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[1] We discuss and compare the multifractal temporal scaling properties of precipitation
and river discharge records on large timescales. To detect long-term correlations and
multifractal behavior in the presence of trends, we apply recently developed methods
(detrended fluctuation analysis (DFA) and multifractal DFA) that can systematically detect
nonstationarities and overcome trends in the data at all timescales. We find that above
some crossover time that usually is several weeks, the daily runoffs are characterized by an
asymptotic scaling exponent that indicates a slow power law decay of the runoff
autocorrelation function and varies from river to river in a wide range. Below the
crossovers, pronounced short-term correlations occur. In contrast, most of the precipitation
series show scaling behavior corresponding to a rapid decay of the autocorrelation
function. For the multifractal characterization of the data we determine the generalized
Hurst exponents and fit them by three operational models. While the fits based on the
universal multifractal model describe well the scaling behavior of the positive moments in
nearly all runoff and precipitation records, positive as well as negative moments are
consistent with two-parameter fits from a modified version of the multiplicative cascade
model for all runoff records and most of the precipitation records. For some precipitation
records with weak multifractality, however, a simple bifractal characterization gives the

best fit of the data.
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1. Introduction

[2] The persistence analysis of river flows and precipita-
tion has been initiated, about half a century ago, by H. E.
Hurst, who found that runoff records from various rivers
exhibit “long-range statistical dependencies” [Hurst, 1951].
Later, similar long-term correlated fluctuation behavior has
also been reported for many other geophysical records
including temperature and precipitation data [Hurst et
al., 1965; Mandelbrot and Wallis, 1969; Lovejoy and
Mandelbrot, 1985; Koscielny-Bunde et al., 1998; Matsoukas
et al., 2000; see also Feder, 1988]. The earlier approaches
exclusively focused on either the absolute values or the
variances of the full distribution of the fluctuations, which
can be regarded as the first moment F(s) and the second
moment F,(s) of the fluctuations, respectively, in given time
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segments of length s. In the last years, however, Hurst’s
original Rescaled Range (R/S) Analysis as well as the
spectral analysis have been criticized since both may lead
to spurious results in the presence of trends. For a critical
discussion of the “Hurst phenomenon™ and alternative
explanations we refer to Feller [1951], Klemes [1974],
Potter [1976], Salas et al. [1979], Bhatthacharya et al.
[1983], Kiinsch [1986], Bhatthacharya and Waymire
[1990], Mesa and Poveda [1993], and references therein.
[3] In the last decade it has been realized that a multi-
fractal description is required for both precipitation and
runoff records [Zessier et al., 1993; Lovejoy and Schertzer,
1995; Tessier et al., 1996; Pandey et al., 1998; Douglas and
Barros, 2003], and all moments F,(s) need to be studied for
a full characterization of the fluctuations in these records.
For each precipitation or runoff record, this multifractal
description can be regarded as a ‘““fingerprint,” which,
among other things, can serve as an efficient nontrivial test
bed for the performance of state-of-the-art precipitation-
runoff models. Here, we apply the recently developed
Detrended Fluctuation Analysis (DFA) [Peng et al., 1994;
Bunde et al., 2000; Kantelhardt et al., 2001] and its multi-
fractal generalization [Kantelhardt et al., 2002] that can
systematically distinguish between long-term correlations
and trends. This way, we can study the correlation behavior
and determine the multifractal spectrum in the presence of
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trends and compare the long-term scaling behavior of both,
daily precipitation and daily runoff records on the same
timescales. Our study has also been motivated by the fact
that the results for precipitation data have been discussed
controversially in literature. On the basis of power spectra
analysis, Fraedrich and Larner [1993] observed white noise
behavior at intermediate scales and long-term correlations
(“pink noise) on timescales above three years. Lovejoy
and Mandelbrot [1985], Matsoukas et al. [2000], Peters et
al. [2002], and Peters and Christensen [2002] reported
fractal scaling and long-term correlations on timescales
below three years. For more recent works on the crossovers
in the scaling behavior of rainfall we refer to Marani [2003]
and Douglas and Barros [2003].

[4] Using the detrending methods, we have studied 99
long daily precipitation records and 42 long daily runoff
records from all over the world. We find that F(s) scales
as s"@ for large time lags s. For the precipitation data,
h(2) is close to 0.5, indicating rapidly decaying autocor-
relations. We like to note, however, that this result is not
synonymous with white noise behavior, since the precip-
itation data exhibit weak short-term correlations and
pronounced multifractal behavior (see below). For the
runoff data, in contrast, the fluctuations show a pronounced
crossover at intermediate scales (typically several weeks,
see Koscielny-Bunde et al. [2006]). Below the crossover,
for small time windows s, A(2) is close to 1.5, character-
izing a highly correlated regime similar to Brownian noise
in agreement with the findings of Matsoukas et al. [2000].
Well above the crossover, at large times, the scaling
exponent /(2) varies from river to river between 0.55 and
0.95 in a nonuniversal manner always remaining in the
stationary regime (4(2) < 1). Our findings are not consistent
with the hypothesis that the scaling is universal with an
exponent close to 0.75 [Hurst et al., 1965; Feder, 1988;
Peters et al., 2002; Peters and Christensen, 2002] for both,
small and large timescales.

[s] For a full characterization of the records, we studied
F,(s) for a wide range of moments g. A detailed
description of the method, which is a multifractal gener-
alization of the DFA, is given in section 2. Our approach
differs from the multifractal approach introduced into
hydrology by D. Schertzer, S. Lovejoy, A. Davis, and
coworkers [Schertzer and Lovejoy, 1987, 1991; Lavallee
et al., 1993; Tessier et al., 1993, 1996; Davis et al., 1994,
1996; Schertzer et al., 1997; Pandey et al., 1998], which
was based on the concept of scale invariance in turbu-
lence [Frisch and Parisi, 1985], and trace moment
techniques; see also Rodriguez-Iturbe and Rinaldo
[1997]. Here we perform the multifractal analysis by
studying how all moments of the fluctuations F,(s) ~
s"4@) scale with time s in the asymptotic regime
[Kantelhardt et al., 2002; Koscielny-Bunde et al., 2006].
Our approach includes also negative g values and is not
based on any specific model assumptions. To describe the
numerical outcome of the analysis for A(g) of both
precipitation and runoff records, we employed three
fitting formulas derived from operational models, (1) the
universal multifractal model by Schertzer and Lovejoy
[1991], which is constrained to ¢ > 0, (2) a modified
multiplicative cascade model [Koscielny-Bunde et al.,
2006], and (3) a bifractal model. We find that the
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universal multifractal model (three fitting parameters) can
be used to describe well the scaling behavior for the
positive moments g of runoff and precipitation records.
Both, positive and negative moments, however, follow
rather closely the formula from the modified multiplicative
cascade model, which has just two fitting parameters, for all
runoff records and 55% of the analyzed precipitation
records. Some of the precipitation records exhibit rather
weak multifractality and 27% of them can be better charac-
terized by the bifractal description.

[6] The paper is organized as follows: In section 2 we
describe the detrended fluctuation analysis method and its
generalization for multifractal analysis, which we compare
with related multifractal formalisms in section 3. Then we
report and discuss our results for the correlation behavior
of the precipitation and runoff data in section 4, while
section 5 presents the results of the multifractal analysis.
Finally, the main results are summarized in section 6.

2. Data and Methods

[7] We have analyzed long daily precipitation records
{P;} from 99 meteorological stations and long daily
runoff records {W;} from 42 hydrological stations. The
stations are representative for different rivers and different
climate zones. The 99 precipitation records we analyzed
were measured at sites in Europe (40), Asia (34), North
America (15), Australia (5), and South America (5). The
latitude of the locations varies between 52.6°S (Campbell
Island, New Zealand) and 71.3°N (Barrow Post, United
States). The sites are concentrated on the Northern Hemi-
sphere; thus the average latitude is 41°N. Further, the sites
are located on altitudes from sea level up to 3650 m (Lhasa,
China) with an average of about 400 m. Concerning the
climate, 33 sites are located in maritime regions, 56 in
continental climate, and 10 in high continental climate. In
other categories, the stations are sited in tropical (12),
subtropical (24), warm (44), cold (13), and polar (6) climate.
In terms of humidity, the climate is really arid at only one
considered site (Kizil Arvat, Turkmenistan), but semiarid at
20 sites, semihumid at 59 sites, and humid at 19 sites. The
duration of the records ranges from 34 to 189 years (average
86 years), yielding between ~12,000 and 69,000 data points
each.

[8] Of the 42 daily runoff records, 18 are from the
southern part of Germany, and 24 are from North and South
America, Africa, Australia, Asia and Europe [see also
Koscielny-Bunde et al., 2006]. The duration of the records
ranges from 39 to 111 years (average 77 years) for the
records from the southern part of Germany and from 51 to
171 years (average 92 years) for the international records,
yielding between /14,000 and 62,000 data points each. The
basin area sizes vary between 390 km? and 3,475,000 km?;
the averages are 7400 km? and 350,000 km? for the rivers in
southern Germany and the international rivers, respectively.

[¢] To eliminate the periodic seasonal trend, we concen-
trated on the departures

o) =p,—P;, and ") =w—W; (1)

from the mean daily precipitation P; or runoff W,. P; and W,
are calculated for each calendar date 7, e.g., 1st of April, by
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Figure 1.

[llustration of the detrending procedure in the second-order detrended fluctuation analysis

(DFA2). The profile Y(i) (dashed lines) calculated by summation of the time series is split into
nonoverlapping segments of equal duration (timescale) s. This step is illustrated (a) for s = 100 days and
(b) for s = 200 days. Least squares quadratic fits (continuous lines) to the profile are calculated in each
segment. The squares of the differences between the profile and the fits are used to calculate the

fluctuation function F(s) of the DFA procedure.

averaging over all years in the record. To eliminate the
remaining seasonal trend in (6{”)? (and (6{"")%), one may
consider dividing P, — P; (and W; — W) by the standard
deviation for each calendar date, i.e.,

P —P,
N1
(P2-77)

In order to avoid repetitions we will skip the indices (P) and
(W) in all equations that apply to both ¢{” and ¢ from
now on. Quantitatively, correlations within the precipitation
or runoff departures separated by s days are defined by the
(auto)correlation function,

(])EP) = and (j)EW) =—

d)id)iﬂ‘)

="k

1 N—s
= (N*S)((j)2> ;¢i¢i+s7 (3)

where N is the number of days in the considered record. We
call the &, uncorrelated, if C(s) is zero for s positive. If
correlations exist up to a certain number s, of days, the
correlation function will be positive up to s, and vanish
above s,. For the relevant case of long-term correlations,
C(s) decays as a power law,

Cls)~s, 0<y<l, 4)

o0
such that the mean correlation time 5 = dsC(s) diverges.

For v > 1, the data are only short-termocorrelated, since §
remains finite. For large lag times s, a direct calculation of
C(s) is hindered by possible trends in the data. In addition,
C(s) becomes unstable because of the finite length of the
records. Furthermore, it is difficult to distinguish trends
from long-term correlations, because stationary long-term
correlated time series exhibit persistent behavior and a
tendency to stay close to the momentary value. This
causes positive or negative deviations from the average

value for long periods that might look like a trend. For a
discussion of these problems, see also the early work of
Klemes [1974].

[10] To overcome these problems, we have applied the
DFA method [Peng et al., 1994; Bunde et al., 2000]. In
recent years this method has become a widely used tech-
nique for the detection of long-term correlations in noisy,
nonstationary time series [Kantelhardt et al., 2001; Hu et
al., 2001; Chen et al., 2002]. It has successfully been
applied to diverse fields such as DNA sequences [Peng et
al., 1994], heart rate dynamics, neuron spiking, human gait,
long weather records [Koscielny-Bunde et al., 1998; Talkner
and Weber, 2000], cloud structure, geology, ethnology,
economics time series, and solid state physics (for further
references, see, e.g., Bunde et al. [2002]).

[11] The DFA procedure consists of four steps. First we
determine the “profile”

Y(Z)Ezd)k? 12177N7 (5)
k=1

of the data series ¢, of length N. The cumulative
sum generates a nonstationary profile Y(7). In the DFA
method (as well as in Hurst’s original Rescaled Range
Analysis), data has to be turned nonstationary, since the
scaling is determined from a mean-square displacement
type quantity. In contrast, some of the methods used
in geophysics and turbulence [Schertzer and Lovejoy,
1987, 1991; Lavallee et al., 1993; Tessier et al., 1993,
1996; Davis et al., 1994, 1996; Schertzer et al., 1997,
Pandey et al., 1998] require stationary series, which are
often generated by differentiation.

[12] Second we divide the profile Y(i) into Ny = int(N/s)
nonoverlapping segments of equal length s. This is illus-
trated for two scales s in Figure 1. Since the length N of the
series is usually not a multiple of the considered timescale s,
a short part at the end of the profile may remain. In order not
to disregard this part of the series, the same procedure is
repeated starting from the opposite end. Thereby, 2N; seg-
ments are obtained altogether.
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[13] In the third step we calculate the local trend for each
of the 2V, segments by fitting (least squares fit) a polynomial
of order n to the data and determine the variance

o) =S M- s+ —pF (6)
i=1

for each segment v, v =1, ..., 2N,. Here, p,(i) is the fitting
polynomial representing the local trend in the segment v.
Linear, quadratic, cubic, or higher-order polynomials can be
used in the fitting procedure. When linear polynomials are
used, the fluctuation analysis is called DFA1, for quadratic
polynomials we have DFA2, for cubic polynomials DFA3,
etc.; see Bunde et al. [2000]. The quadratic fitting procedure
used in DFA2 is illustrated in Figure 1. DFA2 removes
quadratic trends in the profile ¥(i) and thus linear trends in
the original series ¢;.

[14] In the fourth step we average the variances of all
segments and take the square root to obtain the mean
fluctuation function,

F(s) =

| 2N, 1/2
LM;k@@}. (7)

We are interested in how F(s) depends on the timescale s.
Hence we have to repeat steps 2 to 4 for several timescales
s. It is apparent that F(s) will increase with increasing s. If
the ¢; are long-term power law correlated according to
equation (4), F(s) increases, for large values of s, by a
power law [Feder, 1988; Peng et al., 1994; Kantelhardt et
al., 20017,

F(s) ~ 5" (8)
with

1 =~/2, for 0<y<1,

h(2) = { 1/2, for y > 1. )
Accordingly, when the autocorrelation function decreases
faster than 1/s in time, we asymptotically have F(s) ~ s"2.
For short-term correlated data described, e.g., by equation (4)
with y > 1 or by an exponential decay, a crossover to A(2) =
1/2 occurs above the correlation time 5. If the time series ¢; is
stationary, we can also apply standard spectral analysis
techniques and calculate the power spectrum S(f) as a
function of the frequency /. The exponent (3 in the scaling law
S(f) ~ f P is related to the mean fluctuation function
exponent 4(2) by 8 = 2h(2) — 1 [Rangarajan and Ding,
2000; Kantelhardt et al., 2001].

[15] For multifractal time series, a single scaling expo-
nent like #(2) or y does not completely characterize the
record, since many subsets of the series have different
scaling behavior, e.g., large fluctuations are less correlated
than small fluctuations. In order to study these multi-
fractal scaling properties, the DFA procedure can be
generalized to higher moments [Kantelhardt et al., 2002].
This generalization (multifractal DFA, MF-DFA) is equiv-
alent to the wavelet transform modulus maxima (WTMM)
method [Muzy et al., 1991; Arneodo et al., 2002], but the
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MF-DFA is much easier to implement on the computer;
see Kantelhardt et al. [2003] for a comparison of the
two methods (for wavelet methods, see also Kumar and
Foufoula-Georgiou [1997]). In this procedure, the variance
o(v, s) in equation (7) is replaced by its g/2-th power
and the square root is replaced by the 1/g-th power, where
g # 0 is a real parameter,

N, 1/q
Fy(s) {2]1\[ Zo"/z(v,s)} . (10)
S =1

Analogous to equation (8) one defines then the generalized
fluctuation exponent /(g) by

Fy(s) ~ s"9). (11)
We note that A(1) corresponds to the classical Hurst
exponent H determined by Rescaled Range Analysis (since
first moments are considered in both cases) and that
multifractal DFA is identical to standard DFA if ¢ = 2
(hence the notation /(2) in equation (8)).

[16] For monofractal time series, /(q) is independent of ¢,
since the scaling behavior of the variances o(v, s) is
identical for all segments v. If, on the other hand, small
and large fluctuations scale differently, there will be a
significant dependence of 4(q) on ¢: If we consider positive
values of ¢, the segments v with large variance o(v, s) (i.c.,
large deviations from the corresponding fit) will dominate
the average F,(s). Thus, for positive values of ¢, A(q)
describes the scaling behavior of the segments with large
fluctuations. Usually large fluctuations are characterized by
a smaller scaling exponent %(g). On the contrary, for
negative values of ¢, the segments v with small variance
o(v, s) will dominate the average F,(s). Hence, for negative
values of ¢, h(g) describes the scaling behavior of the
segments with small fluctuations, which are usually char-
acterized by a larger scaling exponent. The multifractal
fluctuation exponents /4(g) defined in equation (10) are
directly related to the classical Renyi exponents 7(gq) [see,
e.g., Feder, 1988; Rodriguez-Iturbe and Rinaldo, 1997] via
[Kantelhardt et al., 2002]

h(q) = [t(q) +1]/q. (12)

3. Comparison With Related Multifractal
Formalisms

[17] In the geophysics literature also other multifractal
quantities have been used that A(q) can easily be related to:

[18] (1) The “generalized variogram” C,(s) (see, e.g.,
equations (3.82)—(3.84) of Rodriguez-Iturbe and Rinaldo
[1997] and references therein) is defined as

Cyls) = (1Y (i +5) = Y(i)|") ~ 5519, (13)
where the average is taken over all values of i. Comparing
equations (10) and (13) one can easily verify that 4(g) and
K(q) are related by

K(q) = qh(q). (14)
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Figure 2. Fluctuation functions F(s) versus timescale s
obtained from DFA1—-DFA3 (from top to bottom) in double
logarithmic plots for representative precipitation and runoff
records (shifted vertically for clarity). Figures 2a—2c show
precipitation records: (a) Hamburg, Germany (A(2) = 0.55 +
0.03), (b) Vienna, Austria (2(2) = 0.50 = 0.03), and
(c¢) Gothenburg, United States (#(2) = 0.50 = 0.03).
Figures 2d—2f show runoff records: (d) Elbe river in
Dresden, Germany (/2(2) = 0.80 £+ 0.03), (¢) Danube river in
Orsova, Romania (4(2) = 0.85 + 0.03), and (f) Mississippi
river in St. Louis, United States (2(2) = 0.91 + 0.03). The
straight lines through the data have the reported slopes, and
lines with slope A(2) = 0.5 are shown below the data for
comparison with the uncorrelated case.

[19] (2) In several geophysics and turbulence papers [see,
e.g., Schertzer and Lovejoy, 1987, 1991; Lavallee et al.,
1993; Tessier et al., 1993, 1996; Davis et al., 1994, 1996;
Schertzer et al., 1997; Pandey et al., 1998], the structure
function

Sq(s) = (|biys — &) ~ s = s21(@ (15)
has been analyzed directly without employing the profile
Y(i) as done in equation (13). It is easy to see that H(q) is
related to A(q) by

H(q) = ((q)/q = h(q) — 1. (16)
Accordingly, the multifractal exponent H(g) defined by
Davis et al. [1994] and the exponent /4(g) defined here in
equation (11) differ only by 1. This difference is due to the
fact that here we analyze the cumulative sum of ¢,, while

D01106

Davis et al. as well as the Lovejoy-Schertzer group analyze
the ¢; directly. For modeling the multifractal behavior, one
can employ, for example, a particular multifractal process
where H(q) (or h(q) = H(q) + 1) is known and adjust the
parameters. However, in most multifractal processes H(1) =0
is fixed. Hence one has to use a fractional integration and
shift the whole function H(q) to adjust the value for g = 1.
When doing this, S. Lovejoy and D. Schertzer obtained an
interesting formula for ((q) = gH(g) for positive g values
(D. Schertzer, private communication, 2004),

= (- a).

[20] The great advantage of the MF-DFA method used
here is that it includes also negative g values, such that the
basic Renyi exponents T(q) can be calculated for both
negative and positive ¢ values. This allows a further
characterization of the multifractal series by the singularity
spectrum flar), which is related to T(g) via a Legendre
transform [see, e.g., Feder, 1988; Rodriguez-Iturbe and
Rinaldo, 1997],

g) =gl = q>0. (17)

dt(q)
dq

and  f(a) = ga — 7(q). (18)

o=

Here, « is the singularity strength or Holder exponent, while
A denotes the dimension of the subset of the series that is
characterized by a. Using equation (12), we can directly
relate o and flv) to A(g),

dh(q)

a=h(g) +q dq

and f(a) = gl — h(q)] + 1. (19)

The strength of the multifractality of a time series can be
characterized by the difference between the maximum and
minimum singularity strength o, Aot = Qpax — Qmin, Which
fulfill Afa) — 0 for @ — Qax and @ — .

4. Results for the Correlation Behavior

[21] Figure 2 shows the fluctuation functions F5(s)
obtained from DFA1, DFA2, and DFA3 for three represen-
tative daily precipitation records (Figures 2a—2c) and three
representative runoff records (Figures 2d—2f). In the log-log
plot, the curves are approximately straight lines on large
scales s. The runoff fluctuations show a pronounced cross-
over at timescales of several weeks. We note that the
crossover timescale is similar to the period of planetary
waves, which are oscillations of very predominantly tropo-
spheric origin with typical periods of about 2—30 days [see,
e.g., Lastovicka et al., 2003]. Above the crossover, the
fluctuation functions (from DFA1-DFA3) show power law
behavior with exponents 4(2) ~ 0.80 for the Elbe, h(2) ~
0.85 for the Danube, and /4(2) ~ 0.91 for the Mississippi.
Below the crossover, we find an effective scaling exponent
h(2) ~ 1.5, indicating strong short-term correlations on
small timescales. Approximately, the short-term correlations
can be modeled by an ARMA process, where the correlation
time is represented by the typical decay time of floods.
This yields #(2) = 1.5 on short timescales in agreement with
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Figure 3. Histograms of the long-term fluctuation exponents /4(2) for (a) all 99 daily precipitation
records and (b) all 42 daily runoff records, 18 from southern Germany (grey boxes) and 24 from
international hydrological stations (white boxes). The scaling exponents have been determined from
power law fits of the DFA2 fluctuation function on large timescales. Each box represents the result for

one hydrological or meteorological station.

our observation. Note, however, that long-term correlations
(and multifractality on large timescales) require an addi-
tional and different modeling approach. For the precipita-
tion records there is only a very weak crossover in F,(s) and
the 4(2) values are rather close to 0.5, indicating rapidly
decaying autocorrelations. Specifically, we find 2(2) ~ 0.55
for Hamburg, A(2) ~ 0.50 for Vienna, and A(2) ~ 0.50 for
Gothenburg, corresponding to a correlation exponent y ~
0.9 for Hamburg, and y > 1 for Vienna and Gothenburg.
For the precipitation data, the higher slope at very small
scales is partly a methodical artifact [Kantelhardt et al.,
2001].

[22] Figure 3 shows the distributions of 4(2) obtained
with DFA2 on large timescales for all 99 precipitation
records and all 42 runoff records using equation (1) for
seasonal detrending. One can clearly see that most precip-
itation records exhibit no long-term correlations (4(2) =~
0.5) or only very weak long-term correlations (2(2) ~ 0.55);
the mean value is 2(2) = 0.53 + 0.04 (see Table 1). We find
no systematic dependence of the /(2) values on climate
zone or geographical region. In order to confirm the absence
of long-term autocorrelations in the precipitation series, we
have also calculated the autocorrelation function C(s) (see
equation (3)). The representative results in Figure 4 show
that all correlations decay after a very small number of days.
Note, however, that this result is obtained for the second
moment, and thus it refers only to two-point correlations;
higher-order correlations are not excluded by our result.

[23] Our results for A(2) are not in agreement with
Matsoukas et al. [2000], where, using DFA1 and seasonal
detrending based on procedures similar to equation (1) for
nine precipitation records with 15 min resolution, 4(2) ~ 1.0
(o = h(2) in the notation used there) was found on time-

scales below 10 days and A#(2) = 0.6 ... 0.8 on timescales
from 10 days to 16 months. We cannot exactly pinpoint the
reason for the disagreement, in particular since the binned
spectral analysis by Matsoukas et al. [2000] agrees with our
results. However, the DFA1 discrepancy might be caused by

Table 1. Details of the Records Analyzed in Figure 5, Figure 6
(Precipitation), and Figure 7 (Runoff) and Average Values for All
Records We Studied”

Period h(2) Ao a b H [
Precipitation
Spokane 18811994 0.51 0.30 0.63 0.77 —0.48 0.008 1.9
Edinburgh 1896—-1997 0.52 0.34 0.61 0.77 —0.47 0.012 1.8
Winnemucca  1877-1994 0.50 0.33 0.63 0.79 —0.49 0.009 2.2
Jena 1827-2000 0.56 0.11 - - —043 0.006 2.3
Average 86 years 0.53 029 — - —0.45 0.012 2.0
(99 records)
Standard 33 years 0.04 0.14 - - 0.06 0.010 0.4
deviation
Runoff
Weser 1823-1993 0.76 0.43 0.50 0.68 —0.24 0.023 1.7
Fraser 1913-1996 0.69 0.38 0.53 0.70 —0.29 0.017 1.7
Susquehanna  1891-1986 0.58 0.48 0.55 0.77 —0.40 0.018 1.7
Niger 1907—-1985 0.60 0.62 0.51 0.78 —0.35 0.040 1.5
Average 86 years 0.72 049 - - —0.25 0.039 14
(42 records)
Standard 27 years 0.11 0.16 - - 0.10 0.028 0.5
deviation

“The recording period and the fitting parameters obtained within the
modified multiplicative cascade model, equation (21), and the Lovejoy-
Schertzer model, equation (20), are reported. Further, our two main
parameters, the fluctuation exponents #(2) =1 — y/2 = (3 + 1)/2 and the
resulting multifractality strength Aa, are given. In the case of Jena,
equation (24) has been used instead of equation (21), and the corresponding
parameters are oy = 0.57, a, = 0.45, and ¢, = 3.3.
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s [days]

Figure 4. Autocorrelation function C(s) for one represen-
tative precipitation record (Vienna, circles) and one
representative runoff record (Mississippi, squares). The
autocorrelations of the precipitation data disappear after a
few days.

the shorter time series considered by Matsoukas et al.
[2000]. Our A(2) values are also not in agreement with
Peters et al. [2002] and Peters and Christensen [2002],
where records of length six months were considered and an
exponent (1) ~ 0.76 (H = h(1) = h(2)) was found using
Rescaled Range Analysis. We believe that the reason for
this disagreement is that the seasonal trend cannot be
eliminated in these short records and acts like a long-term
correlation. Thus it seems that the larger exponent obtained
by Peters et al. is due to the seasonal trend but not to long-
term correlations. For intermediate timescales up to three
years, our finding is in agreement with Fraedrich and
Larner [1993], who, however, report long-term correlations
on even larger timescales in disagreement with our conclu-
sion. This observation of correlations on large timescales
might also have been caused by nonstationarities in the data.
Finally, we like to note that our results do not change
significantly, when also the seasonal trend in the variance of
the data was eliminated by using equation (2) instead of
equation (1). Although /4(2) changes by about +0.03 for
individual records, the average /(2) remains constant.

[24] In remarkable contrast to the precipitation records,
most of the runoff records are strongly long-term correlated;
the mean value is 4(2) = 0.72. The individual 4(2) values
have a very broad distribution (see Figure 3b), which is not
significantly more narrow even for the data from a rather
small region (southern Germany) with much smaller aver-
age basin area. The long-term exponents vary strongly from
river to river in an apparently nonsystematic fashion.
Accordingly, there is no universal scaling behavior of the
runoff data and there is no systematic dependence of the
exponents on the size of the basin area. The pronounced
variations probably reflect the fact that there exist different
mechanisms for floods, and each one may induce different
scaling. For example, rain-induced floods and snow-
induced floods may introduce different spatial scaling
behavior [Gupta and Dawdy, 1995], which might also result
in different temporal scaling behavior. Our results (based on
3 rivers only) suggest that the contribution of snow melting
leads to less correlated runoffs than the contribution of
rainfall [Koscielny-Bunde et al., 2006], but more compre-
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hensive studies will be needed to confirm this interesting
result.

[25] Since the autocorrelations of rainfall data decay
rapidly in time, their temporal correlations can neither
account for the long-term correlations nor for the broad
distribution of the correlation exponents of the runoff data.
Our study seems to indicate that the persistence of the
runoffs is rather caused by storage effects than by long-term
memory of the precipitation; the integration of rainfall in
time-space might produce long-term memory in river flows.
If this interpretation is correct, i.e., that runoff persistence is
caused by catchment storage, we would expect it to be less
emphasized in arid regions. Indeed, for the Mary river in
Australia, the only river with arid catchment in our study,
we find a quite low fluctuation exponent, 4(2) ~ 0.6,
corresponding to weak persistence. However, further studies
are needed to confirm our interpretation. It is interesting to
compare the nonuniversal long-term correlations of river
flow records with climate records, where universal long-
term persistence of temperature records at land stations, i.e.,
rather identical values of 4(2) = 0.66 + 0.06 were observed
[Koscielny-Bunde et al., 1998; Talkner and Weber, 2000;
Weber and Talkner, 2001; Eichner et al., 2003].

[26] To confirm that the slope /#(2) > 0.5 for the runoff
data is due to long-term correlations and not due to a broad
probability distribution of the values ¢; (Joseph phenome-
non versus Noah phenomenon, see Mandelbrot and Wallis
[1968]), we have, in a separate analysis, eliminated the
correlations by randomly shuffling the ¢;. This shuffling has
no effect on the probability distribution function of ¢;. We
find that the exponent /(2) characterizing the fluctuations in
the shuffled records is 1/2, indicating that the Joseph
phenomenon is the main effect.

[27] We also checked if the results changed when also the
seasonal trend in the variance of the data was eliminated
according to equation (2). We obtained an increase of 4(2)
between 0.1 and 0.25 for those rivers that show a strong
seasonal dependence of the runoffs, with pronounced flood-
ing in one season and (nearly) vanishing runoffs in another
secason. We come back to this point at the end of the
subsequent section.

5. Multifractal Characterization

[28] Next we compare the multifractal behavior of the
99 daily precipitation records with those of the 42 daily
river runoff records. For all records, we find that MF-DFA2,
MF-DFA3, and MF-DFA4 (corresponding to second-, third-,
and fourth-order polynomials in the detrending procedure,
respectively) yield similar results for the fluctuation function
F,(s). Therefore we present only the results for MF-DFA2.
Again we begin with the seasonal detrending according to
equation (1). Figure 5 shows two representative examples
for the MF-DFA2 fluctuation functions F,(s), for the
precipitation record at Spokane, United States (Figure 5a)
and the runoff record of the Weser river (Figure 5b). The
standard fluctuation function F,(s) is plotted with crosses.
The crossover in F,(s) for the runoff data that was dis-
cussed in the previous section can also be seen in the other
moments, and additionally a similar crossover can be seen
in the negative moments for the precipitation data. The
position of the crossover increases monotonically with
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Figure 5. Multifractal fluctuation functions F,(s) versus
timescale s obtained from multifractal DFA2 for two
representative records: (a) precipitation at Spokane, United
States, and (b) river Weser in Vlotho, Germany. The curves
correspond to different values of ¢, ¢ = —8, —4, =2, —1, 1,
2, 4, 8 (from top to bottom) and are shifted vertically for
clarity. The curve for ¢ = 2 (standard DFA) is plotted with
crosses. The straight lines through the data are the linear fits
we use to calculate /(g) (as reported in Figures 6 and 7), and
additional thin lines with slope A4(2) = 0.5 are shown below
the data for comparison with the uncorrelated case.

decreasing g and the crossover becomes more pronounced.
While most of the recent literature focussed on short-term
multifractality and the crossovers occurring on timescales
below one year [Lovejoy and Schertzer, 1995; Tessier et al.,
1996; Harris et al., 1996; Pandey et al., 1998; Olsson et al.,
1999; Deidda et al., 1999; Deidda, 2000; Douglas and
Barros, 2003], here we are mainly interested in the asymp-
totic behavior of F(s) at large times s. One can see clearly
that above the crossover, the F,(s) functions are straight
lines in the double logarithmic plot, and the slopes increase
slightly when going from high positive moments toward
high negative moments (from the bottom to the top). For
the precipitation at Spokane (Figure 5a), for example, the
slope changes from 0.42 for ¢ = 8 to 0.57 for ¢ = —8. The
monotonous increase of the slopes, %(g), is the signature of
multifractality. We obtain similar increases for the runoff
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records, although all %(q) are larger on the average; for the
Weser river the results are A(8) = 0.63 and A(—8) = 0.84
(see Figure 5b).

[20] From the asymptotic slopes of the curves in Figure 5
(see linear fits in the plots), we obtained the generalized
Hurst exponents /(g), which are plotted versus the moment
q in Figure 6 for four representative precipitation records
and in Figure 7 for four representative runoff records; see
Table 1 for details.

[30] Our results for 4(g) = [T(g) + 1]/q may be compared
with several functional forms used in the literature to
describe multifractality. First we consider the formula (see
equations (16) and (17))

C "
hg)=H' +1-—"=(¢""' 1), ¢=0.  (0)

with the three parameters H', C;, and o, that has been
successfully used by S. Lovejoy, D. Schertzer, and
coworkers [Schertzer and Lovejoy, 1987, 1991; Lavallee
et al., 1993; Tessier et al., 1993, 1996; Schertzer et al.,
1997; Pandey et al., 1998; see also Douglas and Barros,
2003] to describe the multifractal behavior of rainfall and
runoff records at smaller timescales. Of course, the
functional form (20) does apply only to positive moments
q. The lines in the upper right parts of Figures 6 and 7
indicate the corresponding fits, and the values of the three
parameters are listed in Table 1 together with their means
for all precipitation and runoff records.

[31] Figure 8 summarizes our results for /', C;, and o/,
for both precipitation and runoff records. For the precipita-
tion data, we obtained H' = —0.45 £ 0.06, C, = 0.01 £ 0.01,
and o = 2.0 £ 0.4, while the runoff data yielded H' =
—0.25 £ 0.10, C; = 0.04 £ 0.03, and o = 1.4 £ 0.5.

[32] Our values for A’ are in marginal agreement with
earlier studies by Tessier et al. [1996], who obtained H' =
—0.35 + 0.2 for precipitation records and H' = —0.05 + 0.2
for runoff records. The same conclusion holds for Pandey et
al. [1998], who reported H' = —0.03 + 0.14 for runoff
records. The agreement is surprising, since in these earlier
studies a seasonal detrending (our equations (1) and (2)) has
not been performed. The multifractality is characterized by
the parameters C; and «. Here, Tessier et al. [1996] report
o/ =1.6+0.2 and C, =0.10 £ 0.05 for precipitation and o/ =
1.45+£0.2 and C; = 0.2 £ 0.1 for river flows, while Pandey
et al. [1998] obtained o = 1.7 £ 0.11 and C; = 0.12 £ 0.03
for river flows. In a more recent study, Tchiguirinskaia et al.
[2002] analyzed several runoff records in Russia, finding
o ~ 1.7 and C; ~ 0.03. Our results for the exponent o are,
within the error bars, in agreement with these earlier studies.
The result for C| is in agreement with Tchiguirinskaia et al.
[2002], but disagrees with Tessier et al. [1996] and Pandey
et al. [1998], who did not explicitly focus on the asymptotic
regime and therefore obtained larger parameters C; (as
given by Tchiguirinskaia et al. [2002] for the short-term
regime).

[33] Tessier et al. [1996] concluded that the H' values for
precipitation and for runoff differ by AH' = Ah ~ 0.3, while
the o and C; values are compatible. We find a similar
difference in the Hurst exponents, Az ~ 0.2. Our o and C,
values for precipitation and runoff seem to be marginally
compatible, since the corresponding histograms in Figure 8
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Figure 6. Generalized Hurst exponents /4(q) for four representative daily precipitation records:
(a) Spokane (United States), (b) Edinburgh (UK), (c) Winnemucca (United States), and (d) Jena
(Germany). The A(g) values (solid symbols) have been determined by straight line fits of log-log plots of
F,(s) on large timescales s. The solid lines through the solid symbols are fits to the data using the
operational modified multiplicative cascade model, equation (21), except for Figure 6d, where the
bifractal model, equation (24), has been used instead. In this case the corresponding parameters are oy =
0.57, ap = 0.45, and ¢, = 3.3. The record in Figure 6¢ is an example where the modified multiplicative
cascade model fits rather poorly. In the upper right corner of each plot %(g) is shown (open symbols,
shifted upward by 0.1) together with fits using the Lovejoy-Schertzer model, equation (20). The straight
dotted lines indicate uncorrelated behavior # = 0.5 and g = 2, respectively.

are shifted to the left and to the right, respectively, for the
runoff data. The average of C; is more than three times
larger for runoff. Thus we conclude that the runoff fluctua-
tions cannot be generated by a simple fractional (time)
integration of rainfall series. We believe that storage effects
and the highly intermittent spatial behavior of rainfall as
well as the highly nonlinear interaction between rainfall and
runoff have to be taken into account here.
[34] Next we consider the functional form

In(a? + b9) 1

T() = === or =,

In(a? + b?)
gln2 ’ (21)
which can be derived from a modification of the multi-
plicative cascade model [Koscielny-Bunde et al., 2006]. The
advantage of this formula is that it extends also to negative
q values, and thus can be used for obtaining the multifractal
spectrum f{a). By equation (21), the infinite number of
exponents /4(g) can be described by only two independent
parameters, ¢ and b; the width of the corresponding
singularity spectrum (see equation (19)) is given by Aa =
[In @ — In b|/In 2. Our fitting results for the examples shown
in Figures 6 and 7 are listed in Table 1, except for the Jena
record, where equation (21) does not provide a reasonable
fit. The two parameters ¢ and b can then be regarded as
multifractal fingerprint for a considered runoff or precipita-

tion record. This is particularly important for evaluating
precipitation-runoff models, for example artificial rainfall
data (input for the models) can be generated with these two
parameters and then the runoff (output of the models) can be
checked on the basis of them.

[35] It is important to emphasize that the parameters a and
b have been obtained from the asymptotic part of the
generalized fluctuation function, and are therefore not
affected by seasonal dependencies, which cannot be fully
eliminated from the data. We would like to note that different
multifractal models for high-resolution precipitation time
series, which include the crossover on short timescales, have
been suggested by Veneziano et al. [1996], Schmitt et al.
[1998], Deidda et al. [1999], Deidda [2000], and Veneziano
and lacobellis [2002]. For a model based on self-organized
criticality we refer to Andrade et al. [1998].

[36] However, for the precipitation records, there are
several cases where equation (21) cannot be used to fit
h(q) for all g values. In some of these cases (like the Jena
precipitation record), a simple bifractal model fits much
better to the h(g) data. For bifractal records the Renyi
exponents T(g) are characterized by two distinct slopes o
and oy,

q < qx

22
q > qx (22)

qoo + gx (o —ap) — 1

T(q):{qo”f1
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Figure 7. Generalized Hurst exponents A(q) for four representative daily runoff records: (a) Weser in
Vlotho, Germany, (b) Fraser in Hope, United States, (c) Susquehanna in Harrisburg, United States, and
(d) Niger in Koulikoro, Mali, analogous with Figure 6, except for the range of the /(g) axis. Again, the
solid lines are fits to the data using equations (20) and (21), and the straight dotted lines indicate
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Figure 8. Histograms of the parameters o/, C;, and H for (a—c) all 99 daily precipitation records and
(d—f) all 42 daily runoff records. The values have been determined by applying nonlinear fits of
equation (20) to the generalized Hurst exponents /(g). Each box represents the result for one
meteorological or hydrological station.
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Figure 9. Histograms of the multifractality strength A« for (a) 81 of 99 daily precipitation records and
(b) all 42 daily runoff records, 18 from southern Germany (grey boxes) and 24 from international
hydrological stations (white boxes). The values have been determined by applying nonlinear fits to the
generalized Hurst exponents /(g). Each box represents the result for one meteorological or hydrological
station. For all white and grey boxes, equation (21) was used, and for the hatched boxes in Figure 9a,
bifractal models, equations (24) or (25), have been used since they fitted better.

or

q < qx

. 23
q9 > 9qx 3)

_Jqou+gx(oa—ay)—1
T(q) - { qon — 1

If this behavior is translated into the /(g) picture using

equation (12), we obtain that /(g) exhibits a plateau from

q = —oo up to a certain ¢, and decays hyperbolically for

q>q><7

(S0 | q < qx
M= gl —oa)=+ 0 g>aq0” 24)
or vice versa,
! <
h(q)—{qx(%—oﬂ)frm q<4qx (25)
(e q>qx

Both versions of this bifractal model require three
parameters. The multifractal spectrum is degenerated to
two single points, thus its width can be defined as Ao =
a; — «p. One example of a bifractal fit is shown in
Figure 6d.

[37] We have fitted the A(q) spectra in the range —10 <
g < 10 for all 99 precipitation records and all 42 runoff
records by equations (21) and (24) (or equation (25)). For
all runoff records, the modified multiplicative cascade
model fits best. For the precipitation records, equation (21)
fits best in just 54 cases; Figure 6¢ shows an example where
the fit is not good. Either equation (24) or equation (25)

could be used to fit the results of 27 precipitation records.
However, 18 of the precipitation records could be fit neither
by the modified multiplicative cascade model nor by the
bifractal approach.

[38] We have determined the multifractality strength A
for the 81 precipitation records where either the modified
multiplicative cascade model or the bifractal description
could be used and for all 42 runoff records. The corres-
ponding histograms are shown in Figure 9. We find that
there is no systematic dependence of the Aa values on
the geographic region or on the climate zone. Again, the
rivers in southern Germany also show a broad distribution.
However, Aa seems to show a slightly decreasing tendency
with increasing basin area. The average multifractality
strength is significantly smaller for the precipitation
records (Aa = 0.29 + 0.14) than for the runoff records
(Aa = 0.49 + 0.16). Note that for 18 precipitation records
Ao could not be determined, since neither the modified
multiplicative cascade model nor the simple bifractal
approach fit.

[39] To show that the multifractality is due to correlations
and not due to a broad probability distribution of the values
¢; we have also studied randomly shuffled data, finding no
significant multifractality. For the precipitation records this
means that there must be significant higher-order correla-
tions, since standard second-order correlations are very
weak or absent (4(2) ~ 0.5) and the multifractality is not
caused by a broad, non-Gaussian distribution.

[40] Finally, we like to note that /(q) for the precipitation
records remains practically unchanged, when the seasonal
detrending according to equation (2) instead of equation (1)
is employed. This does not hold for rivers with strong
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seasonal trends like those that nearly dry up in summer
or freeze in winter. In this case, /(g) is shifted toward
higher values by a constant, which ranges between 0.1 and
0.25, but such that the strength Ao of the multifractality
remains unchanged. We are not convinced, however, that
equation (2) is the better way of removing seasonal period-
icities in case of a multifractal analysis. In the multifractal
description, h(q) for negative ¢ characterizes the scaling
behavior of the small fluctuations, while /(g) for positive ¢
characterizes the scaling behavior of the large fluctuations.
Thus the multifractal analysis can distinguish the scaling of
small and large fluctuations. Now, if we divide by the
seasonal trend in the standard deviation, following
equation (2), some small fluctuations are rendered large
and some large fluctuations are rendered small. Hence we
believe that some of the information provided by a multi-
fractal analysis is obscured this way.

6. Summary and Conclusion

[41] In summary, we have analyzed long precipitation
records and long river discharge records using detrended
fluctuation analysis (DFA) and its multifractal counterpart
(MF-DFA). We find that the precipitation records are
characterized by A(2) = 1/2, indicating a fast decay of the
autocorrelation function, while the runoff records are long-
term correlated above a crossover timescale of several
weeks with fluctuation exponents A(2) varying in a broad
range. This result is rather surprising, since the fluctuations
of rainfall are often claimed to play an important role in the
long-term correlated (persistent) fluctuations of the runoff.
Our study seems to indicate that the persistence of the
runoff is not so much related with persistence in precipita-
tion, but is rather caused by storage processes occurring in
the soil and the highly intermittent spatial behavior of the
rainfall. Further more extensive studies are needed to prove
this conclusion.

[42] We also find that the runoff records are characterized,
at large timescales, by a stronger average multifractality
than the precipitation records. The multifractality strength is
characterized by the difference Aa between the maximum
and minimum Hdlder exponent o needed for the character-
ization of the data. The type of multifractality occurring in
all runoff records is consistent with a modified version of
the binomial multifractal model, which supports the idea of
a ‘“universal” multifractal behavior of river runoffs sug-
gested by S. Lovejoy and D. Schertzer in a different context.
In contrast, 45% of the precipitation records seem to require
a different description, and a simple bifractal fit can be used
in 27% of all cases. For positive moments, the three-
parameter Lovejoy-Schertzer approach always yields a good
fit to the data. The multifractal exponents can be regarded as
“fingerprints” for each station and can be used for testing
the state-of-the-art precipitation-runoff models.
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