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Abstract. State-space models offer a powerful modelling tool for time
series prediction. However, as most algorithms are not optimized for long-
term prediction, it may be hard to achieve good prediction results. In this
paper, we investigate Gaussian linear regression filters for parameter es-
timation in state-space models and we propose new long-term prediction
strategies. Experiments using the EM-algorithm for training of nonlinear
state-space models show that significant improvements are possible with
no additional computational cost.

1 Introduction

Time series prediction [1] is an important problem in many fields like ecology
and finance. The goal is to model the underlying system that produced the
observations and use this model for prediction.

Often, obtaining prior information of a time series is difficult. In this kind of a
situation, a black-box model can be used. An often used approach for prediction
is nonlinear regression, which works well especially for deterministic time series.

An alternative to nonlinear regression is state-space modeling. A state-space
model can model a wide variety of phenomena, but unfortunately learning a
state-space presentation for data is challenging. Previous work on this topic
includes dual Kalman filtering methods [2], variational Bayesian learning [3] and
EM-algorithm for nonlinear state-space models [4].

In [4] an EM-algorithm for training of state-space models is proposed. From
the point of view of time series prediction, the drawback of this algorithm is that
the model is not exactly optimized for prediction.

In this paper, we have two goals. It is shown that the EKS which was used in [4]
can be replaced by a more efficient linear regression smoother. We also show that
with simple methods it is possible to improve the long-term prediction ability of
the algorithm. The improvement comes with no additional computational cost
and our methods can be applied also to other algorithms. In the experimental
section, we test the proposed methods with the Poland electricity and Darwin
sea level pressure datasets.
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2 Gaussian Linear Regression Filters

Consider the nonlinear state-space model

xk = f(xk−1) + wk (1)
yk = h(xk) + vk, (2)

where wk ∼ N(0, Q) and vk ∼ N(0, r) are independent Gaussian random vari-
ables, xk ∈ Rn and yk ∈ R. Here, N(0, Q) means normal distribution with the
covariance matrix Q. Correspondingly, r is the variance of the observation noise.

The filtering problem is stated as calculating p(xk|y1, . . . , yk). If f and h are
linear, this could be done using Kalman filter [5]. The linear filtering theory
can be applied to nonlinear problems by using Gaussian linear regression filters
(LRKF, [6]) that are recursive algorithms based on statistical linearization of
the model equations. The linearization can be done in various ways resulting in
slightly different algorithms.

Denote by p̃(xk|y1, . . . , yk) a Gaussian approximation of p(xk|y1, . . . , yk). The
first phase in a recursive step of the algorithm is calculating p̃(xk+1|y1, . . . , yk),
which can be done by linearizing f(xk) ≈ Akxk + bk so that the error

tr(ek) = tr (
∫

Rnx

(f(xk)−Akxk − bk)(f(xk)−Akxk − bk)T p̃(xk|y0, . . . , yk) dxk)

(3)
is minimized. Here, tr denotes the sum of the diagonal elements of a matrix.
In addition Q is replaced by Q̃k = Q + ek. The linearized model is used for
calculating p̃(xk+1|y1, . . . , yk) using the theory of linear filters. The measurement
update

p̃(xk+1|y1, . . . , yk) → p̃(xk+1|y1, . . . , yk+1)

is done by a similar linearization. The update equations for the Gaussian ap-
proximations can be found in [7].

Approximating equation 3 using central differences would lead to the central
difference filter (CFD, [5]) which is related to the unscented Kalman filter [5].
A first order approximation on the other hand would yield the widely used
extended Kalman filter algorithm [8]. However, by using Gaussian nonlinearities
as described in the following sections, no numerical integration is needed in the
linearization. The filter based on closed form calculations is called a (Gaussian)
linear regression filter.

The smoothed density p(xl|y1, . . . , yk) (l < k) is also of interest. In our exper-
iments we use the Rauch-Tung-Striebel smoother [8] with the linearized model.
Other alternatives are of course also of interested and will be possibly investi-
gated in future research. See for example [9] in which three different smoothing
methods are compared.
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3 EM-Algorithm for Training of Radial Basis Function
Networks

In this section, a training algorithm introduced in [4] is described. The EM-
algorithm is used for parameter estimation for nonlinear state-space models.
When Gaussian filters are used, the M-step of the algorithm can be solved in
closed form resulting in an efficient method which in practice converges fast.

3.1 Parameter Estimation

Suppose that a sequence of observations (yk)N
k=1 is available. The underlying

system that produced the observations is modelled as a state-space model. The
functions f and g in equations 1 and 2 are parametrized using RBF-networks:

f = wT
f Φf (4)

g = wT
g Φg, (5)

where Φf = [ρf
1 (x), . . . , ρf

l (x) xT 1]T and Φg = [ρg
1(x), . . . , ρg

j (x) xT 1]T are the
neurons of the RBF-networks. The nonlinear neurons are of the form

ρ(x) = |2πS|−1/2 exp(−1
2
(x − c)T S−1(x − c)). (6)

The free parameters of the model are the weights of the neurons, wf and wg

in equations 4 and 5, and the noise covariances Q and r in equations 1 and 2.
In addition, the initial condition for the states is chosen Gaussian and the pa-
rameters of this distribution are optimized.

The EM-algorithm is a standard method for handling missing data. Denoting
by θ the free parameters of the model, the EM-algorithm is used for maximizing
p(y1, . . . , yT |θ). The EM-algorithm for learning nonlinear state-space models is
derived in [4].

The algorithm is recursive and each iteration consists of two steps. In the E-
step, the density p(x0, . . . , xN |y1, . . . , yN , θ) is approximated and in the M-step
this approximation is used for updating the parameters.

Due to the linearity of the model with respect to the parameters, the M-step
can be solved analytically. The update formulas for the weights wf and wg and
covariances Q and R can be found in [4]. In our implementation Q is chosen
diagonal.

The E-step is more difficult and an approximative method must be used. In
addition to Gaussian filters, there exists many different methods for nonlinear
smoothing, for example the particle smoother and numerical quadrature based
methods [10]. In the case of neural networks, the problem is that function evalua-
tion may be relatively expensive if a high number of neurons is used. We propose
the use of the smoother derived in section 2 instead of the extended Kalman
smoother used in [4]. The extended Kalman smoother uses rough approxima-
tions to propagate nonlinearities which may cause inaccuracy (see for example
[11]). Our choice does not significantly increase the computational complexity of
the algorithm which did not pose problems in our experiments.
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3.2 Initialization

The state variables must be initialized to some meaningful values before the
algorithm can be used. Consider a scalar time series (yt). First the vectors

zt = [yt−L, . . . , yt, . . . , yt+L] (7)

are formed. L is chosen large enough so that the vectors contain enough infor-
mation. Based on Taken’s theorem [12], it can be claimed that setting L to the
dimension of the state-space is a good choice [3], but as many time series contain
noise, this is not always the case. In our experiments, we use the value L = 10
which produced good results in our experiments and is large enough for most
time series. In case of bad results, a lower value for L might sometimes give
better initializations.

Next the dimension for the hidden states is chosen. Once the dimension is
known, the vectors zt are projected onto this lower dimensional space. This
is done with the PCA mapping [13]. In highly nonlinear problems, it may be
essential to use kernel PCA like was done in [14].

The rough estimates for the hidden states are used to obtain an initial guess
for the parameters of the network.

3.3 Choosing Kernel Means and Widths

Choosing the centers of the neurons (c in equation 6) is done with the k-means
algorithm [13]. The widths Sj are chosen according to the formula (see [15])

Sj =
1
l
(

l∑
i=1

‖cj − cN(j,i)‖2)
1
2 I, (8)

where I is the identity matrix and N(j, i) is the ith nearest neighbor of j. In the
experiments, we use the value l = 2 as proposed in [15].

3.4 Choosing the Number of Neurons and the Dimension of the
State-Space

To estimate the dimension of the state-space, we propose the use of a valida-
tion set to estimate the generialization error. For each dimension, the model is
calculated for different number of neurons and the one which gives the lowest
one-step prediction validation error is chosen. The linear regression filter is used
for calculating the error.

For choosing the number of neurons, we propose the use of the likelihood of
the model, which has the advantage that the whole data set is used for training.
Usually there is a bend after which the likelihood decreases only slowly (see
figure 1c). This kind of a bend is used as an estimate of the point after which
overfitting becomes a problem.
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4 Long-Term Prediction of Time Series

By long-term prediction of a time series we mean predicting yt+k for k > 1 given
the previous observations y1, . . . , yt. The model in equations 1 and 2 can be
used for prediction by calculating a Gaussian approximation to p(yt+k|y1, . . . , yt)
with the linear regression filter or the EKF. However, the drawback of this
approach is that the EM-algorithm does not optimize the long-term prediction
performance of the model and thus the prediction error is expected to grow fast
as the prediction horizon k grows. Our claim is motivated for example by the
results in [16], which show that for nonlinear regression direct prediction instead
of recursive gives much better results on long-term prediction.

Instead of the previous method, we propose three alternative methods. For the
first two methods the observation model in equation 5 is replaced by an RBF-
network with the same centers and widths for the neurons than the original
model but different weights that are optimized for long-term prediction. In the
first method, the weights are optimized to minimize the prediction error when the
linear regression filter with the original model is used to estimate p(xt|y1, . . . , yt)
and the EKF with the modified model for estimating p(xt+k|y1, . . . , yt) and
p(yt+k|y1, . . . , yt).

In the second method, a similar optimization is performed in the case where
the linear regression filter is used for estimating all three distributions.

As a third methods, we propose extending the first method so that also the
weights of the network in equation 4 are reoptimized. This leads to a nonlin-
ear optimization problem, which can be solved using standard methods, see for
example [17].

The optimization of the weights for the methods is done using the same train-
ing set as for the EM-algorithm. The cost function is

N−k∑
i=1

(yi+k − ŷi+k)2,

where ŷi+k are the predictions given the parameter values and observations up
to time i. The three different methods are used for calculating ŷi+k. The first two
lead to quadratic optimization problems which are easy to solve in closed form,
whereas to optimize the cost for the third method any nonlinear optimization
method can be used.

There certainly exists different methods than the ones we use. Our goal is not
to test all different possibilities, only to show that when state-space models are
used, an ordinary recursive prediction is not the best choice.

5 Experiments

In this section the proposed methods are tested on two different time series.
The first time series represents the electricity consumption in Poland and is
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interesting also from practical point of view as electricity companies can certainly
make use of this kind of information. The other time series, Darwin sea level
pressure, is also measurements of a real world phenomena. The data sets can
downloaded from [18]. Unless we state explicitly otherwise, the linear regression
filter based algorithm is used for training.

5.1 Poland Electricity Consumption

The Poland electricity consumption time series is a well-known benchmark prob-
lem [19]. For prediction results with nonlinear regression we refer to [16]. The
series is plotted in figure 1a. The values 1 − 1000 are used for training and the
values 1001 − 1400 for testing. For dimension selection, the values 601-1000 are
kept for validation.

The model is tested using the dimensions 2 to 8 for the state-space. For each
dimension, the validation errors are calculated for different number of neurons
so that the number of neurons goes from 0 to 36 by step of 2 (we use the same
amount of neurons for both networks). For each number of neurons, the training
is stopped if the likelihood decreased twice in row or more than 40 iterations
have been made.

The dimension 7 yields the lowest validation error and was thus chosen as the
dimension for the states. In figure 1c is the corresponding likelihood curve for
this dimension. Based on the likelihood, we choose 8 as the number of neurons.
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Fig. 1. a) The Poland electricity consumption time series. b) Validation errors for state
dimensions 2-8. c) Likelihoods for dimension 7. d) One step prediction test errors for
dimension 7.
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From figure 1d, it can be seen that the short-term prediction performance of the
model is good.

The chosen model is used for long-term prediction with different prediction
horizons. We test the three methods introduced in section 4. The results are in
figure 2a. In figure 2a, the test errors are calculated by estimating the state at
each time point of the test set with the linear regression filter. After that the
methods in section 4 are used to calculate the prediction estimates corresponding
to the number of prediction steps.

In figure 2b for comparison we have implemented the EKS-based algorithm
in [4], where for prediction the EKF has been used. Also for this algorithm we
choose 7 as the dimension of the state-space and 8 as the number of neurons.
Because the error for the algorithm in [4] has a quite high variance compared to
our method, the curves in figure 2b are averaged over 5 simulations.

It can be seen that the linear regression filter in training improves the result
compared to using EKS. Also, the stability of the algorithm is improved. The
linear regression filter gives higher covariances for the smoothed state estimates
which has a regularizing effect on the model.

For short-term prediction the prediction error is not significantly improved by
the methods proposed in section 4. However, as the prediction horizon grows, the
differences between the methods grow. Thus in this time series, the long-term
prediction methods in section 4 should be used as they introduce no additional
computational cost.
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Fig. 2. Long-term prediction errors. a) The solid line is the recursive prediction error
with the linear regression filter. The dashed, dashdotted and dotted lines give the
prediction error for the other three methods in section 4 so that dashed corresponds
to the first of these methods, dashdot to the second etc. b) Results with the original
algorithm in [4] (solid line) and the basic version of our algorithm (dashed line). The
curves in figure b are averaged over 5 simulations.

5.2 Darwin Sea Level Pressure

The Darwin sea level pressure time series consists of 1400 values which are drawn
in figure 3a. The values from 1 to 1000 are used for training and the rest for
testing the model.
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Fig. 3. a) The Darwin sea level pressure time series. b) Validation errors for state
dimensions 2-5. c) Likelihoods for dimension 4. d) One step prediction test errors for
dimension 4.
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Fig. 4. a) The solid line is the recursive prediction error with the linear regression
filter. The dashed, dashdotted and dotted lines give the prediction errors for the other
three methods in section 4 so that dashed corresponds to the first of these methods,
dashdot to the second etc. b) Results with the original algorithm in [4] (solid line) and
the basic version of our algorithm (dashed line). The curves in figure b are averaged
over 5 simulations.

As in the previous section, the dimension of the state-space is chosen using a
validation set. The dimensions from 2 to 5 are tested. The lowest validation error
is that of dimension 4. The corresponding likelihood curve is in figure 3c. There
is a clear bend in the likelihood curve, which can be used for model selection.
Based on the curve we choose 4 as the number of neurons.
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From figure 4b, it can be seen that the original algorithm with EKS is again
worse than our algorithm.

The long-term prediction results with the methods in section 4 are in figure 4a.
In this problem, the difference between different prediction methods is much
smaller. No significant improvement was obtained over recursive prediction. This
is probably due to the linearity and periodicity of the data. In this time series,
an accurate long-term prediction is possible.

Based on the experiments, we claim that the best of the methods proposed in
section 4 is the one based on minimizing the prediction performance of the EKF.
It seems that using Gaussian distributions instead of point values as a training
set is not very useful.

6 Conclusion

In this paper the Gaussian linear regression smoother with the EM-algorithm is
used as a method for learning a state-space presentation for a time series. It is
shown that our approach brings real improvement over the original EKS based
algorithm presented in [4] for significantly nonlinear problems. The proposed
smoother gives implicitely additional regularization compared to the extended
Kalman smoother. Still it is clear that the EM-algorithm does not minimize the
long-term prediction error of the model which results in high prediction errors
once the prediction horizon grows.

In this paper we proposed strategies for improving the long-term prediction
capability of state-space models. The methods can be applied for many algo-
rithms in addition to the EM-algorithm used in this paper. The experimental
results show that clear improvement over the ordinary recursive approach is
possible. However, for nearly linear time series the results were not as convinc-
ing and it can be concluded that big improvements can be obtained mainly for
significantly nonlinear systems.

In the future methods for optimizing state-space models for long-term predic-
tion will be investigated. Most current methods use a cost function that poorly
fits to long-term prediction.
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190 E. Liitiäinen and A. Lendasse

6. T. Lefebvre, H. Bruyninckx, and J. De Schutter. Kalman filters for non-linear
systems: a comparison of performance. International Journal of Control, 77(7):639–
653, 2004.

7. K. Ito and K. Q. Xiong. Gaussian filters for nonlinear filtering problems. IEEE
Transactions on Automatic Control, 45(5):910–927, 2000.

8. S. Haykin, editor. Kalman Filtering and Neural Networks. Wiley Series on Adaptive
and Learning Systems for Signal Processing. John Wiley & Sons, Inc., 2001.

9. T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State inference in variational
bayesian nonlinear state-space models. In 6th International Conference on Inde-
pendent Component Analysis and Blind Source Separation, ICA 2006, Charleston,
South Carolina, USA, March 5-8, 2006.

10. A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in
Practice. Springer, 2001.

11. Eric A. Wan, R. van der Merwe, and A. T. Nelson. Dual estimation and the
unscented transformation. In Advances in Neural Information Processing Systems,
2000.

12. D. A. Rand and L. S. Young, editors. Dynamical Systems and Turbulence, vol-
ume 898 of Lecture Notes in Mathematics, chapter Detecting strange attractors in
turbulence. Springer-Verlag, 1981.

13. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 2nd
edition, 1998.

14. A. Honkela, S. Harmeling, L. Lundqvist, and H. Valpola. Using kernel PCA for
initialisation of variational bayesian nonlinear blind source separation method. In
Proceedings of the Fifth International Conference Independent Component Analysis
and Blind Signal Separation (ICA 2004), Granada, Spain., volume 3195 of Lecture
Notes in Computer Science, pages 790–797. Springer-Verlag, 2004.

15. J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, pages 281–294, 1989.

16. Y. Ji, J. Hao, N. Reyhani, and A. Lendasse. Direct and recursive prediction of
time series using mutual information selection. In Computational Intelligence and
Bioinspired Systems: 8th International Workshop on Artificial Neural Networks,
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