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Statement of translational relevance: This is the first study to report long-term responders to a 

poly(ADP-ribose) polymerase (PARP) inhibitor, with response durations of >2 years, in the 

context of platinum-sensitive, high-grade serous ovarian cancer. Based on extensive molecular 

profiling, the durable long-term responses were multifactorial and driven by germline and 

somatic BRCA1/2 mutations. The majority of patients in the long-term responders group 

harboured homologous recombination repair deficiency, with particular enrichment for 

mutations in BRCA2, compared with short-term responders. This pilot study also highlights 

potential non-BRCA1/2-mutated patients who demonstrated durable clinical benefit with the 

PARP inhibitor olaparib and, together with an ongoing larger cohort study (NCT02489058), 

seeks to identify additional molecular characteristics that can predict susceptibility to olaparib. 

Further investigation may allow outreach to more patients for treatment with olaparib. 

Statement of translational evidence word count: 125/150  

 



4 
 

ABSTRACT  

Purpose: Maintenance therapy with olaparib has improved progression-free survival in 

women with high-grade serous ovarian cancer (HGSOC), particularly those harboring BRCA1/2 

mutations. The objective of this study was to characterize long-term (LT) versus short-term (ST) 

responders to olaparib.   

Design: A comparative molecular analysis of Study 19 (NCT00753545), a randomized 

Phase II trial assessing olaparib maintenance after response to platinum-based chemotherapy in 

HGSOC, was conducted. LT response was defined as response to olaparib/placebo >2 years, ST 

as <3 months. Molecular analyses included germline BRCA1/2 status, three-biomarker 

homologous recombination deficiency (HRD) score, BRCA1 methylation, and mutational 

profiling. Another olaparib maintenance study (Study 41; NCT01081951) was used as an 

additional cohort. 

Results: 37 LT (32 olaparib) and 61 ST (21 olaparib) patients were identified. Treatment 

was significantly associated with outcome (P<0.0001), with more LT patients on olaparib 

(60.4%) than placebo (11.1%). Long-term sensitivity to olaparib correlated with complete 

response to chemotherapy (P<0.05). In the olaparib LT group, 244 genetic alterations were 

detected, with TP53, BRCA1 and BRCA2 mutations being the commonest (90%, 25% and 35%, 

respectively). BRCA2 mutations were enriched among the LT responders. BRCA methylation 

was not associated with response duration. High Myriad HRD score (>42) and/or BRCA1/2 

mutation was associated with LT response to olaparib. Study 41 confirmed the correlation of LT 

response with olaparib and BRCA1/2 mutation. 

Conclusions: Findings show that LT response to olaparib may be multifactorial and 

correlated with homologous recombination repair deficiency, particularly BRCA1/2 defects. The 

type of BRCA1/2 mutation warrants further investigation. 
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INTRODUCTION 

 Epithelial ovarian cancer remains the leading cause of death from gynecologic 

malignancies, with high-grade serous ovarian cancer (HGSOC) the most common histological 

subtype (1). Following cytoreductive surgery and platinum-based chemotherapy, ~70% of 

HGSOC patients relapse despite an initial response to therapy (2). Given the practical certainty 

of recurrence in relapsed HGSOC, a maintenance approach was proposed to delay subsequent 

progression via continuation of treatment beyond cytotoxic chemotherapy. The poly(ADP-ribose) 

polymerase inhibitor (PARPi) olaparib (Lynparza™) is the first validated molecularly targeted 

agent for HGSOC. Ledermann et al demonstrated the benefit of maintenance olaparib after 

response to platinum-based chemotherapy in women with HGSOC recurrence (NCT00753545) 

(3). Patients were randomized to placebo or olaparib, introduced within 8 weeks of completion 

of the last dose of platinum-based chemotherapy and maintained until progression. Olaparib 

maintenance was associated with significantly longer progression-free survival (PFS; median 8.4 

vs 4.8 months; hazard ratio [HR] 0.35; 95% confidence interval [CI] 0.25 to 0.49; P<0.001; data 

maturity 58%). Patients with a BRCA1 mutation (BRCA1m) or a BRCA2 mutation (BRCA2m) 

had significantly greater PFS benefit with olaparib maintenance than those receiving placebo 

(median 11.2 vs 4.3 months; HR 0.18; 95% CI 0.10 to 0.31; P<0.0001; data maturity 52%) (4). 

Overall survival improved by 3 months, which was not significant; possibly because of post-trial 

cross-over whereby 22.6% of placebo patients received PARPi in subsequent clinical trials 

following progression on placebo. Olaparib is now approved in Europe, Australia and Canada for 

the maintenance treatment of women with relapsed, BRCA1/2m-positive (germline or somatic) 

HGSOC who have had complete or partial response to platinum-based chemotherapy (5). 

Olaparib is also approved in the USA for monotherapy in patients with germline BRCA1/2m 

advanced HGSOC who have been treated with ≥3 prior lines of chemotherapy (6). Proteins 

encoded by the BRCA1/2 genes are crucial effectors of double-strand-break DNA repair (7); as a 
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result, BRCA1/2m carriers are known to be highly responsive to DNA-damaging agents, 

including platinum-based chemotherapies (8, 9) and PARPi (8), although mechanisms of action 

and resistance to PARPi are not fully understood (10). Other than deleterious BRCA1m or 

BRCA2m, there are no predictive biomarkers for sensitivity to olaparib. Data from The Cancer 

Genome Atlas (TCGA) and functional studies indicate that approximately half of HGSOC are 

homologous recombination repair (HR) defective (11-13). PARP is involved in the repair of 

single-strand DNA breaks, and its inhibition can result in replication-associated double-strand 

breaks. Such HR-deficient cells as those found in BRCA1/2-mutated tumors, whether repaired 

via error-prone pathways or persistent without repair, cause further genetic instability and can 

lead to cell death (14).  

We hypothesize that studying HGSOC patients with prolonged response to olaparib may 

identify additional biomarkers of response beyond BRCA1/2m. The objective of this study was to 

identify and characterize long-term responders to olaparib maintenance in comparison with 

short-term responders in terms of clinical and molecular profile to pinpoint additional markers of 

response and explore potential resistance factors.   
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METHODS 

Patient population 

We investigated the molecular and clinical characteristics of long- and short-term 

responders randomized to maintenance olaparib or placebo in the phase II, randomized, double-

blind study of olaparib in patients with platinum-sensitive relapsed high-grade serous ovarian 

cancer following treatment with ≥2 lines of platinum-based chemotherapy (NCT00753545; 

Study 19) (3). This trial enrolled 265 patients, with 136 patients assigned to olaparib and 129 to 

placebo. Given that the greatest PFS benefit was at 11.2 months, we defined long-term (LT) 

responders, whatever their BRCA1/2 status, as having a double PFS benefit, i.e. of >2 years. 

Short-term (ST) responders were defined as having PFS of <3 months, given the PFS observed 

in the placebo group of 4.8 months.  

A second comparison/confirmation cohort from the open-label, randomized, phase II 

study of olaparib/carboplatin/paclitaxel with olaparib maintenance versus 

carboplatin/paclitaxel/observation in patients with platinum-sensitive recurrent HGSOC 

(NCT01081951; Study 41) was evaluated (15). In the combination phase, 156 patients were 

treated (81 in the olaparib-plus-chemotherapy group and 75 in the chemotherapy-alone group) 

and 121 continued to maintenance or no further treatment (66 in the olaparib-plus-chemotherapy 

group and 55 in the chemotherapy-alone group). Given that patients in this study received 

olaparib with chemotherapy, the ST responders were defined as patients with PFS of <6 months, 

taking into account the time over which olaparib was administered with chemotherapy to assess 

the maintenance period.  

 

Data collection  

Clinical trial data were prospectively obtained for all treated patients (Table 1) and 

archival tumor specimens, predominantly taken at the time of initial diagnosis, from patients who 
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consented to further use of their specimens. Previously performed germline BRCA1/2 testing 

(Myriad Genetics®) results were obtained.  

 

Molecular investigations 

Assessment of somatic BRCA1/2 mutations (Myriad® tumor testing and Foundation 

Medicine®), determination of the three-biomarker HR deficiency (HRD) score (myChoice® HRD 

test, Myriad Genetics) (16), and BRCA1 methylation (Myriad tumor testing) were conducted (17). 

HRD scores were determined using an assay that calculates scores for whole-genome tumor loss 

of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transition (LST). 

The HRD score is the sum of the three scores, where >42 is a predefined threshold validated as a 

high HRD score (16). The Methyl-Profiler DNA Methylation PCR Assay System 

(SABiosciences, Valencia, CA, USA) was used to quantify methylation levels, with a used 

quantitative cut-off of promoter methylation of >10%. HR deficiency status was determined on 

the basis of the combination of the dichotomized HRD score using the predefined HRD 

threshold and tumor BRCA1/2 status (scored as mutated if deleterious or suspected deleterious 

mutations in germline or somatic BRCA1/2 were present). Therefore, HR deficiency was defined 

as a high HRD score (>42) and/or BRCA1/2 mutated tumor (16). 

Mutational profile determined by the Foundation Medicine T5 panel (entire coding 

sequence of 287 cancer-related genes plus select introns from 27 genes) and other genetic 

alterations (deletions and functional rearrangements) were assessed for archival tumor tissue (18). 

Classification of TP53 mutations (TP53m) was determined using the WHO International Agency 

for Research on Cancer Database. 

  

Pathology review 
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Pathology review for tumor cell content was performed for all patients with molecular 

analyses, whereas pathology review of histological subtype by an expert pathologist in 

gynecologic cancer, blinded to cohort or outcome, was only performed for patients with 

remaining tissue.   

  

Statistical analysis 

Descriptive analyses from all LT and ST responders to olaparib/placebo were assessed 

for statistical significance. Fisher’s exact or chi-squared tests were used to test for associations 

between individual explanatory variables and response duration (long vs short term) as 

appropriate. SPSS and Excel were used for all analyses. Given the exploratory data analysis, no 

type 1 error correction was performed. 
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RESULTS   

Clinical data 

Data were collected from 265 total patients on study for the patients with LT and ST 

responses to olaparib therapy or placebo as part of Study 19. Thirty-seven patients were 

identified as LT responders, of whom 32 (86.5%) had received olaparib. Of the 61 ST patients 

identified, 21 (34.4%) had received olaparib. The main characteristics are summarized in Table 1 

and Table 2. LT responders on olaparib (32 patients) had a median of three prior lines of therapy, 

with one-third having relapsed within 6–12 months of their penultimate platinum-based 

chemotherapy. Of the LT responders on olaparib, 44% (14/32) had partial responses to their 

most recent platinum-based chemotherapy, with residual disease evident at the time of olaparib 

maintenance (Table 1). The other 18 of 32 (56%) LT responders on olaparib had complete 

response to the most recent platinum-based chemotherapy, in comparison with only five of 21 

(24%) olaparib ST responders (Table 1). Complete response to platinum-based chemotherapy at 

the time of olaparib maintenance was associated with LT response to olaparib (P=0.026, 

univariate analysis). The treatment-free interval following the penultimate platinum-based 

chemotherapy did not correlate with LT response (Supplementary Table 1). Sixty-five of 98 

archival tumour samples (37 LT and 61 ST) were from primary tumours and nine of 98 were 

from metastases (this information was unavailable for the other 24 patients). 

Receipt of olaparib over placebo was significantly associated with LT 

response (P<0.0001; 32/53, 60.4% vs 5/45, 11.1%). More patients treated with olaparib were LT 

than ST responders (P=0.052).  
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Molecular analysis 

BRCA1/2 status (germline and somatic) 

From the LT responders, 27/37 (73%) had loss-of-function mutations in BRCA1/2. 

Among the 32 LT olaparib responders, BRCA1m and BRCA2m were found in 10 and 13 patients, 

respectively, with one patient showing deleterious mutations in both BRCA1 and BRCA2 (Table 

2 and Table 3). All five LT responders receiving placebo were BRCA1/2m positive (Table 2). A 

greater number of BRCA1/2m was found in LT responders compared with ST responders (Table 

3). In contrast, among the 21 olaparib ST responders, 10 were found to carry a deleterious 

BRCA1/2m (7 of 10 were in BRCA1; Table 2 and Table 3).  

We further analyzed the type and location of BRCA1/2m in the olaparib cohort between 

LT and ST responders (Figure 1 and Supplementary Figure 1). Of the 17 patients on olaparib 

who had BRCA1m (LT and ST), nine had founder mutations (E23fs* or Q1756fs*), whereas 

only one patient had a founder BRCA2m (S1982fs*; ST responder group). Interestingly, among 

patients on olaparib, mutations in the DNA-binding domains of BRCA1 (n=1) or BRCA2 (n=4) 

were only seen in the LT responder group.  

BRCA1 methylation status was available for 27/37 (73%) LT responders, all of whom 

were negative. In contrast BRCA1 methylation status was available for 42/61 (69%) ST 

responders, eight of whom (19%) had BRCA1 methylation. Methylation of BRCA1 was not 

associated with LT olaparib response.  

 

Homologous recombination repair deficiency  

No significant difference was seen between LT and ST responders according to the HRD 

score (Table 3). Most of the patients enrolled in the study were characterized by HR-deficient 

status (81% of the LT and ST on olaparib). Among data available for 26 of the 32 (81%) LT 

responders on olaparib, 25 patients (96%) had HR deficiency, in contrast to 76% of the ST 
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olaparib responders (Table 3). Of the 21 patients with high HRD score in the LT responder group, 

three were BRCA1/2 wild type. Of the nine ST patients with a high HRD score, two (22%) were 

BRCA1/2 negative in the ST responder group. However, a significant number of HRD scores are 

missing for the BRCA1/2 wild-type group (Table 2). 

Taking together high HRD score (>42) and/or BRCA1/2 mutated tumor, there was a trend 

towards HR deficiency in LT versus ST responders, with 96% of LT responders and only 76% of 

ST responders showing HR deficiency (P=0.07). 

 

Next-generation-sequencing analysis 

Next-generation sequencing was performed on archival tumor DNA from 44 patients (28 

[87%] LT and 16 [76%] ST responders on olaparib). From 44 patients, over 600 identified 

alterations were classified by type and likely functional significance by Foundation Medicine 

(Supplementary Table 2). A total of 242 likely functional generic alterations in 99 genes were 

found, with TP53, BRCA1 and BRCA2 mutations being the most common (89%, 34% and 36% 

of patients, respectively; Figure 2 and Supplementary Table 2).  

TP53 signalling was considered aberrant in most cases (90%), as expected for the 

HGSOC histology subtype (27 of 28 patients with available data analyzed in the LT responder 

group, 12 of 16 in the ST responder group; Supplementary Figure 1). The patient with no TP53m 

in the LT responder group had pathology reviewed and HGSOC confirmed. Of the four patients 

with no TP53m in the ST responder group, two had confirmed HGSOC. Other types of 

mutations and gene amplifications were observed, particularly in genes encoding proteins 

involved in DNA repair and damage response, regulation of cell cycle, apoptosis, and 

MAPK/PI3K signalling (Figure 2 and Supplementary Table 2). Furthermore, four patients had 

alterations in PTEN (2 homozygous deletions, 1 somatic variant and 1 functional intergenic 

truncation), all of whom were LT responders on olaparib. These PTEN alterations co-occurred 
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with BRCA1/2 mutation for three of the patients, only one LT patient had a PTEN mutation in 

the absence of a BRCA1/2 mutation. In contrast, no PTEN alterations were seen in the ST 

responder group (Supplementary Table 3). Interestingly, three patients randomized to the 

placebo arm had PTEN alterations and were ST responders (Supplementary Table 3). 

 

Validation cohort 

LT and ST responders from Study 41 were identified and analyzed (Figure 3 and 

Supplementary Table 4). In total, 19 LT responders were identified and all were in the olaparib 

arm. Olaparib maintenance was also significantly associated with LT responders (P<0.0001). 

BRCA1/2m was statistically correlated with LT response to olaparib (Supplementary Table 4). 

BRCA1m and BRCA2m were observed in six and five LT responders, respectively. The 11 ST 

patients were all BRCA1/2 wild-type.  
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DISCUSSION 

There are limited data describing ovarian cancer patients who experience prolonged 

benefit from PARP inhibition, other than evidence for the role played by deleterious mutations in 

BRCA1/2. Defective DNA repair via homologous recombination repair deficiency is a 

fundamental vulnerability in HGSOC and can be exploited with PARPi, such as olaparib, by 

induction of cancer-specific synthetic lethality (19). Examination of broader clinical and 

molecular data of extreme responders may uncover potential biomarkers of response (20). We 

identified LT and ST responders to PARPi from women with HGSOC entered into two olaparib 

maintenance trials, Studies 19 and 41, and have molecularly characterized these exceptional 

responders. We found that 32 and 19 patients with recurrent platinum-sensitive HGSOC 

achieved LT (defined as >2 years) response to olaparib maintenance as part of the studies, 

respectively. Germline and somatic BRCA1/2m were observed to be associated with LT response 

to olaparib, with an enrichment of BRCA2m in the LT olaparib responders, compared with the 

frequency of BRCA1m and BRCA2m in HGSOC detected at the start of the trial and the 

BRCA1/2 ratio observed in the general population (21). Our finding is in agreement with data 

suggesting differences in outcome and response to therapy between BRCA1 and BRCA2 

genotypes (22). Previous studies have shown that BRCA2m is associated with prolonged survival 

in invasive epithelial ovarian cancer (23). In 2012, Liu et al showed that the presence of a 

BRCA2m was associated with longer survival and better therapy response than a BRCA1m in 

HGSOC (24). Many LT olaparib responders had a BRCA2m in the RAD51-binding domain, 

described as a frequent site of BRCA2m by TCGA (11), but also in DNA-binding sites (Figure 3). 

As such, mutations in the RAD51 region are expected to attenuate or abolish interactions with 

RAD51, resulting in failure to load RAD51 to DNA-damage sites (24). Our data also suggest that 

silencing of BRCA1 through promoter methylation does not result in improvement in response to 

platinum-based chemotherapy or to sequential chemotherapy and maintenance olaparib therapy, 
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as previously suggested by TCGA and other publications showing a lack of survival benefit and 

correlation with platinum sensitivity (11, 25). 

However, our study did not identify a potential mechanism involved in the small group of 

BRCA1/2 wild-type patients who had a LT benefit to olaparib maintenance, currently not eligible 

for olaparib in clinical practice. Beyond BRCA1/2m, there have been a number of mechanisms of 

HR deficiency described that may correlate with platinum and PARP response (11), and newly 

developed homologous recombination repair panels have assessed several additional novel genes, 

including NBN, MRE11, RAD50, RAD51C, PALB2, BARD1, and BRIP1 (19, 26, 27). Our results 

show that the majority of patients enrolled in the study were HR deficient, a potential enrichment 

due to the selection of HGSOC patients based on platinum-sensitivity recurrence and objective 

response to platinum. The phase II study ARIEL2 investigating rucaparib (another PARPi) 

monotherapy in patients with recurrent platinum-sensitive HGSOC has confirmed BRCA1/2m as 

a biomarker of response, as well as genomic LOH, a potential predictive surrogate marker for 

HR deficiency (28). It was hypothesized that the inability of the cell to perform HR repair leads 

to genomic scarring and LOH, thus enabling the use of high LOH as a signature of HR 

deficiency. However, no data are currently available for LT responders and PARPi progression. 

Recently, the maintenance phase III study of niraparib, another PARPi, showed increased PFS in 

all patients – germline BRCA1/2 patients (the group with greatest benefit), and non-BRCA1/2 

carriers (comprising of both HRD-positive as well as HRD-negative tumors) (29). Eligible 

patients had to have achieved response following 4 to 6 cycles of platinum-based chemotherapy 

with a CA-125 in the normal range or reduced by 90% for at least 7 days; an absence of 

measurable disease greater than 2cm at study commencement. Consistent with our findings, the 

PFS benefit to PARPi is driven by minimal residual disease (complete response prior 

maintenance), BRCA1/2 mutation and HRD-positive tumors, though not exclusively. The current 
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HR deficiency assays available did not completely identify biomarkers involved in response or 

resistance to PARPi.  

Interestingly, four genetic alterations in the PTEN gene were observed, of which three 

were associated with BRCA1/2m in the LT responders on olaparib but none in the ST responder 

group. Moreover, in the placebo arm, three patients with PTEN alterations had disease 

progression within 3 months (Supplementary Table 3). The significance of this finding is not 

clear but warrants further investigation. While many LT responders to olaparib harbor a 

BRCA1/2m, our data show the occurrence of ST responders to olaparib in patients with 

BRCA1/2m. This finding highlights the limitation of the analysis on archival rather than tumor 

tissue at the time of disease progression. There is evidence that in cells deficient in DNA-damage 

repair, such as those with BRCA1/2m, additional mutations can restore function and allow 

effective DNA repair (30). Reversion mutations in BRCA1/2 have been described and associated 

with olaparib and platinum resistance (31), although this effect was supposed to be minimized by 

the selection of patients with response to platinum-based chemotherapy. Understanding 

therapeutic resistance requires comprehensive disease assessment at the specific time of 

therapeutic intervention; timing and treatment strategy are imperative to efficacy. Several 

mechanisms of resistance have been described related to the HR pathway (30). While tumors 

harboring a BRCA1/2m lack the HR repair pathway required for error-free repair of DNA 

double-strand breaks (32), other DNA-repair pathways exist that can become engaged, ultimately 

leading to olaparib resistance but platinum sensitivity, as with non-homologous end-rejoining 

alterations (33, 34). As such, determining the disease- and therapy-specific HR deficiency 

signature is important. Reports on this signature show varying gene lists, and these differences 

are likely attributed to variances in methodologies. Peng et al identified a HR defect gene 

signature that can be used to functionally assess HR status and predict clinical outcomes (27). 

Pennington et al reported that germline and somatic mutations in 13 HR genes predict platinum 
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response and survival in ovarian, fallopian tube and peritoneal carcinomas (26). These signatures 

need prospective validation. 
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CONCLUSION 

This is the first study contrasting LT with ST responders to PARPi in terms of clinical 

and molecular data. Our results show that LT response to olaparib has been observed in 

platinum-sensitive recurrent HGSOC. This durable response may be multifactorial and driven by 

germline and somatic BRCA1/2m. This pilot study warrants a larger cohort to characterize LT 

responders. A study is ongoing to identify LT and ST responders to olaparib and allows for 

additional tumor tissue collection for analysis (NCT02489058).  
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Table 1. Characteristics of patients on olaparib capsule maintenance therapy – Study 19 

 
Clinical status BRCA status 

Treatment duration 

No. of lines of prior 

chemo-therapy 

[median (range)] 

Initial FIGO 

state 

(n pts) 

RECIST at 

baseline (n) 

Platinum 

sensitivity status 

(n) 

BRCAm 

(n=74) 

BRCA WT 

(n=57) 

BRCA 

missing (n=5) 

Olaparib arm 

(n=136) 
       

ST responders:  

<3 months 

21 pts (15%) 

2.8 (2–5) 
1 II/ 

19 III/1 IV 

PR: 16 

CR: 5 

6–12 months: 9 

12 months: 12 

10 (14%) 

7 BRCA1 
9 (16%) 2 

LT responders:  

>2 years 

32 pts 

 (24%) 

2.9 (2–8) 

3 I/II 

25 III/ 3 IV 

Missing: 1 

PR: 14 

CR: 18 

6–12 months: 11 

>12 months: 21 

22 (30%) 

10 BRCA1 

10 (18%) 

 
0 

Placebo arm (n=129)        

ST responders: <3 

months 

40 pts (31%) 

2.8 (2–8) 

3 I/II 

27 III/8 IV 

Missing: 2 

PR: 25 

CR: 15 

6–12 months: 22 

>12 months: 18 

19 (31%) 

16 BRCA1 
18 (30%) 3 
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LT responders: >2 

years 

5 pts 

 (4%) 

2 (2) 5 III 
PR: 1 

CR: 4 

6–12 months: 1 

>12 months: 4 

5 (8%) 

4 BRCA1 
0 0 

CR, complete response; FIGO, International Federation of Gynecology and Obstetrics; LT, long term; ST, short term; PR, partial response; pts, patients; RECIST, Response 

Evaluation Criteria in Solid Tumors; WT, wild type  
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Table 2. Molecular profiling of patients on olaparib and on placebo – Study 19 

 

Olaparib arm 

ST responders LT responders 

All pts 

(n=21) 

HRD 

score 

 ≥42 

 (n=9) 

HRD 

score 

 <42  

(n=4) 

HRD  

score 

missing 

(n=8) 

TP53 

mutations 

(n=12) 

TP53 

WT  

 (n=4) 

TP53 

missing 

(n=5) 

All pts 

(n=32) 

HRD 

score 

 ≥42  

(n=21) 

HRD 

score 

 <42  

(n=3) 

HRD  

score 

missing 

(n=8) 

TP53 

mutations 

(n=27) 

TP53  

WT  

 (n=1) 

TP53 

missing 

(n=4) 

BRCAm 

(n=32) 

10 

(48) 
6 (67) 0 4 (50) 7 (58) 1 (25) 2 (40) 22 (69) 18 (86) 2 (67) 2 (25) 20 (74) 0 2 (50) 

BRCA WT 

(n=19) 
9 (43) 2 (22) 3 (75) 4 (50) 5 (42) 3 (75) 1 (20) 10 (31) 3 (14) 1 (33) 6 (75) 7 (26) 1 (100) 2 (50) 

BRCA 

missing 

(n=2) 

2 (9) 1 (11) 1 (25) – – – 2 (40) – – – – – – – 

 

Placebo arm 

ST responders LT responders 
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All pts 

(n=40) 

HRD 

score  

≥42 

 (n=18) 

HRD 

score 

<42  

(n=11) 

HRD  

score 

missing

 (n=11) 

TP53 

mutation

s (n=29) 

TP53 

 WT  

(n=1) 

TP53 

missing 

(n=10) 

All pts 

(n=5) 

HRD 

score 

≥42  

(n=4) 

HRD 

score 

 <42  

(n=0) 

HRD 

 score 

missing

 (n=1) 

TP53 

mutations 

(n=4) 

TP53  

WT  

(n=1) 

TP53 

missing  

(n=0) 

BRCAm 

(n=24) 
19 (48) 13 (72) 1 (9) 5 (46) 16 (55) 0 3 (30) 5 (100) 4 (100) – 1 (100) 4 (100) 1 (100) – 

BRCA WT 

(n=18) 
18 (45) 5 (28) 

10 

(91) 
3 (27) 13 (45) 1 (100) 4 (40) 0 0 – 0 0 0 – 

BRCA 

missing 

(n=3) 

3 (7) 0 0 3 (27) 0 0 3 (30) 0 – – – – – – 

Data are number (percentage). Pts, patients; LT, long term; ST, short term; WT, wild type 
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Table 3. Analysis of BRCA1 and BRCA2 mutational frequency in the olaparib arm (unless 

otherwise stated), including total BRCA mutations and mutations stratified by somatic 

mutations – Study 19 

Number of patients with 

each mutation shown 

LT responders  

N=32 

ST responders  

N=21 

P value  

(Fisher’s exact 

test) 

 BRCA status available N= 32 N=19  

BRCA mutation 22b (69%) 10 (53%) 0.2179a 

BRCA1 mutation   10 (45%)   7 (70%) 1.0000a 

BRCA2 mutation   13 (59%)   3 (30%) 0.0631a 

BRCA WT           10 (31%) 9 (47%)  

Unknown/missing  

(excluded from analysis) 

– 2 missing 

 

 

Somatic BRCA mutations 

available 
N=32 N=19  

Olaparib treated (N=53) 6 3  

BRCA mutation 6b (20%) 3 (16%) 1.0000a 

BRCA1 mutation 2 1 1.0000a 

BRCA2 mutation 5 2 0.6909a 

Placebo treated (N=45) 1 3  

BRCA1 methylation status 

available 
N=23 N=14  

Methylated 0 2 (14%)  

Un-methylated 23 (100%) 12 (86%)  

Unknown/missing  9 missing 7 missing  
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(excluded from 

analysis) 

HRD score available  N=24 N=13  

HRD score (>42) 21 (88%) 9 (69%) 0.2128a 

HRD score (<42) 3 (12%) 4 (31%)  

HR deficiency status 

available 

 N=26  N=17 
 

HR deficient 25 (96%) 13 (76%) 0.0707a 

HR non-deficient 1 (4%) 4 (24%)  

HRD scores are given for LT responders and ST responders, and HR deficiency status is defined as a high HRD 

score and/or presence of a BRCA1/2 mutation. aP value between groups compared with WT; bOne LT responder had 

both BRCA1 and BRCA2 mutations. HRD, homologous recombination repair deficiency; HR, homologous 

recombination repair; LT, long term; ST, short term; WT, wild type 
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FIGURE LEGENDS 

Figure 1. Location of the BRCA1/2 mutation on the BRCA1/2 gene in patients on olaparib – 

Study 19  

Somatic deletion exon 17 (not shown) found in BRCA1 in LT responder group. Large insertion (somatic, now shown) 

and deletion (not shown) found in BRCA2 in ST and LT responder group, respectively. VUS and SNP variants not 

shown 

 

Figure 2. Mutations and other gene alterations in LT and ST responders to olaparib – 

Study 19 

Only events that occurred in at least two patients are shown. Columns represent patients. Dark grey columns are 

samples that failed sequencing or analysis. A total of 51 patients were analyzed (32 LT responders, 19 ST 

responders), but seven failed sequencing; therefore, the molecular profiles of 44 patients are shown. Novel 

rearrangements of unknown significance, short variants of unknown significance, and non-focal lower-level (copy 

number [CN] ≤8) amplifications of genes known to be recurrently amplified in cancer are excluded 

 

Figure 3. Study 41 data showing LT and ST responders to olaparib and placebo, with 

mutations and other gene alterations given for LT and ST responders  

Novel rearrangements of unknown significance, short variants of unknown significance, and non-focal lower-level 

(CN ≤8) amplifications of genes known to be recurrently amplified in cancer are excluded 
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FIGURES 

 

Figure 1. Location of the BRCA1/2 mutation on the BRCA1/2 gene in patients on olaparib 

Somatic deletion exon 17 (not shown) found in BRCA1 in LT responder group. Large insertion (somatic, now shown) 

and deletion (not shown) found in BRCA2 in ST and LT responder group, respectively. VUS and SNP variants not 

shown 
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Figure 2. Mutations and other gene alterations in LT and ST responders to olaparib 

Only events that occurred in at least two patients are shown. Columns represent patients. Dark grey columns are 

samples that failed sequencing or analysis. A total of 51 patients were analyzed (32 LT responders, 19 ST 

responders), but seven failed sequencing; therefore, the molecular profiles of 44 patients are shown. Novel 

rearrangements of unknown significance, short variants of unknown significance, and non-focal lower-level (copy 

number [CN] ≤8) amplifications of genes known to be recurrently amplified in cancer are excluded 
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Figure 3. Study 41 data showing LT and ST responders to olaparib and placebo, with 

mutations and other gene alterations given for LT and ST responders  

Novel rearrangements of unknown significance, short variants of unknown significance, and non-focal lower-level 

(CN ≤8) amplifications of genes known to be recurrently amplified in cancer are excluded 
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