms of order 1 in ε in (A.7) and (A.8), after replacing A1, B1, dY0/dt and

dU0/dt by their expressions, results in two equations. Those equations, when integrated in θ, lead
in a heavy but straightforward way (3.10) and (3.11).
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