
Long-term SLOs for reclaimed cloud computing resources

Marcus Carvalho

Universidade Federal de

Campina Grande, Brazil

marcus@lsd.ufcg.edu.br

Walfredo Cirne

Google Inc., USA

walfredo@google.com

Francisco Brasileiro

Universidade Federal de

Campina Grande, Brazil

fubica@dsc.ufcg.edu.br

John Wilkes

Google Inc., USA

johnwilkes@google.com

Abstract

The elasticity promised by cloud computing does not come

for free. Providers need to reserve resources to allow users to

scale on demand, and cope with workload variations, which

results in low utilization. The current response to this low

utilization is to re-sell unused resources with no Service

Level Objectives (SLOs) for availability. In this paper, we

show how to make some of these reclaimable resources more

valuable by providing strong, long-term availability SLOs

for them. These SLOs are based on forecasts of how many

resources will remain unused during multi-month periods,

so users can do capacity planning for their long-running ser-

vices. By using confidence levels for the predictions, we give

service providers control over the risk of violating the avail-

ability SLOs, and allow them trade increased risk for more

resources to make available. We evaluated our approach us-

ing 45 months of workload data from 6 production clusters

at Google, and show that 6–17% of the resources can be re-

offered with a long-term availability of 98.9% or better. A

conservative analysis shows that doing so may increase the

profitability of selling reclaimed resources by 22–60%.

Categories and Subject Descriptors D.4.8 [Operating

Systems]: Performance—Modeling and prediction; K.6.2

[Management of Computing and Information Systems]: In-

stallation management—Performance and usage measure-

ment, Pricing and resource allocation

General Terms Management, Performance, Measurement

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-3252-1/14/11.

http://dx.doi.org/10.1145/2670979.2670999

Keywords Cloud computing, Capacity planning, Quality

of Service

1. Introduction

Although marketing campaigns for cloud Infrastructure as

a Service (IaaS) praise its “infinite elasticity”, this clearly

cannot be the case: a provider’s resources are finite. In prac-

tice, at any point in time cloud providers impose a resource

ceiling for each user to bound the maximum amount of re-

sources that the user will be granted. Users typically get

a small ceiling by default and can request or negotiate in-

creases with the service provider.

Provisioning enough capacity to guarantee that all users

can be granted their ceilings at all times is both expensive

and wasteful: for most applications, the average resource re-

quirement is much lower than the peak [24]. A few users

may wish to pay to have dedicated resources always stand-

ing by, but most can accept weaker promises in return for

lower prices. As long as all the users’ loads do not peak at

the same time, cloud providers can benefit from statistical

multiplexing to provision fewer resources than the sum of

all users’ ceilings [21], thereby saving money – but some

spare capacity is still required to ensure they rarely deny re-

quests for resources [9]. Spare capacity is also required to

handle failures, expected market growth, and the seasonal

load fluctuations that affect many applications (e.g., during

November and December in the USA).

A common way of increasing data center utilization

(and thus service provider profitability) is to offer this

temporarily-unused capacity in an opportunistic way, with

essentially no Service Level Objectives (SLO) [20]. Un-

fortunately, this absence of SLOs restricts the applications

that can benefit from these reclaimable resources, and so re-

sources offered opportunistically are usually sold at lower

prices than regular ones (e.g., Amazon Spot Instances [3]).

Such resources are acceptable for short-lived batch jobs that

can often be deferred or restarted, and it is not critical for

them to have unknown (and occasionally long) unavailabil-

ity periods.

However, the primary target audience for the work we

describe here is cloud users that run services that stay up

for weeks or months at a time [24]. Such services are com-

mon: most interactions on the web are with them. Without

long-term availability SLOs, such users could not be sure

resources would be available when they were needed – e.g.,

to match expected workload growth over future months or

to quickly restart VMs in eventual service disruption – so

they would need to pay for higher-quality SLOs. Our goal

is to improve the availability SLOs of reclaimed resources

to the point where they become useful for long-running ser-

vice jobs, especially ones that can accept slightly degraded

resources but still need moderate availability guarantees –

e.g., non-user facing pipelines, as web indexing and video

transcoding.

In this paper, we show how to provide such strong, long-

term availability SLOs for a portion of the unused resources

through a new economy service class. Even though resources

offered via this class can be revoked if necessary, the chance

of this happening is low enough to make them useful – even

over a multi-month duration. We do this by predicting (esti-

mating) the fraction of unused resources that will almost cer-

tainly not be required in the future, based on historical usage

patterns. We use confidence levels to deal with uncertainty in

these predictions and make appropriately-conservative pre-

dictions. Different confidence levels permit trade-offs be-

tween the risk of SLO violations and the amount of resources

that can be offered this way.

We evaluated our method using workloads from 6 pro-

duction clusters at Google, gathered over 45 months. Our re-

sults show that we can re-offer up to 17% of resources with

6-month availability SLOs of 98.9%. Moreover, by doing

this, we show the IaaS provider can increase its profitabil-

ity from selling these reclaimed, unused resources by up to

60% compared to offering them with no availability SLOs.

We make the following contributions in this paper:

• Analyze a set of real-world cloud workloads for ways to

improve resource utilization.

• Introduce a novel Economy class service that is backed

by reclaimed resources.

• Describe a prediction process that balances the amount

of resources that can be offered via this new service class

against the risks of SLO violations.

• Test the scheme by instantiating it with well-known pre-

diction techniques, and assess its performance using data

from production systems.

• Demonstrate that profitability can be increased by mod-

eling the effects of offering economy class resources.

The rest of the paper is organized as follows. Section

2 describes our system model. Section 3 analyses a cloud

computing workload and shows the potential gains that re-

claimed resources could yield, especially if these resources

could be offered with long-term SLOs. Section 4 describes

the prediction process we used to estimate the amount of

cloud capacity that can be offered via Economy class, and

Section 5 evaluates it using data from 6 large production

clusters. Section 6 discusses related work, and we present

our conclusions in Section 7.

2. System model

In this paper we consider the management of resources in

a cloud IaaS provider, whether public or private clouds. We

begin with describing the system model that underlies our

work.

A cloud resource means any cloud infrastructure compo-

nent such as CPU cores, memory space, disk capacity, disk

access time, or a combination of these components – typi-

cally in a Virtual Machine (VM) or container. The capac-

ity of a cloud infrastructure service is the total amount of

resources available for users. Users make requests for re-

sources to scale up their applications, and (eventually) to

scale them down. Each request specifies a limit for each re-

source, which is the maximum amount of the resource that is

needed. Many cloud providers only offer pre-defined “bun-

dles” of resource types, such as 4 or 8GB of RAM with 2, 4,

or 8 CPU cores – the user can’t explicitly specify what they

want, but has to map it into the next larger bundle.

Users have pre-defined ceilings for each resource type,

which is the maximum amount of the resource they can

obtain from the cloud at one time. For example, Amazon

EC2 defines a default ceiling of 20 VMs per user for On-

demand and Reserved instances [1]. A provider will refuse

any request that would make the sum of limits for the user

higher than the user’s ceiling for any resource in the request.

If this doesn’t happen, the request is valid, and the provider

allocates the requested amount of resources, provided there

is enough capacity available. On request, the provider can

make reservations of resources to a user to increase the

chance that a future demand can be met.

Cloud users have diverse Quality of Service (QoS) re-

quirements and budgets for their applications, so cloud

providers usually offer different service classes that provide

resources with different combinations of SLOs and pricing,

allowing users to choose what best matches their needs. Fail-

ure to meet an SLO will usually provoke financial penalties

for the provider, as specified in the provider’s Service Level

Agreement (SLA). We find it helpful to tease apart the SLOs

offered by providers into two parts:

• Obtainability: the probability that any request to obtain

new resources, within the user’s ceilings, made during the

validity of the contract between user and provider, will be

granted by the service provider.

Figure 1. How resources are managed, and the different

kinds of slack.

• Availability: the probability that a resource that has been

granted will be remain operational and accessible during

the validity of the contract.

We see three common service classes today, characterized

by how the above mentioned SLOs are treated:

• Reserved: users will have a very high obtainability SLO

(≈ 100%) for resources up to their ceiling, and the ob-

tained resources will have a high availability SLO (e.g.,

≥ 99%). To meet these, the provider will typically re-

serve resources for this class, although specific resource

instances may not be allocated [13]. Amazon Reserved

Instances [3] is an example of this class.

• On-demand: users will usually be able to get resources up

to their ceilings (e.g., an obtainability SLO ≥ 99%), and

the acquired resources will have a similar availability to

the Reserved class SLO. The provider typically reserves

resources to cover only a subset of the sum of users’

ceilings for this class. The precise amount is a function

of the target availability SLO and its expectation of the

aggregated demands of the users. Resources offered in

the On-demand class are typically cheaper than those

offered in the Reserved one, which can reduce costs for

applications that can tolerate some uncertainty. Amazon

On-demand Instances [3] are an example of this class of

resources.

• Opportunistic: these resources are typically offered with-

out obtainability or availability SLOs or SLA penalties

(sometimes called “no QoS”): the resources can be pre-

empted at any time to meet Reserved and On-demand

requests. The Opportunistic class usually has the lowest

price. Amazon Spot Instances [3] is an example of this

class.

In a cloud infrastructure that offers only Reserved and

On-demand classes, the capacity will not be fully used all the

time. These unused resources come from different sources

(Figure 1):

• Reservation slack: capacity that has not been reserved

(i.e., total capacity minus sum of reservations). Example:

spare resources that can be used in the future to admit

new users, create or expand reservations, or kept for fault

tolerance.

• Allocation slack: capacity that has been reserved, but has

not yet been allocated to users (i.e., sum of reservations

minus sum of limits). Example: the provider reserves re-

sources to meet SLOs, but a portion of these resources

are not assigned to particular VMs. (A temporary reser-

vation is created for every allocation that isn’t slotted into

a pre-arranged reservation.)

• Usage slack: capacity that is not being fully used in the

allocated resources (i.e., sum of limits minus sum of

usage). Example: an idle VM that isn’t consuming all of

the resources allocated to it.

We call the resources left unused from the Reserved and

On-demand classes the total slack. It is the sum of the three

slack types above, which is equal to the difference between

the capacity and the usage of resources before any oppor-

tunistic or economy work is introduced. The term resource

slack in this paper will be used to mean the total slack, unless

we mention a specific slack type.

Reclaiming reservation and allocation slacks so they can

be used to accommodate other requests is straightforward,

as they haven’t been allocated to any VM or container. Re-

claiming usage slack is harder, because resources must be

extracted from a running VM/OS, or container/application.

It requires techniques such as balloon drivers [26].

Currently, cloud providers increase the utilization of their

data centers by offering some of these reclaimed resources

in the Opportunistic service class. In this paper we propose

offering a part of these resources in a new Economy on-

demand class (Economy for short). This has strong SLOs

that are good for multiple months: the obtainability SLO is

comparable to the one provided by the On-demand class, and

the long-term availability one is slightly weaker (e.g., 98.9%

rather than 99.95%). Economy class can meet the needs of

applications (including long-running services) that cannot

run on Opportunistic resources, but do not need the full-

strength SLOs of On-demand – and it can do so at significant

price savings for the user, but noticeable profitability benefits

for the provider.

In the next section, we show that the amount of re-

claimable resources is substantial in real-world cloud clus-

ters. Then, we propose a prediction scheme that can esti-

mate, over long-term periods, the unused cloud capacity that

can be offered in the Economy class, as well as their SLOs.

3. Workload analysis

This section presents an analysis of how the slack resources

change over time for workloads from 6 real-world, produc-

tion cloud computing clusters at Google. The data was gath-

ered from December 2012 to November 2013 at 5-minute

intervals.

We first analyze how much of the users’ resource ceilings

are taken up by allocations for each 5-minute interval in our

traces. We define the ceiling utilization as the sum of the

requested limits divided by the ceilings, and we calculate

this for both individual users and the cluster as a whole (i.e.,

the sum of the total requested limits divided by the the sum

of the ceilings). Figure 2 shows a Cumulative Distribution

Function (CDF) of CPU ceiling utilization for our clusters.

The median per-user CPU ceiling utilization (dashed line)

varies from 30% to 63% for the 6 clusters, but we also

see extremes: in 38% of the user ceiling measurements the

average CPU ceiling utilization is lower than 1%, and yet

in 15% of the measurements more than 99% of the CPU

ceiling was allocated. Apparently, users do not do a very

good job of using their ceilings, or the ceilings were not

correctly set for them, or their ceiling utilization varied over

time, with high values being reached only occasionally – or

some combination of these factors.

At the cluster level (solid line), the median CPU ceiling

utilization for the cluster varies from 55% to 75%, but there

are fewer extremes: the cluster CPU ceiling utilization is

lower than 1% in less than 1% of the measurements, and

going higher than 81% is equally rare. Not surprisingly,

the cluster-level aggregation decreases the variation in the

overall ceiling utilization, which means that we can make

resource reservations for groups of users more efficiently

than making decisions for individual users. Since it is rare

for the aggregated limits to get close to overall ceiling, the

provider does not need to reserve resources equal to the sum

of ceilings to provide good obtainability SLOs.

Figure 3 shows the CPU resource slacks described in Sec-

tion 2. On average, total slack accounts for a significant frac-

tion (57%) of the cluster capacity. Interestingly, the reser-

vation and allocation slacks have higher variance over time

than the usage slack.

Figure 4 shows the observed distribution of total slack

for CPU, memory and disk. In 99% of the measurements,

more than 45% of the CPU, 43% of the memory and 89% of

the disk capacity are unused. This is the primary motivation

for offering an Opportunistic class. We believe that we can

offer part of these reclaimable resources in Economy class,

thereby improving both the users’ and the service provider’s

experience.

4. Prediction process

The more reliably we can predict the amount of slack re-

sources, and how unlikely they are to be needed, the better

the SLO that can be provided for Economy class. That can

lead to higher utilization – and greater revenue. To do this,

we propose a prediction process that is comprised of three

parts: (i) time-series based forecasting; (ii) predicting confi-

dence intervals; and (iii) using prediction cycles.

Figure 2. Cumulative Distribution Functions (CDFs) for

user and cluster CPU ceiling utilization, measured at 5

minute intervals from December 2012 to November 2013 in

6 separate cloud clusters.

Figure 3. CPU slack over time, normalized to the cluster ca-

pacity, at 5 minute intervals from December 2012 to Novem-

ber 2013 in 6 separate cloud clusters.

Figure 4. CDF of normalized resource slacks for CPU,

memory and disk, at 5 minute intervals from December 2012

to November 2013.

4.1 Time series forecasting

The first step in our process is to predict the minimum value

for the total slack in future time periods by deriving a time-

series based forecast from historical data. Time is naturally

discretized here because slack is measured periodically, so

we generate a forecast at time t for a future time t +h:

ŷt+h = Fh(y1,y2, . . . ,yt−1) (1)

where h is the prediction horizon, and Fh is the forecasting

function that uses as input observations y gathered before

time t.

Any forecasting technique (or even a combination of

techniques [23]) can be used; the best choice will depend

on the data patterns found in the measurements. We tested

four widely-used forecasting techniques and picked one that

worked well for our workloads. They are:

Mean: the arithmetic mean of the input time series val-

ues. This will be over-optimistic in the face of request spikes.

Minimum: the minimum of the input values. This will be

overly conservative if there are request spikes.

Auto Regressive Integrated Moving Average (ARIMA):

a time series forecasting technique that combines three types

of component [7]:

1. A differencing component that removes trends (non-

stationarity) from the data by computing the differences

between consecutive observations, applied d times.

2. An autoregressive component AR(p), based on a linear

regression of the last p observations.

3. A moving average component MA(q), based on a regres-

sion model applied to the last q forecast errors.

We used Akaike’s Information Criterion (AIC) [5] to pick

a good ARIMA(p, d, q) model: it estimates the probability of

the data arising from each model by using a maximum like-

lihood estimator, and penalizes models with a large number

of parameters [7].

Exponential Smoothing (ETS): a time series forecast-

ing technique that combines models based on the weighted

averages of input values, with the weights exponentially de-

caying for older values. The ETS model has three compo-

nents: Error correction (E), Trend (T), and Seasonal (S).

Each component can be of a certain type: None, Additive,

Multiplicative, and other variations. The different combina-

tions of component types results in different ETS methods,

where each method have a set of parameters to be estimated.

We used the AIC method here, too, to find the best combi-

nation of types and parameters [17].

We used the ARIMA and ETS implementations from the

R forecast package [18].

4.2 Prediction confidence intervals

As part of the prediction, we also generate a confidence in-

terval: an estimate of the range of values within which the

true value should lie with a certain confidence level (a prob-

ability, γ). As our prediction, we pick the smallest amount of

resources that fit within the confidence interval for our cho-

sen confidence level. The higher the confidence level, the

wider the confidence interval, and the more conservative the

predictions. This lets us trade off the quantity of resources

that are predicted against their availability: the higher the

confidence level, the lower the risk of an availability SLO

violation.

The confidence interval calculation relies on the variance

of the prediction errors and the confidence level γ . We define

the significance level α = 1 − γ , and then the prediction

interval for a future time t +h is given by

ŷt+h ± σ̂ · zα/2 (2)

where σ̂ is the estimated standard deviation for the predic-

tion errors, and zα/2 is the value for the 100 ·α/2 percentile

in the standard normal distribution. Although Equation 2

seems to assume that the forecast errors are normally dis-

tributed, it also works well for prediction errors that are not

normally distributed [7].

For each forecasting technique, the estimated standard

deviation for the prediction errors σ̂ has to be calculated. A

general approach to estimating σ̂ is to calculate the standard

deviation from the prediction errors (residuals) when apply-

ing the fitted forecast model to the same data used for train-

ing. Closed formulas for estimated variance are also avail-

Figure 5. Predictions at time t for the window ∆ with dif-

ferent confidence levels.

able for some forecasting techniques and these can produce

better estimates.

For the Mean method, σ̂ is estimated as the standard de-

viation of the input time series. We didn’t calculate a con-

fidence interval for the Minimum method, since it’s output

is already very conservative. We used a closed-formula pro-

vided by Box-Jenkins [4] to estimate the variation of predic-

tion errors for the ARIMA technique [7], and a formula pro-

vided by Hyndman et al. for the ETS method [19]. We also

applied these calculations as implemented in the R forecast

package [18].

4.3 Prediction cycles

To provide SLOs for Economy class resources, we need

to make predictions for long time windows. But since the

capacity and demand for a cloud cluster varies over time

there is variance in the amount of slack, so the longer the

window, the wider the confidence interval and the smaller

the amount of reclaimable resources that will be predicted.

Predictions are generated for a time window ∆ = (t, t +H],
where t is the time when the prediction is performed and H

is the length of the window (the prediction horizon).

After consulting with our customers, we chose to make

predictions for a 6-month time window, as this gave them

an adequate long-term planning horizon and made a good

amount of Economy-class resources available. (Our ap-

proach will work for shorter timescales too, but that would

not have meet their needs and so was not our focus.) For

these experiments, we generated new predictions at the end

of each window – i.e., predictions did not overlap in time.

We call each one a prediction cycle. The prediction for one

such cycle, for the window ∆, is given by

Ŷ (∆) = min
(
ŷt+h − σ̂ · zα/2

)
, ∀h ∈ [1,H] (3)

Notice that we pick the lower bound of the confidence

interval as the predicted value in Equation 3. This is shown

graphically in Figure 5, which also points out that as the

confidence level rises, the width of the confidence interval

increases, and the lower bound drops.

5. Evaluation

This section assesses our approach using data from real

cloud clusters. It describes the assessment methodology, and

then compares the predictors, and analyzes the trade-offs

that result from adjusting the confidence levels.

5.1 Methodology

Our evaluation used workload traces from the same clusters

at Google that were analyzed in Section 3, but over a longer

time period: from April 2010 until December 2013 – almost

4 years. We believe that such long evaluation period, the

large scale of the production clusters analyzed, and the di-

versity of applications running on them make our evaluation

representative for cloud computing providers, which can be

generalized to other workloads and probably show similar

results.

Using 5-minute samples for the predictions would have

made the execution time for our experiments prohibitive,

so we transformed the original 5-minute trace data into a

trace of daily values, by calculating the minimum total slack

seen in the day for each cluster. This represents the worst

case scenario for providing resources in Economy class. The

time required to execute all predictions in our evaluation

when using daily values was around 2 hours. We believe

this coarser granularity does not degrade the prediction qual-

ity; as our target is multi-month prediction windows, weekly

and monthly fluctuations are more important than daily vari-

ations.

We only report total slack measurements for CPU cores in

this paper, although we applied the predictions for memory

and achieved similar results. We did not generate predictions

for disk capacity since it was not a bottleneck resource for

these clusters (see Figure 4).

Predictions are executed for every non-overlapping 6-

month window in the workload, starting at the 9th month.

In each iteration the data is divided into training and test

sets, where the test period ∆ is always 6 months long and

the training data is all the workload data collected up to the

start of the test period. The training set is used as input for

the forecasting techniques, and the test set is used to evaluate

the predictions. After each iteration, the window is advanced

6 months and the previous test set added to the training set.

With our 45 months of data, this gives us an initial 9 month

training set and 6 prediction cycles with 6-month test sets,

except for cluster 3, which has a shorter sample and has only

4 prediction cycles.

The prediction techniques described in Section 4 were

applied to the training data and the results are evaluated

against the test data. The prediction errors are calculated by

subtracting the minimum total slack predicted at time t for

the 6-month prediction window ∆= (t, t+H], as in Equation

3, from the actual values for the total slack at each day t +h

in the window, defined as:

εt+h = yt+h − Ŷ (∆), ∀h ∈ [1,H] (4)

Notice that a window ∆ only has a single prediction, but

H prediction errors, as we have many observations (days) in

the test set.

We distinguish positive and negative errors in the evalua-

tion since they mean different things in our context. Positive

errors mean that we under-estimated the amount of resources

that were available; it’s wasteful, but not harmful. Negative

errors mean that we over-estimated what was actually avail-

able: if these resources were taken up by customers, their

availability SLO would not be met, which could result in

financial penalties for the service provider. Throughout the

text, positive and negative errors will be called wastage and

shortage, respectively.1

We varied the confidence level γ from 50% to 90%, after

finding that confidence levels outside this range either saw

many resource shortages or predicted few resources would

be available.

As a comparison point for the predictions with confidence

levels, we show the results for the predicted mean future

value (i.e., without considering confidence intervals). We

also built an oracle predictor, which knows the future values

for the time-series data and can give the highest prediction

value that will have no shortage (i.e., the minimum future

value in the prediction window). Obviously, it cannot be

implemented in real life. Since there is a daily variation in

the amount of slack resources and the oracle only makes a

single prediction for the entire prediction window, the oracle

will still have wastage of resources.

The time series data used in the predictions were nor-

malized to help the comparison of results between clusters

with different sizes, and to obfuscate confidential data. For

each prediction applied at time t, we use as input the rel-

ative total slack, which is calculated by dividing each total

slack measurement in the training set by the resource capac-

ity observed at the prediction time t. The relative total slack

is used when calculating the prediction errors with Equation

4. Note that if a cluster grew a lot during a prediction win-

dow, the normalized total slack could exceed 100% – i.e.,

become larger than the cluster’s entire capacity at the pre-

diction time.

5.2 Prediction results

Figure 6 shows the CDF for the total slack prediction errors

for each of the four techniques. As expected, increasing

the confidence level moves the curve to the right: as the

predicted values get smaller, there’s more wastage and fewer

shortages.

1 An interesting question to ask is how many penalties the service provider

should be willing to pay in order to increase average utilization. If the only

factor was expected profit, paying some penalties would probably be a good

idea, but in practice, factors such as the service provider’s reputation also

matter.

Figure 6. CDF of per-day prediction errors for total CPU

slack for 6 month prediction windows, over all clusters.

The solid black line is the predicted mean future value (i.e.,

without considering confidence intervals); lighter lines show

the effects of increasing the confidence level. The lighter

the line, the higher the confidence level, and consequently

the larger the confidence interval (i.e., more conservative

predictions). The oracle’s predictions are shown as a dashed

line; the zero-error case by a vertical line.

Our goal was to pick a forecasting technique that pro-

vided a good balance between wastage and shortage for our

workloads. Here’s what we found.

• Mean presented no resource shortage for most scenarios,

but all predictions were too conservative.

• Minimum is simply too conservative.

• ARIMA produced resource shortages even for scenarios

with conservative confidence levels.

• ETS provided the best range of options: the resource

shortage gradually decrease with increasing confidence

level, getting almost no shortage in more conservative

scenarios.

Given this data, we chose to use ETS in the rest of our evalu-

ation. Figure 7 shows the relative total slack values and pre-

dictions for the ETS predictor over time. We see that the rela-

tive total slack presents high variations at some periods. Pos-

sible causes for the resource slack peaks could be an increase

on the cloud capacity and migration of workloads to other

clusters. On the other hand, drops on the total slack could be

caused by seasonal demand bursts, new users/services be-

ing assigned to the cluster and a cloud capacity reduction

(e.g. machine failure, scheduled repairs, or removing obso-

lete machines).

Our methodology would continue to work if a different

forecasting function gave better predictions for a different

workload. A service provider should expect to do the same

kind of evaluation that we did here to pick what works best

for them. However, we expect that these results are likely

to generalize well to other cloud providers because of the

length, size, application diversity, and behavior variations of

the clusters and their workloads.

Our algorithms are deliberately conservative, in order

to deal with uncertainty and avoid the bad consequences

of available resources shortage. As a result, the predicted

resources shrink with larger variations in the total slack in

the training data, longer predictions, and shorter training

windows (i.e., fewer samples).

5.3 Capacity planning analysis

What are the trade-offs of using more/less conservative pre-

dictions? This section shows how the amount of resources

offered as Economy impacts the availability SLOs that could

be offered for this class. We use the 6-month prediction of

unused resources (total slack) as the amount of reclaimable

resources to be offered in Economy class.

We define the 6-month availability of these resources as

the fraction of days in a prediction window with no shortages

(i.e., no need to reclaim any resources). This is deliberately

conservative: for example, we might not need to reclaim

any of the resources offered in Economy class if they were

needed on a day when they had not been taken up. Note

that we count an entire day as unavailable even if there is

only one 5 minute window with resource shortage. Again,

this is deliberately conservative because we are targeting

users with long-running services. If short outages (e.g., a

few minutes) are acceptable, then finer grain measurements

would certainly show a higher 6-month availability, making

Economy class even more attractive.

The confidence level affects how many resources will be

offered in Economy class, and also the 6-month availability

for their resources. Figure 8 shows the shape of this trade-off

for ETS.

In the most conservative scenario (90% confidence level),

the 6-month availability ranged from 98.9% to 100% for the

6 clusters, and the resources offered in Economy class repre-

sented 6.7–17.3% of the cluster’s capacity. The (not imple-

mentable) oracle predictor could reclaim 30.7–52.1% of the

cluster’s capacity. At the 50% confidence level, the availabil-

ity was worse (88.7–100%), but the amount of resources that

could be offered in Economy class increased to 28.4–40.4%.

For clusters 2, 3, and 6, the availability is almost 100%

for all confidence levels. This is a result of the conservative

nature of our prediction algorithms, coupled with only mod-

erate variability in the input training data.

Figure 8. Economy resource quantities predicted by ETS,

and their 6-month availability, for different confidence lev-

els. The dashed line is the oracle’s prediction, and represents

the largest value that could be offered with 100% availabil-

ity. ETS sometimes predicts more resources than this, which

decreases their availability. Error bars show the standard de-

viations for the predictions.

By comparing the results for the different confidence

levels, cloud providers can choose a value that fit their needs,

balancing the strength of the availability SLO against the

amount of resources to be offered in Economy class.

5.4 Profitability analysis

Would a cloud provider be better off if it sold some of

the reclaimable resources in Economy class, or would it be

better to sell them all in the Opportunistic one? This section

explores several scenarios to answer this question. We first

assume that all reclaimable resources offered by the provider

are actually consumed by users. Then, we discuss what can

make this assumption invalid in practice, and what would be

the consequences.

To compare the profits, we first calculate the revenue Rk

for a resource class k as:

Rk =C ·T · fk · pk

where C is the total resource capacity of the cloud provider,

fk is the fraction of resources allocated for class k, pk is the

price of resources per unit of time for class k, and T is the

length of the period the revenue is being calculated in units

of time.

Figure 7. Predicted and actual total slack using ETS. The black (darkest) wiggly solid line shows the actual total slack, and

the blue (lighter) dashed lines show the predicted values for the mean and the lower bounds for different confidence levels. The

total slack is normalized to the cluster capacity on the day the prediction was applied – the last day of the training set.

If the provider does not offer Economy class, all slack re-

sources will be offered as Opportunistic. The revenue when

using only the Opportunistic class for all slack resources is

given by:

Rop =C ·T · fslack · pop

where fslack is the fraction of slack resources that can be re-

offered, and pop is the average price for the Opportunistic

resources during the measured period.

When a portion of the slack resources are offered in

Economy class, the remaining slack resources are offered

in the Opportunistic one. Thus, we calculate the revenue Re

when offering Economy class as:

Re =C ·T · [fe · pe +(fslack − fe) · pop]

where fe is the fraction of slack resources to be offered

in Economy class, and (fslack − fe) is the remaining slack

resources to be offered in the Opportunistic class.

When offering resources with SLOs, the service provider

will pay penalties on SLO violations. For this analysis, we

imitate the SLA for Amazon’s EC2 cloud service [2]: if ser-

vice availability is lower than 99% averaged over a month,

the service provider pays the user a penalty (the user gets

a discount) that is 30% of that month’s bill.2 We define the

2 The penalties associated with SLO violations for most cloud services are

remarkably small.

penalty Xk for the class k as a fraction of the provider’s rev-

enue in the measured period. The penalty factor for the Op-

portunistic class is always zero (Xop = 0), as the penalty fac-

tor Xe for Economy class is calculated as:

Xe =

{
30%, if ae ≤ 99%

0, otherwise

where ae is the availability measured for this service class.

We define the profit Pk a provider makes with a resource

class k as:

Pk = Rk · (1−Xk)− cost

Calculating a service provider’s costs is a difficult pro-

cess. However, there is no intrinsic reason to suppose that

the costs would be a function of the quality of the resource

SLOs, and since the objective of this analysis is to compare

the profits when offering different SLO classes, not to mea-

sure absolute profits, we simply ignore any such cost differ-

ences for the rest of the discussion (i.e., we set cost = 0).

A more thorough analysis of provider’s profit would need to

include cost factors such as infrastructure, power, operations

staff, marketing, and maintenance.

Limitations in our data cause us to make two very conser-

vative assumptions:

1. The grain of our evaluation data is a single measurement

per day, so we assume a worst case scenario in which

a single availability violation in a day makes the whole

day unavailable. Thus, one single violation in a month

would result in 1 day of 30 unavailable, which is already

lower than the 99% availability threshold, and would

cause penalties for the provider for resources offered in

the On-demand or Economy classes.

2. We do not know how many users would be affected by an

SLO violation, so we assume that all users are affected by

every unavailability period.

In practice, the actual availability will be significantly

better than this, and the penalties would only be paid out to a

subset of users. Thus, if finer grain data was available, then

the analysis would give higher profitability for Economy

class.

We can compare the profit that the provider would have

when using only the Opportunistic class for the slack re-

sources to the profit when using Economy class, calculating

the profit ratio θ for the two scenarios:

θ =
Pe

Pop

θ =
[fe · pe +(fslack − fe) · pop] · (1−Xe)

fslack · pop

Notice that the profit ratio θ is independent of the ca-

pacity C and the units of time T , as they cancel out when

dividing one profit by the other.

The profitability analysis of Economy class is based on

the prediction results presented earlier. We use the estimated

fractions of slack resources to be offered in Economy class

and the resulting service availability for many prediction

confidence levels for the ETS method, as presented in Fig-

ure 8. We also explore different price options for resources

offered in Economy class, identifying the cases where adopt-

ing this new service class could be more profitable than of-

fering all slack resources in the Opportunistic class.

In order to define the resource prices for the Opportunis-

tic class, we used historic price values for different Ama-

zon EC2 Spot Instances, measured from December 2013

to March 2014, to calculate a relative resource price: the

average spot price divided by the (constant) on-demand

price. We gathered the relative spot price for 4 general pur-

pose Amazon EC2 instance types (m1.small, m1.medium,

m1.large, m1.xlarge) in the us-west-1 region, and found that

the average relative prices for each instance type ranged

from 15.4% to 59.9% of the on-demand prices. The ob-

served average relative spot price for the four instance types

was 31.8%, which we used as the relative price for the re-

sources offered in the Opportunistic class in our evaluation

(i.e., pop = 31.8%).
As we want to identify reasonable prices for resources

with SLOs to offer in Economy class, we explore different

relative resource prices for this class, varying pe from 30%

to 100% of the On-demand class price. Lower and higher

values were not explored as we believe that the resources

offered in Economy class should be at least as valuable as

the average Opportunistic price (pe ≥ pop), as they have

associated SLOs; but not more expensive than the resources

offered in the On-demand class (pe ≤ 1), as reclaimable

resources will probably be offered with lower SLOs.

Figure 9 shows the profit ratio and average availability

when using different combinations of confidence levels and

prices for Economy class resources.

As we have already seen, the higher the confidence level

(i.e., more conservative), the higher the availability tends to

be, so the penalties paid by the provider tend to be lower.

However, the increase in the confidence level results in less

resources offered in Economy class, which decreases the

gains for this class. Therefore, the provider needs to choose

a confidence level that will result in a good balance for the

availability and the amount of resources offered in Economy

class, which could bring high revenues, good SLOs and low

penalties for the reclaimable resources.

We also see that the profit ratio increases when the price

for resources offered in Economy class increases. Not sur-

prisingly, the profit from Economy class is lower than the

profit for the Opportunistic class when its relative resource

price is pe = 30%, which is slightly lower than the oppor-

tunistic price pop = 31.8%. But for almost all other relative

resource prices, offering slack resources in Economy class is

more profitable, even after paying penalties for SLO viola-

tions.

For the more conservative predictions (i.e., 90% confi-

dence level), the average availability ranges from 98.9%

to 100%. Let’s assume that 70% of the On-demand class

price is a reasonable relative price for the resources offered

in Economy class with this availability level. For this sce-

nario, the profit when using Economy class would be 22–

60% higher than the profit when all resources are offered in

the Opportunistic class. For the less conservative predictions

(i.e., 50% confidence level), the average availability ranges

from 88.7% to 100%. If we consider a relative resource price

for Economy of 50% for this scenario, the profit increase for

offering resources in Economy class would be 41–50%.

These results are based on the assumption that all re-

claimable resources offered are actually consumed by users,

regardless of their price and availability. In practice, high

prices and/or poor SLOs would reduce demand, but we do

not know by how much - we don’t have any data on how

much users are willing to pay for different SLOs. But it

seems reasonable to assume that there will be at least some

demand for Economy class if it is priced lower than the

On-demand price. Any remaining unsold capacity can al-

ways be offered in the Opportunistic class, so there are few

downsides for the service provider, as long as the availabil-

ity is good enough to avoid too many penalties. As we noted

above, our penalty calculations are extremely conservative,

so this seems eminently achievable.

Figure 9. Profit ratio and availability for different scenarios of prediction confidence levels and resource prices for Economy

class. Different shapes represent different confidence intervals; different sizes represent different prices. The leftmost dashed

line presents the break-even point (profit ratio θ = 1); points on the right side present scenarios on which it is profitable to

offering resources in Economy class; points further to the right are more profitable. The rightmost vertical line shows the

maximum possible profit ratio, but this requires the (unimplementable) oracle predictor and setting the price for Economy

resources to be the same as for On-demand resources.

6. Related work

Much previous work has covered resource management in

cloud computing, such as alternatives to increase cloud com-

puting utilization [3, 20], analysis of cloud and Grid work-

loads [10, 12, 22, 24, 27] (they’re different), prediction [11,

14, 16, 21, 23, 25] of cloud workloads and energy-efficient

resource management [6, 8, 15].

Marshall et al. [20] proposed reusing unused cloud re-

sources by offering opportunistic, preemptible leases for

them with no SLOs. Their results show that doing so can

increase cloud utilization while meeting availability require-

ments for applications, which corroborates the motivation of

our work. Amazon EC2 Spot Instances [3] is a product that

essentially does the same thing. Although these solutions in-

crease cloud utilization, the offered resources have no SLO.

In our work we add more value for reclaimable resources by

offering long-term SLOs for Economy class, allowing the

cloud provider to increase utilization with resources that are

more profitable and providing a new QoS class that is easier

for users to take advantage of because of its predictability.

Previous work has proposed prediction models for re-

source load over time on cloud environments using several

techniques, in order to help dynamic provisioning decisions

and avoid SLO violations [11, 16, 23, 25]. The main fo-

cus was on forecasting point values in relatively small fu-

ture windows (a few hours or days), by detecting workload

patterns such as diurnal cycles. Our work also uses time se-

ries forecasting techniques to predict the minimum amount

of resources that would be unused, but does so over a much

longer period (6 months); and combines this with confidence

intervals. We go on to explore trade-offs between the conser-

vativeness of the predictions against the estimates, allowing

the service provider to choose a long-term availability SLO

target and determine the confidence level accordingly.

Reiss et al. [24] highlighted the heterogeneity and dy-

namicity of cloud resources and workload, showing a high

variation on machine configurations and task request shapes

(e.g., CPU:memory ratios), as well as specific task require-

ments. This variation can have an impact when managing

the resource classes presented in this paper, as we discuss

only coarse grain unused capacity available for the new QoS

class proposed, aggregated from all machines in each clus-

ter. In future work we plan to do a finer grain per-machine

analysis, to measure the amount of stranded resources that

are useless because no task request shape fits. This could

reduce the practical amount of reclaimable resources avail-

able, requiring strategies such as VM migration to improve

utilization.

Other work has explored classification of tasks accord-

ing to their duration and amount of resources requested [22];

modelling of task resource consumption over time [27]; and

comparison of cloud and grid workloads regarding tasks and

machine load [10]. The durations of the cloud traces an-

alyzed were up to 1 month, from a single cluster. In our

work, we analyzed long-term aspects of cloud workloads,

such as the fraction of users’ ceilings that are actually re-

quested over time, and the amount of resources left unused

in many dimensions. We analyzed a year of measurements

from 6 Google production clusters, and evaluated our pre-

diction process using traces of almost 4 years of data.

Energy-efficient resource management approaches were

also proposed, showing that predictive and reactive strate-

gies to shut servers down or to put them in sleep state can

lead to reduced power consumption (and costs) in data cen-

ters, while meeting SLAs [6, 8, 15]. Although our predic-

tion process could also be used to estimate the amount of

servers that could be inactive, we believe that this approach

is not always possible, as idle machines may also run stor-

age servers and, in this case, cannot be turned off. Thus, ef-

ficiently reclaiming unused resources for such servers as we

show in this paper would be more adequate. A hybrid ap-

proach that turns off part of the machines and resells slack

resources from others could be considered in future work.

7. Conclusion

Cloud computing elasticity comes at a price. In order to offer

strong obtainability and availability SLOs, cloud providers

must over-provision resources, resulting in low utilization

and driving up costs. A common way to fix this and increase

utilization is to offer the unused resources opportunistically

(i.e., with no SLOs). Although such resources can be useful

for short-lived jobs that can tolerate unknown unavailability

periods for lower prices, they are unattractive for many other

use cases, especially services that run for long periods of

time and need some indication on the expected uptime for

them over future months.

We believe that offering multi-month availability SLOs

for at least some of these slack resources is important, and

showed how to do so, by defining a new service class called

Economy class. We used predictions based on time series

forecasts to populate Economy class with resources that have

good long-term obtainability and availability SLOs. We used

confidence intervals to quantify the risks of SLO violations,

and provided a trade-off between risk and the quantities of

resources that could be made available in this class.

We evaluated our approach using almost 4 years of data

from 6 production clusters at Google, spanning tens of thou-

sands of machines. We believe this is representative of a

wide range of cloud workloads, given the long time period

(unseen in previous cloud studies); the large scale of the

clusters; the use of several different clusters; and their work-

load diversity – each cluster ran many thousands of applica-

tions, and had significantly different workload patterns.

Our results show that even with a very conservative ap-

proach, 6.7–17.3% of resources could be re-offered in Econ-

omy class with an availability of 98.9% or better. We also

showed that a service provider could increase its profit from

selling reclaimed resources in Economy class – in our ex-

amples, by up to 60%, even after paying penalties for SLO

violations.

Finally, we believe that having this new option of service

class will prove beneficial to cloud users, too: they can ben-

efit from strong, long-term SLOs for availability to better

manage their applications, while paying less than they would

for resources in the Reserved or On-demand classes.

Acknowledgments

The authors would like to thank Abhishek Verma and the

anonymous reviewers for providing valuable feedback on

this paper. Francisco Brasileiro thanks the support from

CNPq/Brazil.

References

[1] Amazon EC2 FAQs - how many instances can i run in Amazon

EC2? "http://aws.amazon.com/ec2/faqs/#How_many_

instances_can_I_run_in_Amazon_EC2", Apr. 2014.

[2] Amazon EC2 service level agreement. "http://aws.

amazon.com/ec2/sla/", Apr. 2014.

[3] Amazon EC2 instance purchasing options. "https://aws.

amazon.com/ec2/purchasing-options", Apr. 2014.

[4] G. E. P. Box and G. Jenkins. Time Series Analysis, Fore-

casting and Control. Holden-Day, Incorporated, 1990. ISBN

0816211043.

[5] K. P. Burnham and D. R. Anderson. Model selection and

multimodel inference: a practical information-theoretic ap-

proach. Springer, 2 edition, 2002. ISBN 0387953647.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and

R. P. Doyle. Managing energy and server resources in hosting

centers. In ACM Symposium on Operating Systems Principles

(SOSP), pages 103–116, 2001.

[7] C. Chatfield. 5. forecasting. In The analysis of time series: an

introduction. CRC Press, Boca Raton, FL, USA, 6th edition,

2004.

[8] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang,

and N. Gautam. Managing server energy and operational

costs in hosting centers. In ACM International Conference on

Measurement and Modeling of Computer Systems (SIGMET-

RICS), pages 303–314, 2005.

[9] R. Costa, F. Brasileiro, G. Lemos, and D. Sousa. Analyz-

ing the impact of elasticity on the profit of cloud computing

providers. Future Generation Computer Systems (FGCS), 29

(7):1777–1785, Sept. 2013.

[10] S. Di, D. Kondo, and W. Cirne. Characterization and compar-

ison of cloud versus Grid workloads. In International Con-

ference on Cluster Computing (IEEE CLUSTER), pages 230–

238, Beijing, China, Sept. 2012. .

[11] S. Di, D. Kondo, and W. Cirne. Host load prediction in a

Google compute cloud with a Bayesian model. In Interna-

tional Conference on High Performance Computing, Network-

ing, Storage and Analysis (SC), pages 21:1–21:11, Salt Lake

City, UT, USA, Nov. 2012. ISBN 978-1-4673-0804-5.

[12] S. Di, D. Kondo, and C. Franck. Characterizing cloud applica-

tions on a Google data center. In 42nd International Confer-

ence on Parallel Processing (ICPP), Lyon, France, Oct. 2013.

[13] Y. Fu, J. S. Chase, B. N. Chun, S. Schwab, and A. Vahdat.

SHARP: an architecture for secure resource peering. In ACM

Symposium on Operating Systems Principles (SOSP), pages

133–148, 2003.

[14] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Capacity

management and demand prediction for next generation data

centers. In IEEE International Conference on Web Services

(ICWS), pages 43–50, July 2007.

[15] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Resource

pool management: Reactive versus proactive or lets be friends.

Computer Networks, 53(17):2905–2922, 2009. ISSN 1389-

1286.

[16] Z. Gong, X. Gu, and J. Wilkes. PRESS: PRedictive Elastic

ReSource Scaling for cloud systems. In International Con-

ference on Network and Service Management (CNSM), pages

9–16, 2010.

[17] R. J. Hyndman and G. Athanasopoulos. 7. exponential

smoothing. In Forecast: principles and practice. OTexts,

2013.

[18] R. J. Hyndman and Y. Khandakar. Automatic time series

forecasting: the forecast package for R. Journal of Statistical

Software, 27(3):1–22, July 2008. ISSN 1548-7660.

[19] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder.

Prediction intervals for exponential smoothing using two new

classes of state space models. Journal of Forecasting, 24(1):

17–37, 2005.

[20] P. Marshall, K. Keahey, and T. Freeman. Improving utilization

of infrastructure clouds. In IEEE/ACM International Sympo-

sium on Cluster, Cloud and Grid Computing (CCGrid), pages

205–214, 2011.

[21] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and

D. Pendarakis. Efficient resource provisioning in compute

clouds via VM multiplexing. In IEEE/ACM International

Conference on Autonomic Computing and Communications

(ICAC), pages 11–20, Washington, DC, USA, 2010. ACM.

[22] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das. To-

wards characterizing cloud backend workloads: insights from

Google compute clusters. SIGMETRICS Performance Evalu-

ation Review, 37(4):34–41, Mar. 2010.

[23] F. J. A. Morais, F. V. Brasileiro, R. V. Lopes, R. A. San-

tos, W. Satterfield, and L. Rosa. Autoflex: Service agnos-

tic auto-scaling framework for IaaS deployment models. In

IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid), pages 42–49, 2013.

[24] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch. Heterogeneity and dynamicity of clouds at scale:

Google trace analysis. In ACM Symposium on Cloud Comput-

ing (SoCC), pages 7:1–7:13, San Jose, CA, USA, 2012.

[25] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale:

elastic resource scaling for multi-tenant cloud systems. In J. S.

Chase and A. E. Abbadi, editors, ACM Symposium on Cloud

Computing (SoCC), page 5, 2011.

[26] C. A. Waldspurger. Memory resource management in

VMware ESX Server. In OS Design and Implementation

(OSDI02), pages 181–194, Dec. 2002.

[27] Q. Zhang, J. Hellerstein, and R. Boutaba. Characterizing task

usage shapes in Google compute clusters. In Workshop on

Large Scale Distributed Systems and Middleware (LADIS),

Seattle, WA, USA, Sept. 2011.

